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Often scientists need to locate appropriate software for their problems and then select from
among many alternatives. We have previously proposed an approach for dealing with this task
by processing performance data of the targeted software. This approach has been tested using
a customized implementation referred to as PYTHIA. This experience made us realize the
complexity of the algorithmic discovery of knowledge from performance data and of the
management of these data together with the discovered knowledge. To address this issue, we
created PYTHIA-II—a modular framework and system which combines a general knowledge
discovery in databases (KDD) methodology and recommender system technologies to provide
advice about scientific software/hardware artifacts. The functionality and effectiveness of the
system is demonstrated for two existing performance studies using sets of software for solving
partial differential equations. From the end-user perspective, PYTHIA-II allows users to
specify the problem to be solved and their computational objectives. In turn, PYTHIA-II (i)
selects the software available for the user’s problem, (ii) suggests parameter values, and (iii)
assesses the recommendation provided. PYTHIA-II provides all the necessary facilities to set
up database schemas for testing suites and associated performance data in order to test sets of
software. Moreover, it allows easy interfacing of alternative data mining and recommendation
facilities. PYTHIA-II is an open-ended system implemented on public domain software and
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has been used for performance evaluation in several different problem domains.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis]: Partial Differential Equa-
tions; H.4.2 [Information Systems]: Types of Systems; H.2.8 [Database Management]:
Database Applications; I.2.1 [Artificial Intelligence]: Applications and Expert Systems

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Data mining, inductive logic programming, knowledge-
based systems, knowledge discovery in databases, performance evaluation, recommender
systems, scientific software

1. INTRODUCTION

Complex scientific, engineering, or societal problems are often solved today
by utilizing libraries or some form of problem-solving environments (PSEs).
Most software modules are characterized by a significant number of param-
eters affecting efficiency and applicability that must be specified by the
user. This complexity is significantly increased by the number of parame-
ters associated with the execution environment. Furthermore, one can
create many alternative solutions of the same problem by selecting differ-
ent software for the various phases of the computation. Thus, the task of
selecting the best software and the associated algorithmic/hardware pa-
rameters for a particular computation is often difficult and sometimes even
impossible. In Houstis et al. [1991] we proposed an approach for dealing
with this task by processing performance data obtained from testing
software. The testing of this approach is described in Weerawarana et al.
[1997] using the PYTHIA implementation for a specific performance evalu-
ation study. The approach has also been tested for numerical quadrature
software [Ramakrishnan et al. 2000] and is being tested for parallel
computer performance [Adve et al. 2000; Verykios et al. 1999]. This
experience made us realize the high level of complexity involved in the
algorithmic discovery of knowledge from performance data and the man-
agement of these data together with the discovered knowledge. To address
the complexity issue together with scalability and portability of this ap-
proach, we present a knowledge discovery in databases (KDD) methodology
[Fayyad et al. 1996] for testing and recommending scientific software.
PYTHIA-II is a system with an open software architecture implementing
the KDD methodology, which can be used to build a Recommender System
(RS) for many domains of scientific software/hardware artifacts [Weer-
awarana et al. 1997; Ramakrishnan et al. 2000; Verykios 1999; Verykios et
al. 2000]. In this paper, we describe the PYTHIA-II architecture and its use
as an RS for PDE software.

Given a problem from a known class of problems and given some
performance criteria, PYTHIA-II selects the best-performing software/ma-
chine pair and estimates values for the associated parameters involved. It
makes recommendations by combining attribute-based elicitation of speci-
fied problems and matching them against those of a predefined dense
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population of similar types of problems. Dense here means that there are
enough data available so that it is reasonable to expect that a good
recommendation can be made. The more dense the population is, the more
reliable the recommendation. We describe case studies for two sets of
elliptic partial differential equations software found in PELLPACK [Hous-
tis et al. 1998].

We now describe a sample PYTHIA-II session (Figure 1). Suppose that a
scientist or engineer uses PYTHIA-II to find software that solves an elliptic
partial differential equation (PDE). The system uses this broad categoriza-
tion to direct the user to a form-based interface that requests more specific
information about features of the problem and the user’s performance
constraints. Figure 1 illustrates a portion of this scenario where the user
provides features about the operator, right side, domain, and boundary
conditions—integral parts of a PDE—and specifies an execution time
constraint (measured on a Sun SPARCstation 20, for instance) and an error
requirement to be satisfied. Thus the user wants software that is fast and
accurate; it is possible that no such software exists. The RS contacts the
PYTHIA-II (web) server on the user’s behalf and uses the knowledge
acquired by the learning methodology presented in this paper to perform a
selection from a software repository. Then the RS consults databases of
performance data to determine the solver parameters, such as grid lines to
use with a PDE discretizer, and estimates the time and accuracy using the
recommended solver. Note that the RS does not involve the larger data-
bases used in the KDD process, it only accesses specialized, smaller
databases of knowledge distilled from the KDD process.

The paper is organized as follows. Section 2 describes a general method-
ology for selecting and recommending scientific software implemented in
PYTHIA-II. The architecture for an RS based on the PYTHIA-II approach
is presented in Section 3. A description of the data management subsystem
of PYTHIA-II is presented in Section 4. We include a database schema
appropriate for building an RS for elliptic PDE software from the PELL-
PACK library to illustrate its use. Section 5 outlines the knowledge
discovery components of PYTHIA-II. The data flow in PYTHIA-II is illus-
trated in Section 6. The results of applying PYTHIA-II to two case studies

Fig. 1. The recommender component of PYTHIA-II implemented as a web server providing
advice to users.
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and comparing with earlier results from the 1980’s can be found in Sections
7 and 8.

2. A RECOMMENDER METHODOLOGY FOR SCIENTIFIC SOFTWARE

An RS uses stored information (user preferences, performance data, arti-
fact characteristics, cost, size, . . .) of a given class of artifacts (software,
music, can openers, . . .) to locate and suggest artifacts of interest [Ra-
makrishnan 1997; Ramakrishnan et al. 1998; Resnik and Varian 1997]. An
RS for software/hardware artifacts uses stored performance data on a
population of previously encountered problems and machines to locate and
suggest efficient artifacts for solving previously unseen problems. Recom-
mendation becomes necessary when user requests or objectives cannot be
properly represented as ordinary database queries. In this section, we
describe the complexity of this problem, the research issues to address, and
a methodology for resolving them.

The algorithm or software selection problem originated in an early paper
by Rice [1976]. Even for routine tasks in computational science, this
problem is ill-posed and quite complicated. Its difficulty is due to the
following factors:

—The space of applicable software for specific problem subclasses is
inherently large, complex, ill-understood, and often intractable to explore
by brute-force means. Approximating the problem space by a feature
space helps, but introduces an intrinsic uncertainty.

—Depending on the way the problem is (re)presented, the space of applica-
ble algorithms changes; some of the better algorithms sacrifice generality
for performance and have customized data structures and fine-tuned
computational code.

—Both specific features of the given problem and algorithmic performance
information affect the algorithm selection strategy.

—A mapping from the problem space to the good software in the algorithm
space is not the only useful measure of success; one also needs indicators
of domain complexity and behavior, e.g., information about the relative
costs.

—There is an inherent uncertainty in assessing the performance measures
of a particular algorithm for a problem. Minor implementation differ-
ences can produce large differences in performance that make analytic
estimates unreliable.

—Techniques are needed that allow distributed recommender systems to
coexist and cooperate together to exploit all relevant information.

The methodology for building PYTHIA-II uses the knowledge discovery in
databases (KDD) process shown in Table I. Assuming a dense population of
benchmark problems from the targeted application domain, this RS meth-
odology uses a three-pronged strategy: feature determination of problem
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instances, performance evaluation of scientific software, and the automatic
generation of relevant knowledge. Note that the dense population assump-
tion can be quite challenging for many application domains. We now
address each of these aspects.

2.1 Problem Features

The applicability and efficiency of software depends significantly on the
features of the targeted problem domain. Identifying appropriate problem
features of the problem domain is a fundamental problem in software
selection. The way problem features affect software is complex, and algo-
rithm selection might depend in an unstable way on the features. Thus
selections and performance for solving uxx 1 uyy 5 1 and uxx 1 (1 1
xy/10,000)uyy 5 1 can be completely different. Even when a simple
structure exists, the actual features specified might not properly reflect the
simplicity. For example, if a good structure is based on a simple linear
combination of two features f 1 and f 2, the use of features such as f 1 p

cos( f 2) and f 2 p cos( f 1) might be ineffective. Furthermore, a good
selection methodology might fail because the features are given inappropri-
ate measurements or attribute-value meanings. Many attribute-value ap-
proaches (such as neural networks) routinely assign value-interpretations
to numeric features (such as 1 and 5), when such values can only be
interpreted in an ordinal/symbolic sense. PYTHIA-II assumes features are
defined by the knowledge engineer.

The database schema defining a feature is of the form name and text as
follows:

Table I. A Methodology for Building an RS. This methodology is very similar to previous
procedures adopted in the performance evaluation of scientific software.
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nfeatures integer — no. of attributes identifying this feature
features text [] — numeric/symbolic/textual identification
forfile text — file-based feature information

An example relating a feature to a PDE equation is

name text — relation record name
equation text — name of equation with these features
feature text — name of record identifying features

where the foreign keys identify the relation between the equation and its
features. Two instances from tables for these are

name ? opLaplace name ? opLaplace pde #3
nfeatures ? 1 equation ? pde #3
features ? “Uxx 1 Uyy ( 1Uzz) 5 f” feature ? opLaplace

which shows the correspondence between equation pde#3 and its feature
opLaplace (the PDE is the Laplacian).

2.2 Performance Evaluation

There exist well-established performance evaluation methodologies for
scientific software [Houstis et al. 1978; 1983; Boisvert et al. 1979; Rice
1983; 1990; Dyksen et al. 1984; Moore et al. 1990]. While there are many
important factors that contribute to the quality of numerical software, we
illustrate our ideas using speed and accuracy. PYTHIA-II can handle other
attributes (reliability, portability, documentation, etc.) in its data storage
scheme. Similar performance evaluation methodology and attributes are
needed for each application domain.

Accuracy is measured by the norm of the difference between the com-
puted and the true solutions or by a guaranteed error estimate. Speed is
measured by the time required to execute the software in a standard
execution environment. PYTHIA-II ensures that all performance evalua-
tions are made consistently; their outputs are automatically coded into
predicate logic formulas. We resort to attribute-value encodings when the
situation demands it; for instance, using straight line approximations to
performance profiles (e.g., accuracy versus grid size) for solvers is useful to
obtain interpolated values of grid parameters for PDE problems.

2.3 Reasoning and Learning Techniques for Generating Software Recommen-
dations

PYTHIA-II uses a multimodal approach by integrating different learning
methods to leverage their individual strengths. We have explored and
implemented two such strategies: Case-Based Reasoning (CBR) [Joshi et al.
1996] and inductive logic programming (ILP) [Bratko and Muggleton 1995;
Dzeroski 1996; Muggleton and Raedt 1994] which we describe in this
section.

CBR systems obey a lazy learning paradigm in that learning consists
solely of recording data from past experiments to help in future problem-
solving sessions. (This gain in simplicity of learning is offset by a more
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complicated process that occurs in the actual recommendation stage.)
Evidence from psychology suggests that people use this approach to make
judgments, using the experience gained in solving “similar” problems to
devise a strategy for solving the present one. In addition, CBR systems can
exploit a priori domain knowledge to perform more sophisticated analyses
even if pertinent data are not present. The original PYTHIA system
utilized a rudimentary form of case-based reasoning employing a character-
istic-vector representation for the problem population [Weerawarana et al.
1997].

ILP systems, on the other hand, use an eager learning paradigm in that
they attempt to construct a predicate logic formula so that all positive
examples of good recommendations provided can be logically derived from
the background knowledge, and no negative example can be logically
derived. The advantages of this approach lie in the generality of the
representation of background knowledge. Formally, the task in algorithm
selection is “given a set of positive exemplars and negative exemplars of the
selection mapping and a set of background knowledge, induce a definition
of the selection mapping so that every positive example can be derived and
no negative example can be derived.” While the strict use of this definition
is impractical, an approximate characterization, called the cover, is utilized
which places greater emphasis on not representing the negative exemplars
as opposed to representing the positive exemplars. Techniques such as
relative least general generalization and inverse resolution [Dzeroski 1996]
can then be applied to induce clausal definitions of the algorithm selection
methodology. This forms the basis for building RS procedures using banks
of selection rules.

ILP is often prohibitively expensive, and the standard practice is to
restrict the hypothesis space to a proper subset of first-order predicate
logic. Most commercial systems (like GOLEM and PROGOL [Muggleton
1995]) require that background knowledge be ground, meaning that only
base facts can be provided as opposed to intensional information. This still
renders the overall complexity exponential. In PYTHIA-II, we investigate
the use of domain-specific restrictions on the induction of hypotheses and
analyze several strategies. First, we make syntactic and semantic restric-
tions on the nature of the induced methodology. For example, we require
that a PDE solver should first activate a discretizer before a linear system
solver (a different order of PDE solver parts does not make sense). An
example of a semantic restriction is consistency checks between algorithms
and their inputs. Second, we incorporate a generality ordering to guide the
induction of rules and prune the search space for generating plausible
hypotheses. Finally, since the software architecture of the domain-specific
RS has a natural database query interface, we utilize it to provide meta-
level patterns for rule generation.

PYTHIA-II also employs more restricted forms of eager learning such as
the ID3 (Induction of Decision Trees) [Quinlan 1986] system. It is a
supervised learning system for top-down induction of decision trees from a
set of examples and uses a greedy divide-and-conquer approach. The
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decision tree is structure where (a) every internal node is labeled with the
name of one of the predicting attributes; (b) the branches from an internal
node are labeled with values of the node attribute; and (c) every leaf node is
labeled with a class (i.e., the value of the goal attribute). The training
examples are tuples, where the domain of each attribute is limited to a
small number of values, either symbolic or numerical. The ID3 system uses
a top-down irrevocable strategy that searches only part of the search space,
guaranteeing that a simple—but not necessarily the simplest—tree is
found.

3. PYTHIA-II: A RECOMMENDER SYSTEM FOR SCIENTIFIC SOFTWARE

In this section we detail the software architecture of a domain-specific RS,
PYTHIA-II (see Figure 2), based on the methodology discussed above. Its
design objectives include (i) modeling domain-specific data into a struc-
tured representation using a database schema, (ii) providing facilities to
generate specific performance data using simulation techniques, (iii) auto-
matically collecting and storing this data, (iv) summarizing, generalizing,
and discovering patterns/rules that capture the behavior of the scientific
software system, and (v) incorporating them into the selected inference
engine system. The system architecture has four layers:

—user interface layer

Fig. 2. The system architecture of PYTHIA-II. The recommender component consists of the
recommender system interface and the inference engine. The KDD component is the rest.

234 • E. N. Houstis et al.

ACM Transactions on Mathematical Software, Vol. 26, No. 2, June 2000.



—data generation, data mining, and inference engine layer
—relational engine layer, and
—database layer.

The database layer provides permanent storage for the problem population,
the performance data and problem features, and the computed statistical
data. The next layer is the relational engine which supports an extended
version of the SQL database query language and provides access for the
upper layers. The third layer consists of three subsystems: the data
generation system, the data-mining system, and the inference engine. The
data generation system accesses the records defining the problem popula-
tion and processes them within the problem execution environment to
generate performance data. The statistical data analysis and pattern
extraction modules comprise the data-mining subsystem. The statistical
analysis module uses a nonparametric statistical method to rank the
generated performance data [Hollander and Wolfe 1973]. PYTHIA-II inte-
grates a variety of publicly available pattern extraction tools such as
relational learning, attribute value-based learning, and instance-based
learning techniques [Bratko and Muggleton 1995; Kohavi 1996]. These
tools and our integration methods are discussed in Section 5.2. Our design
allows for pattern finding in diverse domains of features like nominal,
ordinal, numerical, etc.

The graphical user interface in the top layer allows the knowledge
engineer to use the system to generate knowledge as well as to query the
system for facts stored in the database layer. The recommender is the
end-user interface, and includes the inference engine. It uses the knowl-
edge generated by the lower layers as an expert system to answer domain-
specific questions posed by end-users. The architecture of PYTHIA-II is
extensible, with well-defined interfaces among the components of the
various layers.

4. DATA MODELING AND MANAGEMENT COMPONENTS OF PYTHIA-II

PYTHIA-II needs a powerful, adaptable database and management system
with an open architecture to support its data generation, data analysis,
automatic knowledge acquisition, and inference processes. The design
requirements are summarized as follows:

—to provide storage for the problem population (input to the execution
environment) in a structured way, along with its parameters, features,
and constraints,

—to support seamless data access by the user, and
—to support full extensibility to accommodate changes in the data size and

schema.

PYTHIA-II uses POSTGRES95 [Stonebraker and Rowe 1986], an object-
oriented, relational DBMS (database management system) which supports
complex objects and which can easily be extended to new application
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domains by providing new data types, new operators, and new access
methods. It also provides facilities for active databases and inferencing
capabilities including forward and backward chaining. It supports the
standard SQL language and has interfaces for C, Perl, Python, and Tcl.
PYTHIA-II’s relational data model offers an abstraction of the structure of
the problem population which must be domain dependent. For example, the
abstraction of a standard PDE problem includes the PDE system, the
boundary conditions, the physical domain and its approximation in a grid
or mesh format, etc. Each of the PDE problem specification components
constitutes a separate entity set which is mapped into a separate table or
relation. Interactions among entities can also be modeled by tables repre-
senting relationships. In a higher level of abstraction, we use tables for
batch execution of experiments and performance data collection, aggregate
statistical analysis, and data mining. The experiment table represents a
large number of problems as sequences of problem components to be
executed one at a time. A profile table collects sets of performance data
records and profile specification information required by the analyzer. A
predicate table identifies a collection of profile and feature records needed
for data mining.

To illustrate the data modeling and management of PYTHIA-II, we now
describe an example database schema specification for an RS for elliptic
PDE software from the PELLPACK library. Throughout the remainder of
this paper, we use this example to describe some aspects of the components
of PYTHIA-II. The overall design of the system, however, is independent of
the particular case study, and the elements of the system that are case
study dependent will always be clearly indicated. In the data-modeling
component of PYTHIA-II, the schema specification must be modified for
each domain of scientific software. The PYTHIA-II database mechanisms
are independent of the application domain, but the problem population,
performance measures, and features do depend on the domain.

—Problem Population. The atomic parts of a PDE problem are the equa-
tion, domain, boundary_conditions, and initial_conditions. These entities
must be defined consistently with the syntax of the targeted scientific
software. Solution algorithms are defined by a sequence of calls to library
modules whose parts are grid, mesh, decomposer, discretizer, indexer,
linear_system_solver, and triple. The sequences entity contains an or-
dered list of all these. Miscellaneous entities required for the benchmark
include output, options, and fortran_code. The schema for the database
records for equation and sequence are as follows:

EQUATION
name text — record name
system text — software to solve equation
nequations integer — number of equations
equations text [] — text describing equations to solve
forfile text — source code file (used in definition)
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SEQUENCES
name text — record name
system text — software that provides the solver

modules
nmod integer — number of modules in the solution

scheme
types text [] — array of record types (e.g., grid,

solver)
names text [] — array of module record names
parms text [] — array of module parameters

Instances of these from the case studies are as follows:

name ? pde #39
system ? pellpack
nequations ? 1
equations ? {“uxx 1 uyy 1 ((1.-h(x) pp2pw(x,y) pp2)/

(&b))u 5 0”}
forfile ? /p/pses/projects/kbas/data-files/fortran/pde39.eq

name ? uniform 950x950 proc 2 jacobi cg
system ? pellpack
nmod ? 6
types ? {“grid”,“machine”,“dec”,“discr”,“indx”,“solver”}
names ? {“950x950 rect”,“machine_2”,“runtime

grid 1x2”,“5-point star”,“red
black”,“itpack-jacobi cg”}

parms ? {“”,“”,“”,“”,“”,“itmax 20000”}

The equation field attribute in the equation record uses the syntax of the
PELLPACK PSE. The &b in the specification defines a location for param-
eter replacement, and the forfile attribute provides for additional source
code to be attached to the equation definition. The sequences record shows
an ordered listing of the module calls used to solve a particular PDE
problem. For each module call in the list, the sequence identifies the
module type, name, and parameters.

—Features. Features and their representations are given in Section 2.1.
—Experiments. The experiment is a derived entity which identifies a

specific PDE problem and a collection of PDE solver sequences. Gener-
ally, the experiment varies the solution algorithms parameters. This
information is used to produce a set of driver programs to execute and
produce performance data. See Figure 3 for the schema definition of an
example experiment.

—Rundata. The rundata schema specifies the targeted hardware platforms,
their characteristics (operating system, communication libraries, etc.),
and execution parameters.

—Performance data. The performance schema is a very general, extensible
representation of data generated by experiments. An instance of perfor-
mance data generated by a PDE experiment is shown in Figure 4.

—Knowledge-related data. Processing for the knowledge-related compo-
nents of PYTHIA-II is driven by the profile and predicate records (not
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illustrated) which represent the experiments, problems, methods, and
features to be analyzed.

—Derived data. Results from the data mining of the performance database
are also written to the profile and predicate records. This data is
processed by visualization and knowledge generation tools.

In this sample PYTHIA-II instantiation, the problem population has 13
problem specification tables (equation, domain, bcond, grid, mesh, dec,
discr, indx, solver, triple, output, parameter, option) and 21 relationship
tables (equation-discr, mesh-domain, parameter-solver, etc.). Additional
tables define problem features and execution-related information (machine
and rundata tables). In all, 44 table definitions are used for the PYTHIA-II
database. Sections 7 and 8 give some examples of these tables.

5. KNOWLEDGE DISCOVERY COMPONENTS OF PYTHIA-II

We now describe the PYTHIA-II components in the top two layers of Figure 2.

5.1 Data Generation

The PYTHIA-II performance database may contain preexisting perfor-
mance measures, or the data may be produced by executing scientific
software using PYTHIA-II. The scientific software operates entirely as a
black box except for three I/O requirements that must be met for integra-
tion into PYTHIA-II. This section describes these requirements and illus-
trates how the PELLPACK software satisfies them.

Fig. 3. The Experiment table specifies an experiment by listing the components of a PDE
problem and sets of solvers (collection of Sequence records) to use in solving it.
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First, it must be possible to define the input (i.e., the problem definition)
using only information in an experiment record. The translation of an
experiment into an executable program is handled by a script written for
the software, which extracts the necessary information from the experi-
ment record and generates the files or drivers for the software. For
PELLPACK, the experiment record is translated to a .e file, which is the
PELLPACK language definition of the PDE problem, the solution scheme,
and the output requirements. The script is written in Tcl and consists of
about 250 lines of code. The standard PELLPACK preprocessing programs
convert the .e file to a Fortran 77 driver and link the appropriate libraries
to produce an executable program. The second requirement is that the
software is able to operate in a batch mode. In the PELLPACK case, Perl
scripts are used to execute PELLPACK programs, both sequential and
parallel, on any number of platforms. The programs are created and
executed without manual intervention. Finally, the software must produce
performance measures as output. A postprocessing program must be writ-
ten specifically to convert the generated output into PYTHIA-II perfor-
mance records. Each program execution should insert one record into the
performance database. The PELLPACK postprocessing program is written
in Tcl (350 lines of code) and Perl (300 lines of code).

Fig. 4. An instance of performance data from a PDE experiment.
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Data generation (program generation, program execution, data collec-
tion) may take place inside or outside of PYTHIA-II. This process is domain
dependent, since problem definition records, software, and output files
depend on the domain.

5.2 Data Mining

Data mining in PYTHIA-II is the process of extracting and filtering
performance data for analysis, generating solver profiles and ranks, select-
ing and filtering data for pattern extraction, and generating the knowledge
base. Its principal components are the statistical analysis module (ana-
lyzer) and the pattern extraction module.

PYTHIA-II runs the analyzer as a separate process with a configurable
input call, so various data analyzers can easily be integrated. The statisti-
cal analyzer is problem domain independent, as it operates on the fixed
schema of the performance records. All the problem domain information is
distilled to one number measuring the performance of a program for a
problem. The analyzer assigns a performance ranking to a set of algorithms
applied to a problem population. It accesses the performance data using a
selected predicate record which defines the complete set of analyzer results
used as input for a single invocation of the rules generator. The predicate
contains (1) the list of algorithms to rank and (2) a profile matrix, where
each row represents a single analyzer run and the columns identify the
profile records to be accessed for that run. Table II illustrates the predi-
cate’s profile matrix; its columns represent algorithms, and its rows repre-
sent problems as specified by a profile record. The Xij are performance
values (see below) computed by the analyzer. PYTHIA-II currently ranks
the performance of algorithms with Friedman rank sums [Hollander and
Wolfe 1973]. This distribution-free ranking assumes nk data values from
each of k algorithms for n problems. The analyzer can “fill in” missing
values using various methods. The Friedman ranking proceeds as follows:

—For each problem i rank the algorithms’ performances. Let rij denote the
rank of Xij in the joint rankings of Xi1, . . . Xik and compute Rj 5 ¥i51

n rij.
—Let R●j 5 Rj/n where Rj is the sum over all problems of the ranks for

algorithms j, and then R●j is the average rank for algorithm j. Use R●j to
rank the algorithms over all problems.

Table II. Algorithm Ranking Table Based on Friedman Rank Sums Using the Two-Way
Layout. Xij is the performance of algorithm j on problem i, and Ri and R●i are the rank

measures.
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—Compute Q 5 q(a, k, `) =n z k z (k11)/12 where q(a, k, `) is the
critical value for k independent algorithms for experimental error a.
? Ru 2 Rv ? . Q implies that algorithms u and v differ significantly for
the given a.

The assignment of a single value, Xij, to represent the performance of
algorithm is not a simple matter. Even when comparing execution times,
there are many parameters which should be varied for a serious evaluation:
problem size, execution platform, number of processors (for parallel code),
etc.). The analyzer uses the method of least-squares approximation of
observed data to accommodate variations of problem executions. Thus, the
relations between pairs of variables (e.g., time and grid size, time and
number of processors) are represented linearly as seen in Figure 7 for Case
Study 2. These profiles allow a query to obtain data of one variable for any
value of another.

The pattern-extraction module provides automatic knowledge acquisition
(patterns/models) from the data to be used by an RS. This process is
independent of the problem domain. PYTHIA-II extends the PYTHIA
methodology to address the algorithm selection problem by applying vari-
ous neuro-fuzzy, instance-based learning and clustering techniques. The
relational model of PYTHIA-II automatically handles any amount of raw
data related manipulation. It has a specific format for the data used by the
pattern extraction process, and filters transform this format (on-the-fly) to
the format required by the various data-mining tools integrated into
PYTHIA-II. The goal is to accumulate tools that generate knowledge in the
form of logic rules, if-then-else rules, or decision trees.

PYTHIA-II first used GOLEM [Muggleton and Feng 1990], an empirical
single-predicate inductive logic programming (ILP) learning system. It is a
batch system that implements the relative least general generalization
principle. We have experimented with other learning methods, e.g., fuzzy
logic or neural networks, and have not found large differences in their
learning abilities. We chose ILP because it seemed to be the easiest to use
in PYTHIA-II; its selection is not the result of a systematic study of the
effectiveness of learning methods. PYTHIA-II is designed so the learning
component can be replaced if necessary. GOLEM generates knowledge in
the form of logical rules which one can model in a language like first-order
predicate logic. These rules can then be easily utilized as the rule base of
an expert system. We have also integrated PROGOL [Muggleton 1995],
CN2, PEBLS, and OC1 (the latter three are available in the MLC11
library [Kohavi 1996]).

5.3 Inference Engine

The recommender component of PYTHIA-II answers the user’s questions
using an inference engine and facts generated by the knowledge discovery
process. It is both domain dependent and case study dependent. We
describe the recommender that uses knowledge generated by GOLEM.
Each GOLEM logical rule has an information compression factor f measur-
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ing its generalization accuracy. Its simple formula is f 5 p 2 (c 1 n 1 h)
where p and n are the number of positive and negative examples, respec-
tively, covered, while c and h are related to the form of the rule. The
information compression factor is used for sorting the rules in decreasing
order. The rules and the set of positive examples covered for each rule are
passed to the recommender which then asks the user to specify the problem
features. It uses the CLIPS inference engine to check for rules that match
the specified features. Every rule found in this way is placed into the
agenda. Rules are sorted in decreasing order based on the number of
examples they cover, so the very first rule covers the most examples and
will fire at the end of the inference process and determine the best
algorithm. The recommender then goes through the list of positive exam-
ples associated with the fired rule and retrieves the example that has the
most features in common with the user’s problem.

The fact base of the recommender is then processed for this example to
provide parameters for which the user needs advice. The fact base consists
of all the raw performance data stored in the database. This information is
accessed by queries generated on-the-fly, based on the user’s objectives and
selections. If the user objectives cannot be met, then the recommender
decides what “best” answer to give, using weights specified by the user for
each performance criterion. For the case studies in Sections 7 and 8, the
final step is the recommendation of the best PDE solver to use. It also
provides solver parameters such as the grid needed to achieve the solution
accuracy within the given time limitations.

5.4 User Interface

PYTHIA-II can accomplish much of the work of knowledge discovery
without using a graphical interface, for example

(1) Creating database records for the problem population and experiments:
the SQL commands can be given directly inside the POSTGRES95
environment.

(2) Generating executable programs from the experiments: this is a sepa-
rate process called from the domain-specific execution environment,
and can be called outside of PYTHIA-II.

(3) Executing programs: this process is controlled by scripts invoked by
PYTHIA-II and can be called outside of PYTHIA-II, since they operate
on the generated files in some directory.

(4) Collecting data: the data collector is a separate domain-specific process
called by PYTHIA-II.

Graphical interfaces that assist in these tasks are useful for knowledge
engineers unfamiliar with the structure of PYTHIA-II or the POSTGRES95
SQL language. These interfaces are provided by PYTHIA-II and shown in
Figure 5.

The graphical interface to the POSTGRES95 database is dbEdit. Each
PYTHIA-II record has a form presented when records of that type are
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selected for editing. Similarly, dataGEN facilitates the tasks involved in
the data generation process, and frees the user from worrying about details
such as where the generated programs are stored, which scripts are
available, where raw output data is located, etc. DataMINE encompasses
the data analysis and knowledge discovery. Even experienced users must
perform these tasks inside PYTHIA-II. A template query is used to extract
the performance data for the statistical analyzer. The query uses a profile
record and may access hundreds of performance records to build the
analyzer input file. The pattern-matching input specification is equally
difficult to build. DataMINE presents a simple menu system that walks the
user through all these steps. It is integrated with DataSplash [Olston et al.
1998], an easy-to-use integrated visual environment which is built on top of
POSTGRES95 and therefore interacts with PYTHIA-II’s database natu-
rally.

6. DATA FLOW IN PYTHIA-II

PYTHIA-II has one interface for the knowledge engineer and another for
end-users. We describe the data flow and I/O interfaces between the main
components of PYTHIA-II from the perspective of these two interfaces.

6.1 Knowledge Engineer Perspective

The data flow in PYTHIA-II is shown in Figure 6, where boxes represent
stored data; edges represent operations on the database; and self-edges
represent external programs. The knowledge engineer begins by populating
the problem database, specifying the domain in terms of the relational data
model to match PYTHIA-II’s database schema. Extensible and dynamic
schema are possible. POSTGRES95 does not have a restriction imposed by
the traditional relational model that the attributes of a relation be atomic.1

1This is sometimes referred to as the First-Normal Form (1NF) of database systems.

Fig. 5. PYTHIA-II’s top-level window.
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An experiment combines problem records into groups, and a high-level
problem specification is generated by a program-based transformation of
the experiment record into an input file for execution. The problem execu-
tion environment invokes the appropriate scientific software to generate
data. For the example instantiation referred to in Sections 4 and 5, the
execution environment consists of PELLPACK [Houstis et al. 1998]. The
execution generates a number of output files, each containing performance
and other information related to solving the problem. The input uses the
specific schema of the problem record, and the output format is specified by
a system-specific and user-selected file template. The template lists the
program used to collect the required output data. These data records keep
logical references (called foreign keys) to the problem definition records so
that performance can be matched with problem features by executing
n-way joins during pattern extraction.

The statistical analyzer uses the performance data for ranking based on
the parameter(s) selected by the user. The ranking produces an ordering of
these parameters which is statistically significant (i.e., if the performance
data shows no significant difference between parameters, they are shown
as tied in rank). A predicate record defines the collection of profile records
to be used in pattern extraction and allows a knowledge engineer to change
the set of input profile records as easily as updating a database record. A
filter program converts data to the input format required by the pattern
extraction programs. PYTHIA-II currently supports GOLEM/PROGOL, the
MLC11 (Machine Learning Library in C11) library, and others. These
programs generate output in the form of logic rules, if-then rules, or
decision trees/graphs for categorization purposes. This process is open-
ended, and tools like neural networks, genetic algorithms, fuzzy logic
tool-boxes, and rough set systems can be used.

6.2 End-User Perspective

The recommender interface must adapt to a variety of user needs. Users of
an RS for scientific computing are most interested in questions regarding
the accuracy of a solution method, performance of a hardware system,
optimal number of processors to be used in a parallel machine, how to
achieve certain accuracy by keeping the execution time under some limit,

Fig. 6. Data flow and I/O for the knowledge engineer user interface.
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etc. PYTHIA-II allows users to specify problem characteristics plus perfor-
mance objectives or constraints. The system uses facts to provide the user
with the best inferred solution to the problem presented. If the user’s
objective cannot be satisfied, the system tries to satisfy the objectives (e.g.,
accuracy first, then memory constraints) based on the ordering implied by
the user’s performance weights.

7. CASE STUDY 1: PERFORMANCE EFFECTS OF SINGULARITIES FOR
ELLIPTIC PDE SOLVERS

To validate PYTHIA-II and its underlying KDD process, we reconsider a
performance evaluation for a population of two-dimensional, singular,
elliptic PDE problems [Houstis and Rice 1982]. The algorithm selection
problem for this domain is

Select an algorithm to solve

Lu 5 f on V

Bu 5 g on ­V

so that relative error er # u and time ts # T

where L is a second-order, linear elliptic operator; B is a differential
operator with up to first-order derivatives; V is a rectangle; and u, T are
performance criteria constraints.

7.1 Performance Database Description

In this study, PYTHIA-II collects tables of execution times and errors for
each of the given solvers using various grid sizes. The error is the
maximum absolute error on the grid divided by the maximum absolute
value of the PDE solution. The grids considered are 5 3 5, 9 3 9, 17 3 17,
33 3 33, and 65 3 65. The PDE solvers are from PELLPACK:

—5PT 5 5-point star plus band Gauss elimination
—COLL 5 Hermite cubic collocation plus band Gauss elimination
—DCG2 5 Dyakanov conjugate gradient for order 2
—DCG4 5 Dyakanov conjugate gradient for order 4
—FFT2 5 FFT9 (order52) Fast Fourier transform for 5-point star
—FFT4 5 FFT9 (order54) Fast Fourier transform for 9-point star
—FFT6 5 FFT9 (order56) Fast Fourier transform for 6th order 9-point

star

Defining the population of 35 PDEs and the experiments required 21
equation records with up to 10 parameter sets each, 3 rectangle domain
records, 5 sets of boundary conditions records, 10 grid records, several dis-
cretizer, indexing, linear solver, and triple records with corresponding param-
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eters, and a set of 40 solver sequence records. Using these components, 37
experiments were specified, each defining a collection of PDE programs
involving up to 35 solver sequences for a given PDE problem. Examples of
these records are given in Section 4. The 37 experiments were executed on a
SPARCstation20 with 32MB memory running Solaris 2.5.1 from within
PYTHIA-II’s execution environment (see Table III). Over 500 performance
records were created.

7.2 Data Mining and Knowledge Discovery Process

When the execution finished, the performance database was created. The
dataMINE interface was used to access it using the predicate and profile
records created for the case study. The rankings produced by the analyzer
for PDE problem 10-4 are, for example,

1. FFT6, 2. FFT4, 3. DCG4, 4. FFT2, 5. COLL, 6. DCG2, 7. 5PT.

The frequency for each solver being best for these 35 PDEs is

FFT4 : 27.0% FFT6 : 10.8%
COLL : 21.6% DCG2 : 5.4%
5PT : 18.9% FFT2 : 2.7%
DCG4 : 13.5%

Note that some solvers are not applicable to many of the PDEs. These
rankings over all PDE problems and their associated features (see Table
IV) were then used to mine rules. Examples of these rules are shown below.
The first rule indicates that the method Dyakanov CG4 is best if the
problem has a Laplace operator and that the right-hand-side is singular.

best_method(A,dyakanov-cg4) :- opLaplace_yes(A), rhsSingular_yes(A)
best_method(A,fft_9_point_order_4) :- opHelmholtz_yes(A), pdePeaked_no(A)
best_method(A,fft_9_point_order_4) :- solVarSmooth_yes(A),

solSmoSingular_no(A)

Table III. The PYTHIA-II Process Applied to Case Study 1
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best_method(A,fft_9_point_order_2) :- solSingular_no(A),
solSmoSingDeriv_yes(A)

best_method(A,fft_9_point_order_6) :- opLaplace_yes(A), rhsSingular_no(A),
rhsConstCoeff_no(A),
rhsNearlySingular_no(A),
rhsPeaked_no(A)

best_method(A,fft_9_point_order_6) :- pdeSmoConst_yes(A),
rhsSmoDiscDeriv_yes(A)

best_method(A,dyakanov-cg4) :- opSelfAdjoint_yes(A),
rhsConstCoeff_no(A)

best_method(A,dyakanov-cg4) :- pdeJump_yes(A)
best_method(A,dyakanov-cg) :- pdeSmoConst_yes(A),

rhsSmoDiscDeriv_yes(A)
best_method(A,hermite_collocation) :- opGeneral_yes(A)
best_method(A,hermite_collocation) :- pdePeaked_yes(A)

7.3 Knowledge Discovery Outcomes

The rules discovered confirm the assertion (established by statistical meth-
ods) in Houstis and Rice [1982] that higher-order methods are better for
elliptic PDEs with singularities. They also confirm the general hypothesis
that there is a strong correlation between the order of a method and its
efficiency. More importantly, the rules impose an ordering of the various
solvers for each of the problems considered in this study. Interestingly, this
ranking corresponds closely with the subjective rankings published earlier
(see Table V). This shows that these simple rules capture much of the
complexity of algorithm selection in this domain.

8. CASE STUDY 2: THE EFFECT OF MIXED BOUNDARY CONDITIONS
ON THE PERFORMANCE OF NUMERICAL METHODS

We apply PYTHIA-II to analyze the effect of different boundary condition
types on the performance of elliptic PDE solvers considered in the study of

Table IV. Features for the Problem Population of the Benchmark Case Study
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Dyksen et al. [1988]. The PDEs for this performance evaluation are of the
form

Lu 5 auxx 1 cuyy 1 dux 1 euy 1 fu 5 g on V

Bu 5 au 1 bsun 5 t on ­V

The parameters a and b determine the strength of the derivative term.
The coefficients and right-hand sides, a, c, d, e, f, g, s, and t, are
functions of x and y, and V is a rectangle. The numerical methods
considered are the modules (5PT, COLL, DCG2, DCG4) listed in Section
7.1, plus MG-00 (Multigrid mg00). The boundary condition types are
defined as follows:

—Dirichlet: u 5 t on all sides.
—Mixed: au 1 sun 5 t where a 5 0 or a 5 2 on one or more sides

Table V. A Listing of the Rankings Generated by PYTHIA-II and, in Parentheses, the
Subjective Rankings Reported in Houstis and Rice [1982]
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—Nearly Neumann: au 1 bsun 5 t where either a 5 1, b 5 1000 or a 5 0,
b 5 21 on one or more sides.

Every PDE equation is paired with all three boundary condition types
and is associated with three experiments. Each experiment consists of a
problem defined by the PDE equation and boundary condition, which is
solved by the five methods using five uniform grids. There are 75 program
executions for each PDE. Performance data on elapsed solver time and
various error measures are collected.

8.1 Performance Data Generation, Collection, and Analysis

The PYTHIA-II database records (equations, domains, boundary_condi-
tions, parameters, modules, solver_sequences, and experiments) are de-
fined using dbEdit, and the PDE programs are built and executed with
PYTHIA-II’s dataGen and the PELLPACK problem execution environment.
All experiments were executed on a SPARCstation20 SunOS 5.5.1 with
32MB memory. About 600 records were inserted into the performance
database. The statistical analysis and rules generation are handled by
dataMINE using the appropriate predicate and profile records which iden-
tify all parameters controlling the tasks.

The predicate names a matrix of profile records that identify the number
and type of analyzer invocations. Then it identifies the boundary condition
features used. The analyzer rankings and the predicate feature specifica-
tions are handed over to the rules generation process. Table VI lists, in
part, the required predicate information. The predicate controls the overall
analysis, and the details are handled by the profile records. Each profile
record identifies which fields of performance data are extracted, how they

Table VI. Sample Predicate and Profile Information for the Relative Elapsed Times
Analysis for Mixed vs. Dirichlet Problem Executions
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are manipulated, and how the experiment profiles for the analyzer are
built. The result of the analysis is a ranking of method performance for the
selected experiments. The query posed to the database by the profile
extracts exactly the information (see Table VI) needed by the analyzer to
answer this question. The complex query used for building the analyzer’s
input data is determined by profile field entries for x-axis, y-axis, and field
matching. In this case, the profile record builds sets of (x, y) points for each
numerical method, where the x values are grid points, and the y values are
relative elapsed time changes for mixed boundary conditions with respect
to Dirichlet conditions, changes in elapsed time for Neumann conditions
with respect to Dirichlet conditions, and relative changes in error for
derivative conditions with respect to Dirichlet conditions. In all, 6 predi-
cates and more than a hundred profiles were used.

8.2 Knowledge Discovery Outcomes

The rules derived in Case Study 2 are consistent with the hypothesis and
conclusions stated in Dyksen et al. [1988]. For the analysis, we use
rankings based on the relative elapsed time profiles described above.

(1) The performance of the numerical methods is degraded by the introduc-
tion of derivatives in the boundary conditions. Profile graphs of the
values for relative elapsed time changes dT for the mixed and Neumann
problems with respect to the Dirichlet problems, dTmix 5 (Tmix 2
Tdir)/Tdir and dTneu 5 (Tneu 2 Tdir)/Tdir, were generated by the
analyzer for all methods over all grid values. It is observed that the
values of dT .. 0 for most methods over all problem sizes. Thus, the
presence of derivative terms slows the execution substantially except
for the COLL solver (see Figure 7).

(2) The COLL module was least affected. Specifically, the increase in
elapsed time when the derivative term was added was least for COLL.
Note that even though the relative elapsed time was least for COLL,
the total elapsed time was not. The frequencies for each solver to be
best considering least relative time increase for changing from Dirichlet
to mixed conditions are

COLL: 57.1% 5PT: 0%
DCG4: 28.6% MG-00: 0%
DCG2: 14.3%

The frequencies for each solver to be best for changing from Dirichlet to
Neumann conditions are

COLL: 42.9% DCG2: 14.3%
DCG4: 21.4% MG-00: 7.1%
5PT: 14.3%

The final rules generated by PYTHIA-II for the elapsed time predicates
are
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best_method(A,hermite_collocation) : dir2mix(A).
best_method(A,hermite_collocation) : dir2neu(A).

(3) The fourth-order modules COLL and DCG4 are less affected than
second-order modules. The above statistics show that the fourth-order
modules are best 85% and 64% of the time (see Figure 7 for the method
ranking profile for pde04 generated by dir2mix predicate based on
relative time). The rankings also show that fourth-order modules are
less affected by mixed conditions than by Neumann conditions, and that
MG-00 and 5PT methods perform worst with the addition of derivatives
in the boundary conditions.

Next, we consider ranking the methods for all PDE-boundary condition
pairs using profile graphs involving problem size versus elapsed time. The

Fig. 7. Profile graph depicting the relative change of execution times between Dirichlet and
Mixed problems as a function of the grid size for the five PDE solvers considered.
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analysis does not consider the relative increase in execution time for
different boundary condition types; it ranks all methods over all PDE
problems as in Case Study 1. The analysis ranks MG-00 as best method. It
was selected 72% of the time as the fastest method over all PDE problems.
The analysis also showed that all methods had the same best-to-worst
ranking for a fixed PDE equation and all possible boundary conditions. In
addition, these results show that some of these methods differ significantly
when ranking with respect to execution times across the collection of PDE
problems.
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