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ABSTRACT
Systems biology has made massive strides in recent years,
with capabilities to model complex systems including cell
division, stress response, energy metabolism, and signaling
pathways. Concomitant with their improved modeling capa-
bilities, however, such biochemical network models have also
become notoriously complex for humans to comprehend. We
propose network comprehension as a key problem for the
KDD community, where the goal is to create explainable
representations of complex biological networks. We formu-
late this problem as one of extracting temporal signatures
from multi-variate time series data, where the signatures
are composed of ordinal comparisons between time series
components. We show how such signatures can be inferred
by formulating the data mining problem as one of feature
selection in rank-order space. We propose five new feaure
selection strategies for rank-order space and assess their se-
lective superiorities. Experimental results on budding yeast
cell cycle models demonstrate compelling results comparable
to human interpretations of the cell cycle.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis;
H.2.8 [Database Applications]: Data mining; I.5.2 [Design
Methodology]: Feature evaluation and selection

General Terms
Algorithms, Measurement, Experimentation.

∗Slotta is now with the National Institute of Mental Health,
National Institutes of Health, Bethesda, MD 20892.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Temporal signatures, systems biology, feature selection, rank-
order spaces, biological networks.

1. INTRODUCTION
Systems biology is an immensely successful enterprise [19]

that focuses on modeling biological processes with math-
ematical formalisms (e.g., ordinary differential equations
(ODEs)) and uses numerical simulation and analysis tools
to recreate the dynamics of biology. Key processes such as
cell division, stress response, energy metabolism, and sig-
naling pathways can now be satisfactorily modeled using
systems biology tools. Capabilities such as SBML (Systems
Biology Markup Language) and software such as JigCell [24]
and COPASI [10] have eased the modeling and simulation
process for biologists who might not be trained in the un-
derlying mathematics and algorithmics.

As a case in point, consider the cell division cycle (see
Fig. 1 (top left)) of budding yeast (S. cerevisiae), which
is a model eukaryotic organism. The set of chemical reac-
tions and steps included in the most updated yeast cell cycle
mathematical model is highly complex (see Fig. 1 (top left))
involving close to 140 parameters, 48 molecules, and close
to 50 equations. The cycle consists of four phases [23]: G1
(Gap 1), S (DNA synthesis), G2 (Gap 2), and M (mitosis).
These phases are carefully orchestrated using different pro-
tein complexes such as Cdk/cyclin complexes, Cdh1, Sic1,
and Cdc6.

Richard Feynman is famously known to have said that“ev-
erything that living things do can be understood in terms
of the jiggling and wiggling of atoms.” Although this can be
dismissed as a physicist’s reductionist view, the reality is not
too far from this quote: the progression through cell cycle
phases requires the successive activation and inactivation of
protein molecules and complexes. For instance, in the G1
phase, proteins like Cdh1, Sic1, and Cdc6 are more abundant
than Cdk/clb complexes, whereas in the S/G2/M phases it
is the opposite. Hence, one key way to comprehend the cell
cycle is to understand which molecules overpower which oth-
ers (and when), which molecules are decaying versus which
others are increasing in concentration, and which molecules
regulate the production/demise of others.

Unfortunately, this type of information is quite difficult to



Figure 1: The biological network comprehension problem: a biochemical circuit (top left) is simulated to yield multivariate
time course data (bottom left) which is then subjected to feature selection to identify the most significant molecules (bottom
right) which are then summarized into temporal signatures of pathway progression (top right). Figure courtesy: (Top left)
Chen et al. [5] and (Top right) figure motivated by diagram in [17].

gather from the diagram of Fig. 1 (top left). Because bio-
chemical reaction networks are conceptualizations of dynam-
ical processes, even skilled scientists cannot eyeball these di-
agrams and comprehend them. One approach is to simulate
these networks, generate multi-variate time course data cor-
responding to the set of molecules, and use data analysis
tools to study the time series. This, of course, simply exac-
erbates the issue, since, without sophisticated data mining
tools, comprehending time series of the scale envisaged here
is a herculean task.

We hence propose network comprehension (Fig. 1) as
a key problem for the KDD community: given a biochem-
ical network, mine the multivariate time course data sim-
ulated by the network to gain insight into the network’s
functioning. The key form of insight we seek is understand-
ing of the ‘race’ conditions between the proteins and how
these race conditions drive the internal state of the organ-
ism. In particular, which protein molecules contribute to
the notion of internal state? What relationships must ex-
ist between these molecules in each stage of the dynamical
process? We view these relationships as temporal signa-
tures, since they serve to summarize the underlying state
of the dynamical system.

The problem of extracting temporal signatures can be
viewed as feature selection in rank-order space [20]. Here,
proteins are the features, instances are vectors of concen-

tration values of proteins, and the classes are the phases of
the biological system (e.g., G1, S, G2, M phases). Because
the dynamics are driven by relationships between protein
concentrations, it is not meaningful to work directly with
the amount of proteins in an attribute-value sense. (For
instance, in understanding the overall dynamics of the sys-
tem, it is incomprehensible to work with a measurement
quantifying 300-500 molecules of Clb2 as being present in
a yeast cell whose volume is just 50e-15 liter.) Instead we
rank the features and think of each instance as a total order
over the features. The network comprehension problem then
reduces to conducting feature selection in rank-order space
and constructing temporal signatures by composing ordinal
comparisons between protein molecules.

There are many applications that highlight the impor-
tance of feature selection in rank-order datasets. In biomed-
ical instrumentation, the desire is to select a subset of elec-
trodes from an EEG dataset and use profiles of relative sig-
nal strength as indicators of patient health [26]. Here the
instances are the patients, the classes are the diagnoses, and
the features denote signal strength as measured using differ-
ent electrodes. In large-scale gene expression (microarray)
assays [2], one possible aim is to classify an experimental
condition using expression changes only across a ‘salient’
subset of genes. For instance, by observing a handful of
genes (features) and ranking them by their expression lev-



els, it is possible to qualitatively characterize the cellular
transcriptional state (class) for a given condition (instance).
In decision-making referendums, one goal is to identify key
voting indicators to infer political biases of constituencies.
Here, the instances are the constituencies, the classes are
political party strongholds, and the features might be socio-
economic indicators. On a lighter vein, it appears possible
to classify a movie as an art film or a mass market flick by
ranking critics! Given such a widespread prevalence of ap-
plications where rank order is pertinent [15], it is surprising
that this feature selection problem has received little atten-
tion so far.

While order-theoretic considerations have been studied in
different guises in machine-learning research, our formula-
tion is different from the more traditional settings where
instances or classes are ordered or the feature values are
ranked across instances [8, 13, 14]. These types of formu-
lations are pertinent in applications such as recommender
systems or information retrieval [6, 11], where the goal is to
learn and mine a ranking or to infer total orders from given
preferences. In our case, features can be ranked within an
instance and the goal is to use ordinal comparisons as de-
scriptors for classes.

The key contributions of this paper are:

1. Formulation of the biochemical network comprehen-
sion problem as feature selection in rank-order space.
Both the application domain and the feature selection
problem are novel tasks previously unstudied in the
KDD community.

2. Five feature selection strategies—GreedyKL, KS, Spoil-
ers, Center Distance Vector (CDV), and CDV+—that
help remove irrelevant and redundant ordinal features
from the multivariate time course data. Our strategies
are parameter-free and hence do not require arbitrary
settings.

3. Experimental results on both synthetic data (to assess
the effectiveness of our feature selection strategies) and
on real yeast cell cycle data (to illustrate the capabili-
ties of our approach for network comprehension).

2. PRELIMINARIES
Let S = {S1, S2, . . . , Sn} be a set of biochemical species

(features), and let D be the common domain of Si. In
the case of the yeast cycle, S includes molecules such as
{Cln2, Clb2, Clb5, Sic1, Cdc6}, and D denotes non-negative
reals, to capture molecular concentrations. For simplicity,
we assume that a total order is defined on D. A feature in-
stance is a tuple s = (s1, s2, . . . , sn) ∈ Dn. Any feature in-
stance s defines an order on S by the rule Si < Sj if si < sj .
Let C = {C1, C2, . . . , Cl} be a set of classes. For the yeast
cycle, the classes denote the phases, i.e., C = {G1,S,G2,M}.
Then a dataset T is a nonempty multiset of pairs {(s, c)},
where s ∈ Dn and c ∈ C. Suppose, S consists of the
molecules Cln2, Clb2, Clb5, Sic1, and Cdc6, which have con-
centrations of 0.07, 0.15, 0.05, 0.02, and 0.11 respectively in
G1 phase. Then s = (0.07, 0.15, 0.05, 0.02, 0.11) is a feature
instance, and ((0.07, 0.15, 0.05, 0.02, 0.11), G1) ∈ T .

2.1 Rank-order space
We recast the given dataset T into a rank-order dataset,

whose feature values capture the relative order between pairs

of feature values of a feature instance s. We define the rank-
order feature set for S to be F = {F1, F2, . . . , Fn}, where the
domain of each Fi is {1, 2, . . . , n}. Let πs : {1, 2, . . . , n} →
{1, 2, . . . , n} be a permutation that sorts s into non-decreasing
order. If two features have the same value, we then choose
πs arbitrarily from the permutations that satisfy the above
condition. Then the rank-order feature instance f for s has
values given by fi = πs(i). For example, given a feature
instance s = (0.07, 0.15, 0.05, 0.02, 0.11), the corresponding
rank-order feature instance is f = (3, 5, 2, 1, 4).

The rank-order dataset is the multiset TR = {(f , c) |
(s, c) ∈ T}. Each dataset TR implies a probability distri-
bution P as follows:

P (f , c) =
|(f , c) ∈ TR|
|TR|

Moreover, if a feature instance f occurs in at least one pair
of T , then the conditional probability

P (c | f) =
P (f , c)

P (f)

is defined for all c ∈ C. We will use the term P (C | f) to
refer to the conditional probability distribution of C given
the features.

2.2 Irrelevant and redundant features
A classical definition of irrelevant and redundant features

is that put forth by Blum and Langley [3]. These notions
apply to regular datasets (such as T ), rather than rank-order
datasets (such as TR). A feature Si is irrelevant if it has no
effect on the class distributions and is independent of other
features. A feature Si is strongly relevant if there exists at
least two feature instances s1 and s2 in T that differ only in
their values assigned to Si and have different classifications,
if they appear in T multiple times [3].

These definitions have to be modified for the rank-order
case. A feature Fi in rank-order space is a strongly relevant
feature if there exists at least two data instances (fp, Cm),
(fq, Cn) ∈ TR such that when Fi is removed, fp and fq col-
lapse to the same permutation. For example, the feature
F1 in Fig. 2 is a strongly relevant feature because removing
F1 makes Row 1 and Row 2 of the table to collapse to the
same permutation. A feature Fi is a weakly relevant feature
if there exists a nonempty subset of features F′ ⊂ F such
that removing F′ makes Fi strongly relevant. For example,
the feature F2 in Fig. 2 is a weakly relevant feature because
it becomes strongly relevent if F1 is removed. We call a
feature redundant if it is weakly relevant, but not strongly
relevant.

S1 S2 S3 S4 class

20 33 65 40 a
40 25 60 30 b
50 35 20 70 c
80 55 35 40 d

F1 F2 F3 F4 class

1 2 4 3 a
3 1 4 2 b
3 2 1 4 c
4 3 1 2 d

Figure 2: Dataset T (left table) with its corresponding rank-
order dataset TR (right table).

2.3 Boolean-order space
We define the boolean-order feature set for F to be B =
{Bi,j | 1 ≤ i < j ≤ n}, where the domain of each Bi,j is



B1,2 B1,3 B1,4 B2,3 B2,4 B3,4 class

true true true true true false a
false true false true true false b
false false true false true true c
false false false false false true d

Figure 3: Boolean order dataset TB corresponding to the
rank-order dataset TR in Fig. 2.

{true, false}. Given a rank-order feature instance f , the
corresponding boolean-order feature instance b has values
given by,

bi,j =

{
true if fi < fj ,

false otherwise.

The boolean-order dataset for TR is a multiset TB =
{(b, c) | (f , c) ∈ TR}. An example of TB is illustrated in
Fig. 3. We will evaluate classification performance of the
algorithms using TB rather than TR because we need to
perform classification on orders and not on the absolute val-
ues. While the boolean table might contain redundant fea-
tures due to transitivity, such transitivity is local to each
instance. Given features B1,2 (F1 < F2), B2,3 (F2 < F3),
and B1,3 (F1 < F3), if B1,2 and B2,3 are true in a given in-
stance, then B1,3 will be true. But in another instance, B2,3

and B1,3 can be true without B1,2 being true. Hence, B1,3

is not redundant here. Thus, it is not possible to universally
remove a feature based on transitivity.

2.4 Feature selection criteria
Numerous criteria can be applied for removing redundant

and irrelevant features which result in a reduction of F to a
subset F′ ⊂ F. Such criteria include improved accuracy of
predictive modeling, smaller description length for learned
mappings, or preservation of as much of the relationship
between class distributions and features as possible. We
will use the latter criterion in this paper.

For f ∈ TR, let fF′ be the projection of f onto the features
in F′. For a dataset TR, let TRF′ = {fF′ | f ∈ TR} be the
projection of TR using the feature set F′. Our goal is to
approximate P (C | f) with P (C | fF′). A popular approach
to characterizing the difference between two distribution is
the KL-divergence [7]. The KL-divergence between distri-

butions P and Q is KL(P,Q) =
∑
x∈X P (x) log P (x)

Q(x)
, where

0 log 0
Q(x)

= 0 and P (x) log P (x)
0

= ∞ whenever P (x) > 0.

Koller and Sahami defined two feature subset divergence
quantities, δF′ and ∆F′ using KL-divergence [12].

For each data instance f ∈ TR, divergence is δF′(f) =
KL(P (C | f), P (C | fF′). Now, the feature subset divergence
of F′ is ∆F′ =

∑
f P (f)δF′(f), where P (f) is taken from the

distribution of data instances in TR. We can utilize the
feature subset divergence in two ways. One way is to define
a divergence threshold and search for a smallest subset F′

such that ∆F′ is at most that threshold. Another is to search
for a subset in all F′ ⊂ F of a fixed size that minimizes ∆F′ .

In the context of a rank-order dataset, a feature instance
f is a permutation, and we require methods to measure dis-
tances between permutations. We adopt two established
approaches for defining a distance function between two per-
mutations. The Spearman’s distance [21] between two rank-

order feature instances fi and fj is:

sd(fi, fj) =

n∑
k=1

(fi(k)− fi(k))2,

where k is the index of the kth feature.
We use Kendall tau distance as our second distance func-

tion between two permutations. The Kendall tau distance
between two rank-order feature instances fi and fj is,

kd(fi, fj) = |(x, y) : x < y, (fi(x) < fi(y) ∧ fj(x) > fj(y))

∨ (fi(x) > fi(y) ∧ fj(x) < fj(y))|

Let I be a multiset of rank-order instances that belong to
a single class in TR and let I ′ be the set I without feature
Fi. We define the spoiler count sp(Fi, I) for feature Fi with
respect to I as follows.

sp(Fi, I) =
∑

fi,fj∈I′
kd(fi, fj).

Since the instances belong to the same class and order is
presumably indicative of class membership, these permuta-
tions ought to be similar in order. The feature that has the
highest spoiler count contributes most to the differences in
order and is therefore a good candidate for removal. For
each class c ∈ C, let TR(c) represent the set of rank-order
instances that belong to c in TR. The total spoiler count
tsp(Fi) of a rank-order feature Fi is

tsp(Fi) =
∑
c∈C

sp(Fi, T
R(c)).

2.5 Centers of permutations
A final notion we will find useful is measures of central

tendency around permutations. Let M be a set of permu-
tations. Then the center ctr(M) of M is a permutation πc
(not necessarily in M) that minimizes

∑
π∈M sd(π, πc). Al-

gorithmically, we can compute the permutation ctr(M) by
summing the ranks in each position, across all permutations,
and deriving ctr(M) from the order of the resulting sums (if
there are duplicate sums, ties are broken arbitrarily). Each
class Ci for which Mi = {f | (f , Ci) ∈ TR} is nonempty,
ctr(Mi) is a permutation at the center of a smallest hyper-
sphere containing all the permutations of Mi. If Ci and Cj
are distinct classes, then ctr(Pi) and ctr(Pj) are represen-
tatives of the two classes that can be used to measure a
distance between the two classes. In addition, a center pro-
vides an estimate of the expected ranks of each feature in
that class, but, more importantly the expected relative or-
ders of the features; a fact which we shall make use of later
on. A feature selection algorithm might choose to remove a
feature that yields distances that are closest to the original
distances.

2.6 Temporal Signatures
Finally, a temporal signature can be viewed as a descrip-

tive summary of the rank-order relationships across classes
(typically, such summaries are made after feature selection).
There are many ways to define such signatures. In this pa-
per, we take the temporal signature Sk(ci) of a class label ci,
parameterized by k, as a set {T1, ..., Tk} of k permutation
centers derived from all the instances associated with the
label. The centers of a class are computed using a k-means
algorithm where the distance measure between permutations



S1 S2 S3 class

3.5 4.2 5.7 a
3.5 4.2 1.5 b
3.5 1.5 2.4 c
3.5 2.4 5.7 d

F1 F2 F3 class

1 2 3 a
2 3 1 b
3 1 2 c
2 1 3 d

Figure 4: Datasets T (left table) and TR (right table) where
a removable feature in T does not apply in TR.

is the Spearman’s distance. The signatures thus represent a
set of k distinct expected orders capturing the essence of all
the instances associated with a class. In the experiments de-
scribed here, we set k = 1; we did not experience significant
gain in information with higher values of k.

3. COMPARING FEATURE SPACES
In this section, we investigate relationships among feature

spaces, rank-order spaces, and boolean-order spaces. Let
Sk be a feature in S, Fk be the corresponding rank-order
feature in F, S′ = S − {Sk}, and F′ = F − {Fk}. We
say that Fk is a removable feature if ∆F ′ = 0. We now
examine the relationship between ∆S′ and ∆F ′ . The next
two conjectures and their counterexamples illustrate that
the relationship is not simple or easily exploited.

Conjecture 1. Let T be a dataset with feature set S
and suppose Sk is a feature such that ∆S−{Sk} = 0. Then,

∆F−{Fk} = 0 in TR.

Counterexample: Figure 4 provides an example of a
dataset T and corresponding rank-order dataset TR. Here,
S1 is a removable feature in dataset T (values assigned to S1

are the same for all instances). This means ∆S−{S1} = 0.

However, ∆F−{F1} 6= 0 in TR, because there is at least one
instance f (such as f = (3, 1, 2)) such that δF′(f) 6= 0.

Conjecture 2. Let T be a dataset with feature set S,
and let TR with feature set F be its corresponding rank-order
dataset. Suppose Fk is a feature such that ∆F′ = 0. Then,
∆S′ = 0 in T .

Counterexample: Figure 5 provides an example of a
dataset T and corresponding rank-order dataset TR. Here,
F1 can be removed (as can any single feature) while retaining
the same capacity to classify so that ∆F′ = 0 in TR, where
F′ = F − {F1}. However, ∆S′ 6= 0 for S′ = S − {S1} since
S1 is in fact the feature that distinguishes the two instances
in the dataset (δS′(s) 6= 0 for both instances).

S1 S2 S3 class

1 4 5 a
2 4 5 b

F1 F2 F3 class

1 2 3 a
1 2 3 b

Figure 5: Datasets T (left table) and TR (right table) where
a removable feature in TR does not apply in T .

We now present the following result, which demonstrates
that rank-order datasets and boolean-order datasets contain
the same order-theoretic information with respect to feature
selection.

Lemma 1. Let TR be a rank-order dataset with feature set
F, and let TB with feature set B be its corresponding boolean
order dataset. Furthermore, let F′ ⊂ F. Define B′ ⊂ B to
be the set of all features Bi,j such that Fi, Fj ∈ F′. Then,
∆F′ = ∆B′ .

Proof. From the definition of boolean space, it suffices to
show that P (f) = P (b) and δ′F(f) = δ′B(b), for all instances
f . The equality P (f) = P (b) follows directly from how the
boolean order set was constructed since there is a one-to-
one correspondence between rank-order instances (f) and
boolean order instances (b). We obtain that

δ′F(f) = KL(P (C | f), P (C | f ′F)),

and

δ′B(b) = KL(P (C | b), P (C | b′
B))

are equal by the observation that the projections performed
on each of the datasets are essentially equivalent. For a
given f , P (C | f) and P (C | b) obviously yield the same
distributions, again because of the one-to-one transforma-
tion. For the distributions P (C | f ′F) and P (C | b′

B), on the
other hand, we note that a projection in rank-order space
preserves the relative order of the features even with the
(possible) update in rank values. This in turn corresponds
to the boolean order features that are projected in boolean
order space. Thus, P (C | f ′F) = P (C | b′

B), and the result
follows.

Lemma 1 implies that it is sufficient to consider selec-
tion strategies on rank-order datasets and that analogous
strategies using boolean order datasets will yield the same
results.

4. ALGORITHMS FOR FEATURE SELEC-
TION

We present four feature selection strategies (two taking
an information-theoretic approach and the remaining two
using discrete mathematics concepts), all of which follow
the standard backward stepwise selection framework [9].

i← 0; Fi ← F
while cond(Fi)

Fk ← h(Fi)
Fi+1 ← Fi − {Fk}
i← i+ 1

end while
return Fi

In this meta-algorithm, the boolean function cond(Fi) ei-
ther monitors subset size or subset divergence. The func-
tion h(Fi) is the feature selection function for this selection
strategy. This function returns a feature from Fi in regu-
lar feature space, but uses rank order space in its selection
process.

Alg 1: (GreedyKL) Use rank-order space, and greed-
ily choose the feature that yields the minimum feature sub-
set divergence when compared against the original dataset.
That is, choose h(Fi) = Fk that minimizes ∆Fi−{Fk}.

Alg 2: (KS) Adapt the Koller-Sahami algorithm [12] for
use in rank-order space. First, find (approximate) Markov
blankets for all features in the Bayesian network of rank-
order features (and class) implied by TR. A Markov blan-
ket for a set of features F′ is another set of features G



whose values, if known, render F′ independent of all others
(i.e., F − F′ − G) [16]. This term arises from the graphi-
cal models literature where a network encodes conditional
independencies, and random variables satisfying the above
definition form a ‘blanket’ around the given set of features.
In the Koller-Sahami approach, we remove the feature Fk,
whose Markov blanket Mk yields the minimum feature sub-
set divergence when compared against Mk ∪ Fk. That is,
h(Fi) = Fk that minimizes δMk with respect to Mk ∪ Fk.

Alg 3: (Spoilers) A third technique uses the notion of
spoilers defined earlier. We use rank-order space and remove
the feature with the highest spoiler count. That is h(Fi) =
Fk that maximizes tsp(Fk).

Alg 4: (CDV) The CDV algorithm aims to represent
the dataset using the temporal signatures of the classes, and
then proceeds to remove features based on their ability to
maintain this representation. To construct it we create a set
S = ∪iSk(ci) containing the centers of all the classes and
then construct a distance vector, D, of all the pairwise dis-
tances of the centers in S. D contains k ∗

(|C|
2

)
components.

Then, for each feature we remove it and recompute this dis-
tance vector. In the meta algorithm h(Fi) = Fk, where Fk
is the feature that yields the minimum Euclidian distance
between the recomputed distance vector and D, the original
distance vector.

5. EXPERIMENTAL RESULTS
We now present experimental studies with the above fea-

ture selection strategies, including descriptions of datasets,
interpretation of results, and discussion.

5.1 Synthetic Datasets
We generate synthetic datasets based on the definitions

of irrelevant and redundant features presented earlier. We
begin by creating a base set of strongly relevant features and
then add a number of redundant and irrelevant features to
see if our feature selection algorithms identify and remove
them correctly.

Collapsible permutations. Two permutations πi and
πj are collapsible for k if removing πi(k) and πj(k) causes
the resulting ranks of the permutations to be equal. For
example, let πi = (4, 1, 3, 2) and πj = (3, 1, 4, 2) then pi and
pj are collapsible for k = 3 (i.e., the third element) because
the ranks after removal of pi(3) and pj(3) yields (3, 1, 2).

To design a feature Fi that is strongly relevant, we simply
ensure that removing it will cause the collapse of one or more
instances and that the other features are irrelevant when Fi
is strong. Each strong feature Fi is designed pertinent to a
class distribution made up of two classes ci1 and ci2 . The
algorithm to generate the set of base features is:

Algorithm 1 Pseudocode for generating synthetic data.

Input: n: number of strongly relevant features; r: replica-
tions

Output: n ∗ (n+ 1) instances
for i← 1 to n do
p← pick a random feature permutation
q ← gen permutation to collapse with p for k = i
ins ← gen n permutations by swapping i with all fea-
tures in p
ins′ ← replicate ins ∪ {p, q} r times
insc← assign classes ci1 or ci2 randomly to ins′

Irrelevant features are incorporated into the base dataset
by considering each instance separately and by uniformly
inserting the new feature into the existing order implied by
the instance.

A redundant feature is incorporated into the dataset by
picking a subset of existing strong features F ′ and using a
pure function distorted by normal noise g(F ′)+ε to generate
the ranks for the new feature. In this paper we insert linear
features of the form aFi + b+ ε or non-linear features of the
form a sin(bFi+c)+ε. Normal noise is generated with a µ =
0, σ = 1. For the following experiments, we selected n = 12
strong features and r = 3 repetitions as input to the base
features generation algorithm. We then added irrelevant and
redundant features as necessary to this base set of features
and instances.

Our first experiment compares the performance of all the
algorithms in terms of the number of redundant features
they are correctly able to identify. The data consists of 8
redundant features, in which 4 are linear and 4 are non-
linear. The linear redundant features are generated using
Fr = aFi + b + ε, where a and b are random variables tak-
ing values between (1, 5) and ε is a normal distribution with
µ = 0 and σ = 1. Non-linear redundant features are gen-
erated using Fr = a sin(bFi + c) + ε where a, b and c are
random variables taking values between (2, 6), (1, 5), and
(1, 5) respectively. We generate 100 trials and calculate the
percentage of features correctly identified as redundant, Fr
(the dependent); and the percentage of features incorrectly
identified as redundant, Fi. We see from Fig. 6 (a larger yel-
low strip is better) that CDV (96%) and Spoilers (87.3%)
are the only feature selection strategies that perform well
in detecting the actual redundant variables, whereas all the
other strategies tend either to detect Fi instead of Fr or
none at all. Although, Spoilers performs as well as CDV it
is important to note that Spoilers itself is intractable with a
larger number of features because of the use of Kendall tau
distance to compare two permutations.

Our second experiment compares the performance of all
the algorithms in terms of the number of irrelevant features
they are correctly able to identify. Here CDV (37.5%) leads
in the ability to detect irrelevant features correctly, while all
the other algorithms fail to detect even one (see Fig. 6).

5.2 An Improved Algorithm
While CDV performs well on redundant features it does

not perform as well in detecting irrelevant features. To get
an intuition on why this should be true, consider the na-
ture of the permutation centers and the induced pairwise
distance vector. A center of a class is the expected ordering
of the features and if a feature has little variance within a
class, its removal will have little effect on the resulting cen-
ter. However, if the feature varies a lot then its removal will
completely alter the expected order of the features. This is
the case with irrelevant features. Removing them will cause
a large change in distances between centers. Since CDV re-
moves features that exhibit the smallest change from the
original distance vector, the irrelevant feature continues to
remain in the dataset possibly tainting the resulting signa-
tures. This forms the motivation for an improved feature
selection approach.

To determine irrelevancy of a feature Fr we adopt a tradi-
tional information-theoretic method to rank the features by
the reduction in entropy gained from conditioning the data



Independent
Dependent

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

  80%

  90%

  100%

G
re

ed
y
K

L

K
S

S
p
o
il

er

C
D

V

S
u
cc

es
s 

ra
te

  0%

  5%

  10%

  15%

  20%

  25%

  30%

  35%

  40%

G
re

ed
y
K

L

K
S

S
p
o
il

er

C
D

V

S
u
cc

es
s 

ra
te

Independent
Dependent

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

  80%

  90%

G
re

ed
y
K

L

K
S

S
p
o
il

er

C
D

V

C
D

V
+

S
u
cc

es
s 

ra
te

Figure 6: (left) Success rate at removing redundant features in synthetic data. (middle) Success rate at removing irrelevant
features in synthetic data.(right)Success rate at removing all features in synthetic data.

on Fr. We calculate this as

Z(Fr) = H(C|Fr) +
∑
k 6=r

H(Fk|Fr),

where H is the entropy. The higher the value of Z(Fr) the
higher the likelihood that Fr is independent of the features
and the class distribution and therefore irrelevant. In the
meta-algorithm h(Fr) = Fk, where Fk is the feature that
yields the maximum Z value.

Alg 5: (CDV+) To mitigate the problems caused by
irrelevant features, we first remove features based on Z as
defined above, and then perform CDV on the rest of the
dataset. We refer to this algorithm as CDV+.

We now test all the algorithms under the presence of both
4 redundant and 4 irrelevant features on top of the 12 strong
features. Over a 100 trials we find that CDV has a positive
identification rate of 67.7% while CDV+ has a positive iden-
tification rate of 82.9% showing a clear indication that CDV
is improved by removing irrelevant features first using a sep-
arate information-theoretic algorithm (see Fig. 6). We thus
use CDV+ as the feature selection algorithm to process the
yeast cell cycle data described next.

5.3 Yeast Cell Cycle
The yeast cell cycle data comes from the mathematical

model of the budding yeast cell cycle by Chen et al. [5, 4].
As stated earlier, biochemical interactions are converted to
ODEs, which are simulated for different time steps. The
concentrations of 45 molecules (recall that these are the fea-
tures) are recorded for 1000 time steps. In addition to the
regular cell cycle data (known as ‘normal’ or ‘wild type’),
we also have access to several mutant cell cycles (where one
or more key molecules are perturbed and the cell adopts an
aberrant state).

The cell cycle is a highly regulated sequence of events:
it consists of DNA replication (S phase) and replication of
the cell (M phase) separated by two gap phases (G1 and
G2). The entire machinery is controlled by four types or
categories of molecules [22] as indicated in Fig. 8 (A) (as
“SK”, “EP”, “CDK” and “Enemies”).

The entire cell cycle is orchestrated by the coordination
among these four kinds of molecules, and that is shown in
Fig. 7 (A) where the small squares mark the cell cycle phase.
Some of the 45 molecules that we have in our dataset fall un-
der those categories. So our primary task is to see if we can
detect the molecules that belong to those four categories. In
other words, through our experiments, we seek to determine
if conclusions of the form shown in Fig. 8 can be automati-
cally obtained.

Fig. 8(B) shows how the different types of molecules are
active at the four phases of the cell cycle. The cell cycle
machinery works like a ‘see saw’ balance between the G1
phase and G2/M/S phases [22]. In other words, most of
the molecules that are active in G1 are inactive in the other
phases and vice versa. So, the mutual antagonistic nature of
the cell cycle phases is expected to be evident from the rank
ordering of molecules from our feature selection algorithm.

Figure 8: (A) Groups of molecules that control and regulate
the cell cycle. (B) Concentrations of these key molecules
across all four phases: G1, S, G2 and M. Figure courtesy
John Tyson and Bela Novak [22].

In applying feature selection to the cell cycle data, the
questions we seek to answer are:

1. Which are the biochemical molecules that play signif-
icant roles across all phases of the cell cycle?

2. Is the relative rank order of the reported molecules
significant enough to distinguish between the cell cycle
phases?



Figure 7: (left) Yeast cell cycle wiring diagram by Chen et al. [5]. (right) The red highlights indicate the significant molecules
revealed by the feature selection algorithm as being relevant to distinguishing the cell cycle phases.

Category of molecules
in Fig. 8

Molecules which belong to the
categories in Fig. 8

CDK Clb2-Cdc28, Clb5-Cdc28
Enemies Cdh1, Sic1, Cdc6
SK Cln1,Cln2,Cln3-Cdc28
EP Cdc20, Cdc14

Figure 9: Descriptions of molecule categories from Fig. 8.

Category of molecules
identified as signatures
for each phase

Molecules identified to be sig-
nificant for each phase of cell
cycle

CDK Clb2T, Clb5T
Enemies Cdh1, Sic1, Cdc6
SK SBF (which is a transcription

factor for Cln2)
EP Mcm1 (which is a transcrip-

tion factor for Cdc20)

Figure 10: Descriptions of molecule categories from Fig. 8
identified by our approach.

3. Can we apply the same analysis to mutant cells (where
some of the molecules are knocked out) and can we
map out the cell’s phenotypic behavior (i.e, observable
physical characteristics) by checking the relative rank
ordering of the molecules?

From analysis of the wild-type (normal) cell cycle data,
CDV+’s results correspond excellently to three of the groups
reported in Fig. 8(A). The reported sets of molecules for each
of the category in Fig. 8(A) are listed in Fig 9. We report
the minimal set of significant molecules that are sufficient to
distinguish among the four phases of the cell cycle. Compare
Fig. 9 with Fig. 10. One of the molecules missed by our anal-
ysis is Cln2, which represents the category “SK”. However,
this fact was nullified by the presence of another molecule
(SBF), which controls Cln2. Comparing Fig. 9 with Fig. 10
reveals that CDV+ successfully identifies all four categories
of molecules that the cell cycle machinery is composed of.

Cell cycle mutants
A mutant cell basically means an abnormal cell. Four mu-
tants for the cell cycle were generated by changing parame-

ters in the ODEs corresponding to the molecule being knocked
out [5]. These four mutants cause the cell cycle to arrest at
different phases.

The collected dataset comprises 5000 instances with 45
feature-values, representing the concentration of each of the
molecules at a given time-point. We ran CDV+ with a
single centroid in each class. After removing each feature
we ran a naive Bayes classifier and tracked its accuracy.
Fig. 12 illustrates that the accuracy of the naive Bayes clas-
sifier remains almost uniform until the algorithms remove
35 features, which gives us a sense of when to stop re-
moving features. We also note that Fig. 12 shows similar
accuracies when running the other algorithms. However,
GreedyKL and KS do not remove the correct molecules.
On the contrary, the insufficiency of purely information-
based removal becomes evident when we inspect the actual
molecules removed—Sic1, Cdh1, Mcm1, Cdc20, and Cdc14,
many of the key players themselves.
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Figure 12: Accuracy of naive Bayes classifier vs feature re-
moved.

Biological interpretations
We validate our results using precise biological facts. Read-
ers who are slighly unfamiliar with the exact molecule names
that are mentioned here can picture them as placehold-
ers from Figure 10 and focus on just the interconnection
between them resulting in the observed behavior. Names



Phase Relative rank ordering

Normal cell
G1 Cdc6 > Cdh1 > SBF > Sic1T > ESP1 > Clb5T > LTE1 > SPN > Clb2T > Mcm1
S SBF > Clb5T > LTE1 > ESP1 > SPN > Clb2T > Sic1T > Mcm1 > Cdc6 > Cdh1

G2 Mcm1 > Clb2T > SPN > Clb5T > LTE1 > Sic1T > SBF > ESP1 > Cdc6 > Cdh1
M Clb2T > SPN > Mcm1 > LTE1 > Clb5T > Sic1T > ESP1 > Cdh1 > SBF > Cdc6

Cdc20 mutant
G1 Cdh1 > Sic1 > C5 > TEM1 > Cdc6P > SPN >PDS1> Clb2T > VI20 > Clb5

S/G2/arrest phase VI20 > CLB5 > SPN > PDS1 > Cdc6P > Clb2T > TEM1 > C5 > CDH1 > Sic1
Cdc14 mutant

G1 Cdh1 > RENT > Cdc15 > C5 > LTE1 > Cdc6P > SPN > PDS1 > Clb2T > VI20
S/G2/arrest phase VI20 > PDS1 > LTE1 > SPN > Cdc6P > Clb2T > C15 > RENT > C5 > Cdh1

Tem1 mutant
G1 Cdc6 > Cdh1 > Sic1T > ESP1 > Swi5 > PPX > Clb5T > SPN > PDS1 > VI20

S/G2/arrest phase VI20 > Clb5T > PPX > PDS1 > Swi5 > ESP1 > SPN > Sic1T > Cdc6 > Cdh1
Clb1 and Clb2 mutant

G1 Cdc6 > Cdh1 > Sic1T > ESP1 > Swi5 > PPX > BUB2 > Clb5T > ORI > VI20
S/G2/arrest phase VI20 > ORI > BUB2 > CLB5T > PPX > ESP1 > Swi5 > Sic1T > Cdc6 > Cdh1

Figure 11: Signatures extracted by the CDV+ algorithm.

of molecules are written exactly as they appear in Fig. 8
through Fig 11.

• In a normal cell, the G1 phase is biologically distin-
guishable with the abundance of molecules Cdh1 and
Sic1 and Cdc6 [5]. This is shown by high relative rank
orders for these molecules in the G1 phase (Normal
cells G1 row in Fig 11) [22]. These molecules cause
suppression of Clb2. Clb2 is suppressed also because
Mcm1 is inactive. Both these factors are shown in G1
phase with low ranks for Mcm1 and Clb2.

In S phase (Normal cells S row in Fig. 11), Clb5 starts
to accumulate, the concentration of Cdh1 starts going
down, and as a result Clb2 starts to accumulate in late
S phase, and also Sic1 concentration starts decreasing.
These factors are sufficient to distinguish the S phase
[22]. The S phase is marked by Clb5 concentration
going higher, and Mcm1, Cdc6, and Cdh1 having rel-
atively lower rank order.

In G2 phase (Normal cells G2 in Fig. 11), Mcm1 is
of higher significance because it synthesizes another
component Clb2 [1]. Mcm1 and Cdh1 share opposite
trends. This is evident from the higher order rank for
Mcm1 than Cdh1 in G2. This trend is opposite to the
trend visible in G1.

The M phase is characterized by accumulated Clb2,
Clb5, and Mcm1, much higher than SBF, Sic1, Cdh1
and Cdc6 [22]. This supports the relative rank order-
ing found by the algorithm (Normal cells M row in
Fig. 11).

• The Cdc20 mutant cells have a G1 phase compara-
ble to normal cells according to the features selected.
The S/G2/arrest phase characterization indicates that
Cdc20 is required for the degradation of PDS1. In the
absence of Cdc20, PDS1 exists at a higher concentra-
tion than normal [25]. Therefore, PDS1 is a distin-
guishing feature of Cdc20 mutants. The results from
the feature selection algorithm reveal precisely this, be-
cause PDS1 is given a higher rank in the Cdc20 mutant

cells but not in the normal cells. Therefore, our algo-
rithm reports that PDS1 is a feature of Cdc20 mutants
differentiating it from normal cells, which agrees with
the literature. Cdc20 also causes degradation of Clb2
and Cl5. Thus, Clb2 and Clb5 get reported as signif-
icant molecules after the cells gets into the arresting
phase when there is no Cdc20 in the cell.

• The Cdc14 mutant cells also show that the G1 phase
has features comparable to normal cells. S/G2/arrest
phase shows that Net1 and Cdc14 are involved in for-
mation of the complex called RENT. Therefore, in the
absence of Cdc14 mutant, concentration of RENT dif-
fers from the normal cell. Cdc15 is both an activator
and substrate for Cdc14. So in the absence of Cdc14,
concentration of Cdc15 is different from that in normal
cells.

• The Tem1 mutant cells are distinguishable from nor-
mal cells due to high PDS1 and ESP1. Concentration
of Cdc15 becomes lower than in a normal cell and so
concentration of RENT becomes high. Cdh1 is lower
and as a result, PDS1 becomes higher in Tem1 than
in normal cells. Since Clb5 and Clb2 become higher,
Sic1 will be low and becomes another distinguishing
signature of the mutant from the normal cell.

• The Clb1 and Clb2 double mutant (represented as
Clb2 mutant in the model) does not go into G2 phase,
because the deletion causes higher Clb5 and PDS1 con-
centrations than in normal cells. This also will be
caused and indicated by lower ESP1, lower Sic1, and
lower Cdh1 than those in normal cells at the corre-
sponding time points.

6. DISCUSSION
We have introduced the novel KDD problem of network

comprehension and cast it as feature selection in rank-order
space followed by summarizing the remaining features into
temporal signatures. We have presented five specific feature
selection algorithms for removing redundant and irrelevant



features in rank-order data: our results demonstrate that
rank-order data are better analyzed using an order-theoretic
algorithm (CDV+) versus traditional information-theoretic
algorithms (e.g., KS). Both our synthetic and real-world
studies reveal that CDV+ is the best performing algorithm
in terms of picking out the redundant and irrelevant features,
and not just maintaining a high classification accuracy rate.

Our future work is focused on delving further into net-
work comprehension goals. While temporal signatures yield
a great deal of insight into the functioning of cellular biol-
ogy, taking into account the regulatory mechanisms, for ex-
ample, can help us assess if the rank order changes from one
phase to another are triggered by or correlate with changes
in some regulatory molecules. Ultimately, just like an elec-
trical engineer uses metaphors of amplifiers, oscillators, and
switches to comprehend an unknown circuit, we wish to de-
sign decompositions of biochemical circuits as compositions
of input-output signals mediated by protein molecules. The
initial steps toward these ideas have been taken [18, 19] and
this area is ripe for the development and application of data
mining methods.
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