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Abstract

Active data mining is becoming prevalent in applica-
tions requiring focused sampling of data relevant to a
high-level mining objective. It is especially pertinent
in scientific and engineering applications where we seek
to characterize a configuration space or design space in
terms of spatial aggregates, and where data collection
can become costly. Examples abound in domains such
as aircraft design, wireless system simulation, fluid dy-
namics, and sensor networks. This paper develops an
active mining mechanism, using Gaussian processes, for
uncovering spatial aggregates from only a sparse set of
targeted samples. Gaussian processes provide a unify-
ing framework for building surrogate models from sparse
data, reasoning about the uncertainty of estimation at
unsampled points, and formulating objective criteria for
closing-the-loop between data collection and data min-
ing. Our mechanism optimizes sample selection using
entropy-based functionals defined over spatial aggre-
gates instead of the traditional approach of sampling
to minimize estimated variance. We apply this mech-
anism on a global optimization benchmark comprising
a testbank of 2D functions, as well as on data from
wireless system simulations. The results reveal that the
proposed sampling strategy makes more judicious use
of data points by selecting locations that clarify high-
level structures in data, rather than choosing points that
merely improve quality of function approximation.

Keywords: spatial mining, active mining, sparse data,
spatial aggregation, Gaussian processes.

1 Introduction

Many data mining applications in scientific and engi-
neering contexts require analysis and mining of spa-
tial datasets derived from computer simulations or field
data, e.g., wireless system simulations, aircraft design
configuration spaces, fluid dynamics simulations, and
sensor network optimization. In contrast to traditional
data mining contexts that are dominated by massive
datasets, these domains are actually characterized by
a paucity of data, owing to the cost and time involved
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Figure 1: Mining configuration spaces from wireless
system simulations. The shaded region denotes the
largest portion of the configuration space where we can
claim, with confidence at least 99%, that the average bit
error rate (BER) is acceptable for voice-based system
usage. Each ‘cell’ in the plot is the result of the spatial
and temporal aggregation of hundreds of wireless system
simulations, many of which take hours.

in conducting simulations or setting up experimental
apparatus for data collection. Nevertheless, the com-
putational scientist has control of where data can be
collected; it is hence prudent in such domains to focus
data collection in only those regions that are deemed
important to support a high-level data mining objec-
tive.

As a concrete example, consider the characteri-
zation of WCDMA (wideband code-division multiple
access) wireless system configurations for a given in-
door environment. A configuration comprises many ad-
justable parameters, and the goal of wireless system
characterization is to assess the relationship between
these parameters and performance metrics such as BER
(bit error rate), a measure of the number of bits trans-
mitted in error using the system. When a wireless engi-
neer designs a system for a given indoor environment, he
or she sets an acceptable performance criterion for BER
(e.g., 10−3 for a system designed to carry voice traffic,
stricter thresholds for data traffic) and seeks a region



in the configuration space that can satisfy this crite-
rion (see Fig. 1). To collect the data necessary for min-
ing configuration spaces, the engineer either performs a
costly Monte Carlo simulation (where a model of radio
propagation in the wireless channel is embedded inside a
system-wide model encapsulating wireless protocols and
communications standards), or installs channel sound-
ing equipment and system instrumentation in the envi-
ronment, and actually enacts usage scenarios. In either
approach, it is not feasible to first organize a volumi-
nous body of data and subsequently perform data min-
ing on the collected dataset. It is thus imperative that
we interleave data collection and data mining and focus
sampling at only those locations that maximize well-
defined notions of relevance and utility. Importantly, we
will not need to sample the entire configuration space,
only enough so as to identify a region with acceptable
confidence.

Active data selection has been investigated in a
variety of contexts [4, 25]. A sampling strategy typically
embodies a human assessment of where might be a good
location to collect data [1, 13] or is derived from the
optimization of specific design criteria [5, 17, 22]. Many
of these strategies, however, are either based on utility
of data for function approximation purposes [24], or are
meant to be used with specific data mining algorithms
and tasks (e.g., classification [10]). In this paper, we
present a formal framework that casts spatial data
mining as uncovering successive multi-level aggregates
of data, and uses properties of higher-level structures to
help close the loop between mining and data collection.
This approach helps us design sampling strategies that
bridge higher-level quality metrics of structures (e.g.,
entropy) with lower-level considerations of data samples
(e.g., locations and fidelity). While we focus on spatial
contexts, we point out that spatial can denote any
dimension that affords a metric; our approach thus
applies equally well to a wide range of data sets with
more abstract notions of space (such as the wireless
simulation example above).

Our active mining mechanism is based on the
spatial aggregation language (SAL; [3]), a generic data
mining framework for spatial datasets, and Gaussian
processes (GPs; [27]), a powerful unifying theory for
approximating and reasoning about datasets. Gaussian
processes provide the ‘glue’ that enables us to perform
active mining on spatial aggregates. In particular,
they aid in (i) creation of surrogate models from data
using a sparse set of samples (for cheap generation
of dense approximate datasets), (ii) reasoning about
the uncertainty of estimation at unsampled points, and
(iii) formulation of objective criteria for active data
collection.
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Figure 2: SAL uncovers multi-layer spatial aggregates
by employing a small set of operators (a spatial mining
“vocabulary”) utilizing suitable domain knowledge. A
variety of spatial data mining tasks, such as vector field
bundling, contour aggregation, correspondence abstrac-
tion, clustering, and uncovering regions of uniformity
can be expressed as multi-level spatial aggregate com-
putations.

1.1 Contributions: This paper builds on our prior
work in [1, 23] by presenting a novel integration of
Gaussian processes with SAL:

• While classical active mining work in spatial mod-
eling focuses on quality of function approximation,
the mechanism presented here focuses on clarifying
high-level structures. The entropy-based sampling
approach introduced in this paper is applicable to
mining a broad range of spatial structures.

• Unlike traditional data mining contexts that deal
with voluminous amounts of data, the mechanism
is targeted at scenarios where data collection costs
far outshadow data mining costs. For instance,
in the wireless simulation study, each data sample
requires a few hours to acquire on a cluster of
workstations whereas the data mining (and sample
selection optimization) algorithms as implemented
here can be executed in a matter of minutes on a
workstation.
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Figure 3: de Boor’s ‘pocket’ function in 2D, depicting
contours around basins of local minima.

• Since Gaussian processes are re-statements of
kernel-based learning methods [7] this work helps
bridge the qualitative nature of SAL algorithms
with rigorous quantitative methodologies necessary
to evaluate and assess active mining strategies.

This work assumes a moderate background of algo-
rithms for spatial aggregation and spatial statistical
modeling. Nevertheless, Sec. 2 and Sec. 3 overview ear-
lier work on SAL and GPs for the SIAM DM audience
and instantiate such work for a motivating case study
— identifying and characterizing pockets in a space
(such as the wireless system design configuration space).
Sec. 4 then moves to active mining and introduces two
important classes of sampling strategies integrating SAL
and GPs. Sec. 5 evaluates the mechanism using both
synthetic and real-world datasets. Sec. 6 provides a dis-
cussion and reviews related work.

2 Spatial Aggregation Language

The Spatial Aggregation Language (SAL) [3, 28, 30] is
a generic framework to study the design and implemen-
tation of spatial data mining algorithms. SAL is cen-
tered on a field ontology, in which the spatial data in-
put is a field mapping from one continuum to another
(e.g. 2-D temperature field: R2 → R1; 3-D fluid flow
field: R3 → R3). SAL programs employ vision-like rou-
tines, in an imagistic reasoning style [29], to uncover and
manipulate multi-layer geometric and topological struc-
tures in fields. Due to continuity, fields exhibit regions
of uniformity, and these regions can be abstracted as
higher-level structures which in turn exhibit their own
continuities. Task-specific domain knowledge specifies
how to uncover such uniformity, defining metrics for
closeness of objects and similarity of features. For exam-
ple, streamlines are connected curves of nearby points
with vectors flowing in similar enough directions, while
pressure cells are connected regions of similar (and ex-
treme) enough pressure.

SAL supports structure discovery through a small
set of generic operators, parameterized with domain-

specific knowledge, on uniform data types. These oper-
ators and data types mediate increasingly abstract de-
scriptions of the input data (see Fig. 2) to form higher-
level abstractions and mine patterns. The primitives

in SAL are contiguous regions of space called spatial

objects; the compounds are (possibly structured) collec-
tions of spatial objects; the abstraction mechanisms con-
nect collections at one level of abstraction with single
objects at a higher level. This vocabulary has proved
effective for expressing the mechanisms required to un-
cover multi-level structures in spatial datasets in ap-
plications ranging from decentralized control design [2]
and object manipulation [30] to analysis of weather
data [12], diffusion-reaction morphogenesis [21], and
matrix perturbation analysis [22].

The identification of structures in a field is a form
of data reduction: a relatively information-rich field
representation is abstracted into a more concise struc-
tural representation (e.g. pressure data points into iso-
bar curves or pressure cells; isobar curve segments into
troughs). Navigating the mapping from field to abstract
description through multiple layers rather than in one
giant step allows the construction of modular data min-
ing programs with manageable pieces that can use sim-
ilar processing techniques at different levels of abstrac-
tion. The multi-level mapping also allows higher-level
layers to use global properties of lower-level objects as
local properties of the higher-level objects. For example,
the average temperature in a region is a global property
when considered with respect to the temperature data
points, but a local property when considered with re-
spect to a more abstract region description. As this pa-
per demonstrates, analysis of higher-level structures in
such a hierarchy can guide interpretation of lower-level
data.

Let us begin with a spatial mining task motivated
by the wireless study — determining the number and
locations of pockets, or basins of local minima, in a
vector field. Fig. 3 illustrates four pockets in a field
defined by Carl de Boor’s function in 2D (from [22]):

α(X) = cos

(

n
∑

i=1

2i

(

1 +
xi

| xi |

)

)

− 2(2.1)

δ(X) = ‖X− 0.5I‖(2.2)

p(X) = α(X)(1 − δ2(X)(3 − 2δ(X))) + 1(2.3)

where X is the n-dimensional point (x1, x2, · · · , xn) at
which the pocket function p is evaluated, I is the identity
n-vector, and ‖ · ‖ is the L2 norm. The property of this
function is that it assumes a pocket in each corner of
the cube, just outside the sphere enclosed in the cube.
Since the ratio of cube volume (2n) to that of the sphere
(πn/2/(n/2)!) grows unboundedly, global optimization



algorithms cannot exploit any special properties and
must consider every one of the 2n corners! Hence, the
de Boor function is a well-known benchmark for global
optimization (esp. in high dimensions), but we focus
here on a somewhat different objective of characterizing
the high-level structure of the field. The algorithmic
encoding of the calculus definition of local minima
suggests that the four pockets in Fig. 3 can be identified
via convergent flows in the gradient underlying the
vector field. Let us assume we are given a dense set of
samples covering the region of interest. Fig. 4 illustrates
an example of key spatial aggregation operations:

(a) Establish the input field, here by calculating the
gradient field (normalized, since we’re interested
only in direction in order to detect convergence).

(b) Localize computation with a neighborhood graph,
so that only spatially proximate objects are com-
pared. Here, an 8-adjacency neighborhood graph
is employed, which results in somewhat ‘blocky’
streamlines but fast computation.

(c)-(f) Use a series of local computations to find equiv-

alence classes of neighboring objects with simi-
lar features. Here, we systematically eliminate all
neighborhood graph edges but those whose direc-
tions best match the vector direction at both end-
points. ‘Forward neighbor’ computation compares
graph edge direction with the average of the vec-
tor directions, and keeps only those that are simi-
lar enough (implemented as a cosine angle similar-
ity threshold). ‘Best forward neighbor’ at junction
points then selects from among these neighbors,
by a third metric combining similarity in direction
with closeness in point location. Backward calcula-
tions are analogous, but deal with the predecessor
along a streamline rather than the successor.

(g) Move up a level in the spatial object hierarchy by
redescribing equivalence classes into more abstract
objects. Here, connected vectors are abstracted
into curve objects, which have both a reduced
representation and additional semantic properties
(e.g. curvature is well-defined).

(h) Apply the same mechanism — aggregate, classify,
and redescribe — at the new level, using the exact

same operators but with different metrics. Here,
curves are grouped into coherent pockets with con-
vergent flow. Neighborhood (not shown) is de-
rived from neighborhood of constituent vectors,
and equivalence tests direction of flow for conver-
gence.

Notice that SAL is not a specific data mining al-
gorithm, but rather a language to construct complex
mining operations (such as in Fig. 4) from a small core
set of operations. As such, the quality of results from a
SAL implementation depends on suitable choices of ab-
straction levels and appropriate settings of any relevant
parameters. For instance, in the above example, three
parameters control the relationship from input field to
output structures: adjacency neighborhood size (used in
step (b)), angle for vector similarity (used in step (c)),
and distance penalty metric (used in step (d) to com-
bine distance with direction). For Fig. 4, we set these
parameters to 1.5 (generates an 8-adjacency neighbor-
hood), 0.75, and 0.1 respectively. This paper is not
concerned with evaluating particular SAL implementa-
tions but instead focuses on using them from within an
active mining context.

Localized computations are integral to SAL, and
hence an effective SAL application relies on a dense
set of samples covering the domain. When data is
scarce, we can first build an approximation to the
underlying field with the given samples, and use the
approximation to generate a dense field of data (e.g.,
on a uniform grid). Such an approximation is called
a surrogate model — cheap-to-compute substitutes for
complex functions. One way to build surrogate models
relies on Gaussian processes.

3 Gaussian Processes

The use of Gaussian processes in machine learning and
data mining is a relatively new development, although
their origins can be traced to spatial statistics and the
practice of modeling known as kriging [14]. In contrast
to global approximation techniques such as least-squares
fitting, GPs are local approximation techniques, akin
to nearest-neighbor procedures. In contrast to function
approximation techniques that place a prior on the form
of the function, GP modeling techniques place a prior
on the covariance structures underlying the data.

The basic idea in GPs is to model a given dataset
as a realization of a stochastic process. Formally, a
GP is a set of random variables any finite subset of
which have a (multivariate) normal distribution. For
our purposes, we can think of these variables as spatially
distributed (scalar) response variables ti, one for each
2D location xi = [xi1, xi2] where we have collected a
data sample. In our vector field analysis application,
ti denotes the modeled response, i.e., the value of de
Boor’s function at xi. Given a dataset D = {xi, ti}, i =
1 . . . n, and a new data point xn+1, a GP can be used
to model the posterior P (tn+1|D, xn+1) (which would
also be a Gaussian). This is essentially what many
Bayesian modeling techniques do (e.g., least squares
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Figure 4: Example steps in SAL implementation of vector field analysis of de Boor’s function. (a) Input vector
field. (b) 8-adjacency neighborhood graph. (c) Forward neighbors. (d) Best forward neighbors. (e) Neighborhood
graph transposed from best forward neighbors. (f) Best backward neighbors. (g) Resulting adjacencies redescribed
as curves. (h) Higher-level aggregation and classification of curves whose flows converge.

approximation with normally distributed noise) but it is
the specifics of how the posterior is modeled that make
GPs distinct as a class of modeling techniques.

To make a prediction of tn+1 at a point xn+1, GPs
place greater reliance on ti’s from nearby points. This
reliance is specified in the form of a covariance prior for
the process and will be central to how we embed SAL
in a broader GP framework:

Cov(ti, tj) = α exp

(

−
1

2

2
∑

k=1

ak(xik − xjk)2

)

(3.4)

Intuitively, this function captures the notion that re-
sponse variables at nearby points must have high corre-
lation. The reader will note that this idea of influence
decaying with distance has an immediate parallel to how
SAL programs localize computations. In Eq. 3.4, α is
an overall scaling term whereas a1, a2 define the length
scales for the two dimensions. However, this prior (or
even its posterior) does not directly allow us to deter-
mine tj from ti, since the structure only captures the
covariance; predictions of a response variable for new
sample locations are thus conditionally dependent on
the measured response variables and their sample lo-
cations. Hence, we must first estimate the covariance
parameters (a1, a2, and α) from D and then use these
parameters along with D to predict tn+1 at xn+1.

3.1 Using a GP: Before covering the learning pro-
cedure for the covariance parameters (a1, a2, and α), it

is helpful to develop expressions for the posterior of the
response variable in terms of these parameters. Since
the jpdf of the response variables P (t1, t2, · · · , tn+1) is
modeled Gaussian (we will assume a mean of zero), we
can write:

P (t1, t2, · · · , tn+1 |x1,x2, · · · ,xn+1, Covn+1) =

1

λ1
exp

(

−
1

2
[t1, t2, · · · , tn+1] Cov−1

n+1 [t1, t2, · · · , tn+1]
T

)

where we ignore λ1 as it is simply a normalizing factor.
Here, Covn+1 is the covariance matrix formed from the
(n + 1) data values (x1,x2, · · · ,xn+1). A distribution
for the unknown variable tn+1 can then be obtained as:

P (tn+1|t1, t2, · · · , tn,x1,x2, · · · ,xn+1, Covn+1)

=
P (t1, t2, · · · , tn+1 |x1,x2, · · · ,xn+1, Covn+1)

P (t1, t2, · · · , tn |x1,x2, · · · ,xn+1, Covn+1)

=
P (t1, t2, · · · , tn+1 |x1,x2, · · · ,xn+1, Covn+1)

P (t1, t2, · · · , tn |x1,x2, · · · ,xn, Covn)

where the last step follows by conditional independence
of {t1, t2, · · · , tn} w.r.t. xn+1 and the part of Covn+1

not contained in Covn. The denominator in the above
expression is another Gaussian random variable, given
by:

P (t1, t2, · · · , tn |x1,x2, · · · ,xn, Covn) =

1

λ2
exp

(

−
1

2
[t1, t2, · · · , tn] Cov−1

n [t1, t2, · · · , tn]T
)



Putting it all together, we get:

P (tn+1|t1, t2, · · · , tn,x1,x2, · · · ,xn+1, Covn+1) =

λ2

λ1
exp ( −

1

2
[t1, t2, · · · , tn+1] Cov−1

n+1 [t1, t2, · · · , tn+1]
T

−
1

2
[t1, t2, · · · , tn] Cov−1

n [t1, t2, · · · , tn]T )

Computing the mean and variance of this Gaussian
distribution, we get an estimate of tn+1 as:

t̂n+1 = kT Cov−1
n [t1, t2, · · · , tn](3.5)

and our uncertainty in this estimate as:

σ2
t̂n+1

= k − kT Cov−1
n k(3.6)

where kT represents the n-vector of covariances with
the new data point:

kT = [Cov(x1,xn+1) Cov(x2,xn+1) · · · Cov(xn,xn+1)]

and k is the (n + 1, n + 1) entry of Covn+1. Eqs. 3.5
and 3.6, together, give us both an approximation at any
given point and an uncertainty in this approximation;
they will serve as the basic building blocks for closing-
the-loop between data modeling and higher level mining
functionality.

The above expressions can be alternatively derived
by positing a linear probabilistic model and optimizing
for the MSE (mean squared error) between observed and
predicted response values (e.g., see [24]). In this sense,
the Gaussian process model considered here is also
known as the BLUE (best linear unbiased estimator),
but GPs are not restricted to linear combinations of
basis functions.

To apply GP modeling to a given dataset, we
must first ensure that the chosen covariance struc-
ture matches the data characteristics. We have cho-
sen a stationary structure above under the assumption
that the covariance is translation invariant. Various
other functions have been studied in the literature (e.g.,
see [18, 19, 24]), all of which satisfy the required prop-
erty of positive definiteness. The simplest covariance
function yields a diagonal matrix, but this means that
no data sample can have an influence on other locations,
and the GP approach offers no particular advantages.
In general, by placing a prior directly on the function
space, GPs are appropriate for modeling ‘smooth’ func-
tions. The terms a1, a2 capture how quickly the influ-
ence of a data sample decays in each direction and, thus,
the length scales for smoothness.

An important point to note is that even though the
GP realization is one of a random process, we can nev-
ertheless build a GP model for deterministic functions

(like the de Boor’s function) by choosing a covariance
structure that ensures the diagonal correlations to be
1 (i.e., perfect reproducibility when queried for a sam-
ple whose value is known). Also, the assumption of
zero mean for the Gaussian process can be relaxed, by
including a constant term (gives another parameter to
be estimated) in the covariance formulation. This ap-
proach is used for our experimental studies.

3.2 Learning a GP: Learning the GP parameters
θ = (a1, a2, α) can be undertaken in the ML and MAP
frameworks, or in the true Bayesian setting where we
obtain a distribution over values. The log-likelihood for
the parameters is given by:

L = log P (t1, t2, · · · , tn|x1,x2, · · · ,xn, θ)

= c + log P (θ) −
n

2
log(2π) −

1

2
log | Covn |

−
1

2
[t1, t2, · · · , tn] Cov−1

n [t1, t2, · · · , tn]T

To optimize for the parameters, we can compute partial
derivatives of the log-likelihood for use with a conjugate
gradient or other optimization algorithm:

∂L

∂θ
=

∂ log P (θ)

∂θ

−
1

2
tr

(

Cov−1
n

∂ Cov−1
n

∂θ

)

+
1

2
[t1, t2, · · · , tn] Cov−1

n

∂ Cov−1
n

∂θ

Cov−1
n [t1, t2, · · · , tn]T

where tr(·) denotes the trace function. In our running
example, we need only estimate three parameters for θ,
well within the purview of modern numerical optimiza-
tion software. For larger numbers of parameters, we can
resort to the use of MCMC methods [19].

4 Active Data Mining Strategies

The above section showed two important uses of GPs
for spatial mining: designing a surrogate function for
generating a dense field (via Eq. 3.5), and assessing un-
certainties in our estimates of the function at unsampled
points (using Eq. 3.6). We are now ready to formulate
objective criteria for active data selection, a pre-cursor
to active mining.

4.1 Variance Reducing Designs: A simple strat-
egy for sampling is to target locations to reduce our
uncertainty in modeling, i.e., select the location that
minimizes the posterior generalized variance of the func-
tion. This approach can be seen as optimizing sample



selection for the functional:

ΦV =
1

2
log

[

∂t

∂θ

]

H−1

[

∂t

∂θ

]T

(4.7)

where
[

∂t
∂θ

]

is the (row) vector of sensitivities w.r.t. each
GP parameter computed at a sample location, and H is
the Hessian (second order partial derivatives) of t, again
w.r.t. the parameters. A straightforward derivation will
show that optimizing ΦV suggests a location whose
‘error bars’ σ2 are highest.

To implement this strategy, we can adopt either a
block design (optimize for K locations simultaneously),
or apply it sequentially to determine one extra sampling
location at a time. The former is appropriate when
we can farm out function evaluations across nodes in
a compute cluster, whereas the latter will track the
design functional better. We adopt the sequential
approach here; Fig. 5 shows this strategy for the pocket
function of Fig. 3 and concomitant results from pocket
mining of the surrogate model data. At each step,
we determine the best sample location (from among
unsampled locations on a regular grid of 21× 21), build
the GP model from the data collected thus far, and
apply our SAL-based vector aggregation mechanism to
the gradient field derived from the function values.

The initial design has one point in the center of each
quadrant, and one at the center. Not surprisingly, we
find a significant number (16) of basins in the gradient
field. The next four points added are actually at the
corners; this is because estimated variances are typically
high toward the boundaries of an interpolation region.
As MacKay points out [17], such a metric has a tendency
to ‘repeatedly gather data at the edges of the input
space.’ Continuing the sampling, we see that the 13-
point design actually has the samples organized in a
diagonal design (a layout that has been referred to
as ‘whimsical’ [9]). The emphasis on overall quality
of function approximation more than data mining is
evident from the fact that it takes over 30 points before
the SAL-based pocket finder can infer that there are
four pockets. In further experiments not reported here,
we have found that pushing the initial points outward
(or inward) does not have any appreciable effect on
future samplings, and the variance-based metric favors
the outer envelope of the design space.

4.2 Entropy-Based Functionals: It is a classical
result in experiment design (e.g., see [8]) that, for Gaus-
sian priors, the variance-reducing design is actually
equivalent to the design minimizing the (expected) pos-
terior entropy of the distribution tD|D, where D denotes

the unsampled locations in D. For a proof, see [16].
This criterion is also equivalent to the D-optimality de-

sign criterion in spatial statistics, under the assumption
that the noise factor on all measurements is the same.
MacKay generalizes this idea [17], and pre-specifies a
collection of points requiring high-quality approxima-
tion; the goal then is to minimize entropy of data distri-
bution w.r.t. these points. This strategy does not apply
here since our understanding of which locations are rel-
evant improves as active mining proceeds.

To develop a better active mining strategy, notice
that our goal is the identification of regions defined
by convergent flows. If we view the SAL program as
an information processor that maps a data field into
a class field (defined over the same underlying space),
then the utility of sampling in a region is directly related
to our inferential capabilities about the corresponding
region in the class field. Intuitively, we should be
more interested in samples that tell us something about
the boundary between regions than those that capture
the insides of a region, even though the latter might

have high variance in its current estimate. Repeatedly
sampling function values inside an already classified and
abstracted region is not as useful as sampling to clarify
an emerging boundary classification. This means that
we must bridge high-level information about pockets
from SAL into a preference of where to collect data.

An idea that suggests itself is to adopt variance-
based design, but instead of minimizing the entropy of
the data distribution, minimize the entropy of the class
distribution as revealed by the SAL pocket finder. By
positing a class distribution at each point, based on the
class labels occupied by neighboring points, we achieve
our goal of ranking locations along region boundaries
higher. While this basic strategy appears reasonable,
it will repeatedly gather information at the region
boundaries, just as variance-based design repeatedly
focuses on the edges. So a point with high entropy is
a good location to sample only as long as the variance
surrounding it is sufficiently high. As our confidence in
the data value increases, our preference for this location
should decrease even if the class entropy remains large
(as it will, if it lies on a boundary). This suggests using
class entropy to define a distribution PE(x) over points,
and using that distribution to scale the variance-based
design criterion:

ΦE =
1

2

∑

x

PE(x) log

[

∂t

∂θ

]

H−1

[

∂t

∂θ

]T

(4.8)

The expression inside the summation contains the same
term as in Eq. 4.7 but is now evaluated across the design
space and scaled by the amount of interest in location
x:

PE(xi) ∝
∑

x∈N (xi)

P (C(x)) log P (C(x))(4.9)
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Figure 5: How variance-based sampling selects locations. (top row) initial design of 5 points, followed by snapshots
taken at later stages (9, 13, and 31 points). Old sample locations are shown with red circles and new locations are
shown with blue diamonds. (middle row) GP model fits to the given samples. (bottom row) Number of pockets
identified by SAL pocket miner.

where N (xi) is a neighborhood around xi, C(x) denotes
the (flow) class of point x as inferred by the SAL miner,
and P (C(x)) denotes the probability of encountering
this class in the neighborhood. The proportionality con-
stant in Eq. 4.9 must be set to ensure that

∑

PE = 1.
Formal characterization of this criterion (i.e., conver-
gence properties) is difficult since PE(x) changes dur-
ing every iteration of data mining, and we do not have
a model of how PE(x) varies across samplings. Oper-
ationally, to apply this criterion, we can identify the
location that gives the highest information gain, given
that we are intending to make a measurement at that
location. Fig. 6 shows a design that optimizes ΦE and
successfully reveals all four pockets with only 11 points.

4.3 Computational Considerations: Other than
any data collection costs, the primary costs to im-
plementing the active mining mechanisms involve the
nested optimizations and the necessary matrix compu-
tations. There are two optimizations per round of data
collection: a multi-dimensional optimization over θ to
fit the surrogate model, and a 2D optimization over x

to identify the next sample point. Both can be done
either locally or globally, depending on our fidelity re-
quirements and availability of resources. Here, to reduce
the computational complexity in building the surrogate
model, we adopt the public domain Netlab scaled con-
jugate gradient algorithm [18] which runs in O(|D||θ|)
time. While this algorithm avoids having to work with
the Hessian explicitly, the active sample selection step
requires the computation of the Hessian inverse, which
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Figure 6: Active data mining with an entropy-based
functional. This sampling strategy picks six additional
points (top), in various quadrants; the SAL miner finds
four pockets (bottom) when a GP model is constructed
using the given points. Contrast this with the per-
formance of variance-based sampling for a comparable
number of samples.



takes O(|D||θ|2 + |θ|3) time. To reduce the cost of opti-
mization, we use a discrete lattice search or hill climb-
ing, restricting our attention to locations over a uniform
grid. If the number of locations on the grid is |G|, then
each round of active mining requires O(|G||θ|2) time,
plus the cost of computing the inverse Hessian. This
expression applies to both variance-based mining and
entropy-based mining, since the computation of PE(x)
is just linear in |G| for a fixed neighborhood calculation
of entropy. Recall that this cost is typically negligible
compared to the actual cost of running a simulation (to
acquire a data sample).

4.4 Stopping Criteria: How do we know when to
stop sampling? If a cost metric is defined over data col-
lection, and if it can be determined that we can sample
at most K points within the given resources, then we
should ideally perform a K-dimensional optimization,
rather than adopting a sequential sampling strategy. In
the absence of such a cost-metric, a sampling strategy
could terminate when the estimated dataset log like-
lihood is within bounds. In this paper, we primarily
evaluate sampling strategies using classes of problems
for which the ‘right’ answer is known, and pose ques-
tions such as: ‘starting from an initial grid, how many
samples does it take to mine the right number of higher-
level structures?’ The answer to this question gives us
an indication of how aggressive the sampling strategy is,
its stability (i.e., once mined, does it continue to mine
the patterns?), and comparisons with the other strategy.

5 Experimental Results

We now present empirical results demonstrating the ef-
fectiveness of our active mining strategy on both syn-
thetic and real datasets. We employed the Netlab suite
of algorithms for GP modeling. Netlab supports a co-
variance formulation similar to Eq. 3.4, along with a
bias term that overcomes our earlier assumption of zero
mean. In addition, the model includes a noise term that
can capture uncertainties in individual measurements;
while this is not required for the deterministic functions
considered here, it ensures that the numerical compu-
tation doesn’t become unstable. All GP parameters are
given a relatively broad Gaussian prior. A surrogate
model was fit on a regularly spaced grid (more below),
with a limit of 100 iterations for conjugate gradient
search. The SAL parameters were set to (1.5, 0.75, 0.1),
as before. The standard variance-based sampling has
no adjustable parameters; a fixed 8-adjacency neigh-
borhood was utilized for defining P (x) in entropy-based
sampling. Optimization for ΦV and ΦE was conducted
over the same grid as the domain of the surrogate func-
tion.
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Figure 8: Pocket mining performance on the 7-pocket
function from Fig. 7. (top) variance-based and (bottom)
entropy-based sampling. (left) number of pockets found
and (right) negative log-likelihood.

5.1 Synthetic Datasets: For the synthetic bench-
mark, we adopted the suite of test functions from [11],
an ACM TOMS algorithm to readily generate classes of
functions with known local and global minima. The al-
gorithm systematically distorts a convex quadratic func-
tion with cubic or quintic polynomials to yield continu-
ously differentiable (D-type) and twice continuously dif-
ferentiable (D2-type) functions over the closed interval
[−1, 1]2. Since our active mining proceeds by discrete
search over a pre-defined grid, we evaluated the gener-
ated functions over a regular 21 × 21 grid in [−1, 1]2

(|G| = 441) and used these function values as the ‘or-
acle’ that is queried by the active mining mechanism.
We verified whether in each instance, the SAL miner is
able to resolve all pockets when given a complete 21×21
dataset. This is necessary because the radii of the basins
of attraction interact with the spacing of the sampling
grid, and hence influence the number of samples avail-
able for aggregation by the SAL miner. We found that
the pocket miner is able to resolve only those generated
functions that have up to 7 local minima; functions with
more (e.g., 8–12) local minima use only a handful of
points (typically 3–9) to represent some of their pock-
ets, too few to be aggregated into a flow class under
the SAL miner’s parameter settings. Hence, we pruned
the automatically generated functions by requiring that
that each local minima have at least 12 samples per
pocket, when sampled over the 21×21 grid. This yields
a collection of 43 functions (21 D-type and 22 D2-type),
with numbers of pockets ranging from 4 to 7. Fig. 7
depicts some of these functions.
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Figure 7: Example test functions with 4, 5, 6, and 7 pockets (respectively). Note that the viewpoint chosen makes
visible only some of the pockets in these functions.

Both algorithms were initially seeded with a 52

design, comprising 25 points (about 5% of the design
space of 441 points). Sampling was conducted for an
additional 100 sample values (a total of 125 points, or
about 25% of the design space). We reasoned that this is
a good interval over which to monitor the performance
of the sampling strategies, as even a regularly spaced
grid covering 25% of the design space would mine the
pockets correctly! Fig. 8 reveals the results for the 7-
pocket function of Fig. 7. Both sampling strategies
systematically reduce the (negative) log likelihood (as
estimated from the GP model parameters) but variance-
based sampling shows more oscillatory behavior w.r.t.
the number of pockets mined. On close inspection,
we found that this strategy goes through stages where
adjacent pockets are periodically re-grouped around
sample values (which are mostly at the boundaries),
causing rapid fluctuations in the SAL miner’s output.
We say that this strategy is more prone to ‘being
surprised.’ The number of pockets stabilizes around
7 only toward the end of the data collection interval.
In contrast, the entropy-based sampling first mines the
seven pockets with 68 points, and proceeds to stabilize
beyond this point. Similar results have been observed
with other test functions.

Next, we analyzed the performance of both algo-
rithms across all 43 test functions. We tested for what
fraction of the datasets the mining was correct by, and
stayed correct following, a given number of rounds of
sampling. Our hypothesis was that the D2-type func-
tions, being smoother, are more easily modeled using
GPs and should lend themselves to more aggressive sam-
pling strategies. In addition, the entropy-based sam-
pling strategy should be more effective w.r.t. number of
rounds than the variance-based sampling. Fig. 9 shows
that this is indeed the case.

5.2 Mining Wireless System Configuration

Spaces: Our second application involves characteriza-
tion of configuration spaces of wireless system designs
(see again Fig. 1). The goal is to understand the joint
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Figure 9: Overall pocket mining performance (fraction
of cases correctly identified) with increasing number of
samples, for (left) D-type and (right) D2-type functions.

influence of selected configuration parameters on sys-
tem performance. This can be achieved by identify-
ing spatial aggregates in the configuration space, ag-
gregating low level simulation data (typically multiple
samples per configuration point) into regions of con-
strained shape. In particular, the setup in Fig. 1 is
from a study designed to evaluate the performance of
STTD (space-time transmit diversity) wireless systems,
where the base station uses two transmitter antennas
separated by a small distance, in an attempt to im-
prove received signal strength. In this application, the
aim is to assess how the power imbalance between the
two branches impacts the performance (measured by
bit error rate, BER) of the simulated system, across a
range of signal-to-noise ratios (SNRs). When the signal
components are significant compared to the noise com-
ponents, and when the SNR ratios of the two branches
are comparable, then it is well known that the system
would yield high quality of BER performance. What
is not so clear is how the performance will degrade as
the SNRs move apart. Posed in the spatial aggregation
framework, this objective translates into identifying and
characterizing (in terms of width, or power imbalance)
the pocket in the central portion of the configuration
space. Identifying and characterizing other pockets is
not as important, since some of them will actually con-
tain suboptimal configurations.

We adopt an experimental methodology similar
to that in the previous case studies, and created an
‘oracle’ from the simulation data described in [26].
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Figure 10: Estimates of BER performance in a space of
wireless system configurations.

Fig. 10 demonstrates that the dataset is quite noisy,
especially when the SNR values are low. The design
of the oracle, surrogate model building, and sample
selection all employ a 55×55 grid over the configuration
space (SNR levels ranging from 3dB to 58dB for each
antenna). Both variance-based sampling and entropy-
based sampling were initialized using a 112 design
(about 4% of the configuration space). Sampling was
conducted for an additional 650 points, yielding a total
of 771 points (25% of the design space, as with the
earlier studies). For each round of active mining, we
determined the majority class occupied by points having
equal SNR and determined the maximum width of this
class. This measure was periodically tracked across
the rounds of data collection. Fig. 11 shows how
the sampling strategies fare compared to the correct
estimate of 12dB, as reported in [26] by applying a
spatial data mining algorithm over the entire dataset.
Entropy-based sampling once again selects data that
systematically clarify the nature of the pockets, and
cause a progressive widening of the trough in the middle.
However, it doesn’t mine the ideal width of 12dB (within
the given samples). We reason that this is because the
GP model has difficulty approximating the steep edge
of the basin. Variance-based sampling fares worse and
demonstrates a slower growth of width across samples.
This application highlights the utility of our framework
for mining both qualitative and quantitative properties
of spatial aggregates.

6 Discussion

This paper has presented a novel integration of ap-
proaches from three areas, namely spatial structure dis-
covery, probabilistic modeling using GPs, and active
data mining. The spatial aggregation language pro-
vides a methodology for identifying multi-level struc-
tures in field data, Gaussian processes provide a prob-
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Figure 11: Performance of active mining strategies on
wireless simulation data, characterizing width of the
main pocket in Fig. 10 with increasing numbers of
samples.

abilistic basis for reasoning about uncertainty in field
data, and active data mining closes the loop to opti-
mize new samples for uncertainty in field data as well
as information content relevant to high-level structures.
Entropy-based sampling is suitable whenever we can de-
fine information-theoretic functionals over spatial aggre-
gates. In this paper, we have primarily focused on char-
acterizing region boundaries, but this same strategy is
applicable to any case where we expect locations with
spatial proximity but informational impurity, e.g., iden-
tifying breaks and fissures in volumetric data, picking
outliers from geographical maps, and detecting viola-
tions of coherence in spatio-temporal datasets.

There are several extensions to the work presented
here. First, our assumption of sampling over a de-
fined grid can be relaxed and the scope of active min-
ing can be expanded to include subsampling. Second,
the modeling of vector fields using GPs warrants fur-
ther investigation, in particular to address the issue of
how to model data fields given only (or also) deriva-
tive information or when the underlying function is not
smooth or differentiable. Other investigators have done
related work in this area [6]. Third, we assume here
that the model (of flow classes) posited by SAL is cor-
rect, and use this information to drive the sampling.
To overcome this assumption, we must create a proba-
bilistic model of SAL’s computations (including uncer-
tainty and non-determinism in aggregation procedures)
and integrate this model with the GP model for the
data fields. Instantiating SAL to popular spatial mining
algorithms investigated in the data mining community
(e.g. [15, 20]) and applying them in an active mining
context is a final direction we are pursuing. These and
similar ideas will help establish the many ways in which
mathematical models of data approximation can be in-
tegrated with data mining algorithms.
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[21] I. Ordóñez and F. Zhao. STA: Spatio-Temporal Ag-
gregation with Applications to Analysis of Diffusion-
Reaction Phenomena. In Proc. AAAI, pages 517–523,
2000.

[22] N. Ramakrishnan and C. Bailey-Kellogg. Sam-
pling Strategies for Mining in Data-Scarce Domains.
IEEE/AIP CiSE, Vol. 4(4):pages 31–43, 2002.

[23] N. Ramakrishnan and C. Bailey-Kellogg. Gaussian
Process Models of Spatial Aggregation Algorithms. In
Proc. IJCAI, pages 1045–1051, 2003.

[24] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn.
Design and Analysis of Computer Experiments. Sta-
tistical Science, Vol. 4(4):pages 409–435, 1989.

[25] S. Tong and D. Koller. Support Vector Machine Ac-
tive Learning with Applications to Text Classification.
Journal of Machine Learning Research, Vol. 2:pages
45–66, 2001.

[26] A. Verstak et al. Using Hierarchical Data Mining to
Characterize Performance of Wireless System Configu-
rations. Technical Report cs.CE/0208040, CoRR, Aug
2002.

[27] C.K.I. Williams. Prediction with Gaussian Processes:
From Linear Regression to Linear Prediction and Be-
yond. In M.I. Jordan, editor, Learning in Graphical
Models, pages 599–621. MIT Press, Cambridge, MA,
1998.

[28] K.M. Yip and F. Zhao. Spatial Aggregation: Theory
and Applications. JAIR, Vol. 5:pages 1–26, 1996.

[29] K.M. Yip, F. Zhao, and E. Sacks. Imagistic Reasoning.
ACM Computing Surveys, Vol. 27(3):pages 363–365,
1995.

[30] F. Zhao, C. Bailey-Kellogg, and M.P.J. Fromherz.
Physics-Based Encapsulation in Embedded Software
for Distributed Sensing and Control Applications. Pro-
ceedings of the IEEE, 91:40–63, 2003.


