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Abstract

Non-intrusive appliance load monitoring has emerged as an
attractive approach to study energy consumption patterns
without instrumenting every device in a building. The ensu-
ing computational problem is to disaggregate total energy us-
age into usage by specific devices, to gain insight into con-
sumption patterns. We exploit the temporal ordering implicit
in on/off events of devices to uncover motifs (episodes) cor-
responding to the operation of individual devices. Extracted
motifs are then subjected to a sequence of constraint checks
to ensure that the resulting episodes are interpretable. Our
results reveal that motif mining is adept at distinguishing
devices with multiple power levels and at disentangling the
combinatorial operation of devices. With suitably configured
processing steps, we demonstrate the applicability of our
method to both residential and commercial buildings.

Introduction
As the saying goes, sustainability begins at home. Greater
than ever before, there is now a significant interest in re-
ducing household energy footprints by providing consumers
with detailed feedback on their energy consumption pat-
terns. By contrasting such ‘drill-down’ data with neighbor-
hood profiles, consumers can make better informed deci-
sions about how their daily activities impact the environment
as well as their bottom line.

A key step in this endeavor is energy disaggregation. This
is the task of, non-intrusively, monitoring aggregate energy
usage (electricity, water) at a home/unit and separating it
out into individual appliances, subunits, and other spatial di-
mensions automatically, using machine learning methods.
A variety of methods have been proposed, e.g., factorial
HMMs (Kim et al. 2010) and sparse coding (Kolter and
Jaakkola 2012) but the increasing diversity of appliances to
be accommodated and the spatio-temporal coherence prop-
erties that must be modeled provides continuing opportuni-
ties for algorithm innovation.

Here we propose a temporal motif mining approach
(see (Chiu, Keogh, and Lonardi 2003; Yankov et al. 2007)
for background) to energy disaggregation. We specifically
focus on low-frequency measurements since those can be
obtained from smart meters and aim to characterize stable
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power consumption events, in contrast to transients. The
basic idea is to discover the minimal episode which corre-
sponds to a complete state-change cycle by a device or part
of a device. Unlike state-of-the-art probabilistic methods
that posit detailed temporal relationships and involve com-
plex inference steps, we argue that our method is lightweight
and, at the same time, capable of accuracy levels better than
or comparable to these more complex methods. Using this
approach, we conduct a thorough experimental investiga-
tion of our method on a residential dataset (REDD (Kolter
and Johnson 2011) as well as a commercial dataset, demon-
strating the ability of our approach to disaggregate different
classes of electrical loads.

Background

Residential vs commercial buildings. There are signifi-
cant differences between residential and commercial disag-
gregation problems. First, the number of devices is one to
two orders of magnitude larger in commercial buildings. Al-
though disaggragation of all devices is not feasible in com-
mercial buildings, we can disaggregate branches of the elec-
trical infrastructure resulting in a drastic reduction in the
number of meters required to monitor loads. The electrical
infrastructure in residences and commercial buildings also
differs. The former have low voltage levels (e.g., 110V or
220V) and two phase circuits while the latter have three-
phase, high voltage lines coming from the utility which feed
a hierarchical electrical infrastructure in the building. Heavy
duty equipment such as chillers, blowers, pumps, elevators,
etc., use three-phase power, which is then split into two
phases and stepped down for lighting and plug loads. Res-
idences typically receive two-phase power from the utility,
as shown in Fig. 1. Each phase connects to many circuits
and in turn each circuit has one or more devices that draw
power from it. Devices in residences usually consist of mi-
crowaves, refrigerators, ovens, lights, washers/dryers, and
air conditioners. Some devices such as washers/dryers typi-
cally connect to both phases. Compared to residences, there
is more automation in commercial buildings, e.g., blowers,
pumps, lights and other devices are controlled by a build-
ing management system (BMS) and turn on/off at scheduled
times. Most of the past research in disaggregation pertains
to residential buildings.
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Figure 1: A residential setup for data collection.
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Figure 2: Steady state transitions and transient features at
startup.

High frequency vs low frequency sampling. High fre-
quency sampling, typically at the rate of hundreds to thou-
sands of Hz, can reveal transients in the electrical signal
which can then be used as features for disaggregation. How-
ever, customized HW usually needs to be installed to sam-
ple at such high rates. Low frequency sampling, typically at
rates of 1Hz or below, can be obtained from smart meters,
which are being deployed in increasing numbers by utilities
worldwide.

Multiple states and transients. The device to power state
mapping is not one-to-one. A given device might involve
multiple power states as shown in Fig. 2 (left). For in-
stance, a washer/dryer might function at a fixed power level
of 1700W but later change levels based on its workload.
Further, as shown in Fig. 2 (right), before the refrigerator
reaches a stable state, a transient is observed and, after a pe-
riod of time, the power consumption stabilizes to a certain
level.
Energy disaggregation. Energy disaggregation, initially
proposed by (Hart 1992), records only the power at the main
entry or several points of a building, and aims to deduce the
power consumption of devices in the building over a period
of time through analysis of the aggregate. Fig. 3 gives an
example of energy disaggregation where a total power time
series is disaggregated into fourteen devices over a period of
time (here, 8am to 12 noon). For instance, note that it has
been deduced that the refrigerator (in purple) is switched
on for three periods of time, namely, 8:50am to 9:05am,
10:15am to 10:40am, and 11:50am to 12:05pm.
Challenges. The field of disaggregation has over the last
twenty years developed many practical solutions drawing
primarily from the field of electrical engineering. However,
many challenges remain, including lack of knowledge about
the number of power levels of each device, uncertainty about
the number of steady states for a given device (e.g., a mi-
crowave oven can operate in states of defrost, heat with
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Figure 3: Example of energy disaggregation.

low power, or with high power), multiple devices exhibit-
ing the same power level (e.g., lights and monitors), concur-
rent switchings on/off of multiple devices (e.g., printers and
PCs), distinguishing start up transients from steady state lev-
els (the former could persist for significant periods in time
in commercial buildings), variable speed devices that show
continuous power levels, and rare operation of some devices
(because they are seldom operated by humans). These chal-
lenges are aggravated in commercial buildings (Norford and
Leeb 1996) compared to residential buildings.
Features from meters. Let us first review the type of fea-
tures discernible from metered usage data. From low fre-
quency measurements, it is possible to infer features such as
steady states, real power, reactive power, low-order harmon-
ics, and the time of day. From high frequency measurements,
in addition, we will be able to discern characteristics such
as higher-order harmonics and the current or voltage wave-
form. In addition, from high frequency data, it is possible to
discern transient states.
Prior approaches to disaggregation. Initial research fo-
cused on using simple device features such as real power and
reactive power (Hart 1992). With the development of auto-
mated meters, transient states generated when devices turn
on have been employed to identify devices (Shaw 2000).
Raw current waveforms (Srinivasan, Ng, and Liew 2006),
and voltage waveforms (Lam, Fung, and Lee 2007), and
transforms of the current waveform (Chan, So, and Lai
2000) have also been adopted as characteristics. In partic-
ular, harmonics of non-linear devices have been utilized
in prior work (Chan, So, and Lai 2000). Further, non-AC
power features such as power line noises (Patel et al. 2007),
time of day and device correlations (Kim et al. 2010), can
be combined with AC power features to aid disaggrega-
tion. The underlying algorithms have been drawn from a
variety of domains: supervised learning (Nakano and Mu-
rata 2007), data mining, optimization, and signal processing,
e.g., kNN (Shaw 2000), SVM (Patel et al. 2007), sparse cod-
ing (Kolter, Batra, and Ng 2010). Recent research has placed
a great emphasis on building in unsupervised learning fea-
tures, including hierarchical clustering (Lam, Fung, and Lee
2007), semi-supervised approaches (Parson et al. 2012), fac-
torial HMMs (Kim et al. 2010), and AFAMAP (Kolter and
Jaakkola 2012).

Temporal Motif Mining
Early approaches to disaggregation (e.g., Hart(Hart 1992))
assume that only the aggregated current and voltage infor-
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Figure 4: Temporal motif mining framework for disaggrega-
tion.

mation is known whereas later work assumes that the num-
ber of devices, possible steady states of devices are also
known, so that the problem reduces to minimizing the error
between the combination of disaggregated devices and the
ground truth devices. Here, we assume that the number of
devices/number of circuits is known, a reasonable assump-
tion since such information is obtainable from a top-level
circuit map of the building.

Our framework (see Fig. 4) unifies clustering and tem-
poral data mining to discover power levels, forms episodes
from power levels corresponding to devices, and models the
underlying time series as a mixture model whose compo-
nents correspond to the device episodes. The framework has
six key stages, viz. baseline removal, steady states extrac-
tion, episode mining and selection, probabilistic sequential
mining, motif mining or time-based motif mining, and de-
vice recovery. Gray box in Fig. 4 denotes that the step can
be neglected (and are typically used when disaggregating for
commercial buildings).
Baseline extraction. Baseline removal aims to separate
devices that are always on. Given the aggregated (input)
power series P (t) over time period T , the baseline power
Pbase is defined such that Pbase ≥ mint P (t) and where
f(Pbase) ≥ αT (a minimum support threshold).

Steady state extraction. Two basic approaches here in-
volve a heuristic method (window-sized filtering) and the
more systematic Dirichlet process Gaussian mixture mod-
els (DPGMMs) (Görür and Rasmussen 2010). In the for-
mer, a mean filter smoothing is typically applied whose win-
dow size is adjusted to correspond to the mean or maxi-
mal start time duration in the given collection of devices
(e.g., this could be just a second in the case of lighting, but
higher for say a refrigerator). A DPGMM can be viewed
as an infinite-mixture extension of a traditional Gaussian
mixture model (GMM). Recall that in a traditional GMM,
y = Σk

i=1αiN(µi,Σi) where Σiαi = 1, and each compo-
nent has a mean µi and covariance matrix Σi. A DPGMM
defines Gaussian priors for all the component means µj :

p(µj |λ, r) ∼ N(λ, r−1)

The distribution of λ is set to be a Gaussian prior and the dis-
tribution of r is set to have a Gamma prior, so that the num-
ber of points in each component i conforms to a multinomial
distribution with an unknown number of components. After
modeling all the power levels in this manner, we replace all

values with their representative (nearest centroid) power lev-
els, record only the differences in successive power levels,
and use this ‘diffs’ time series for further modeling.
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Figure 5: Mining episodes from a symbolic time series.

Episode mining and selection. The goal of episode min-
ing (Patnaik et al. 2009) is to identify repetitive sequences
of power level changes and, further, to isolate (select) those
episodes that potentially correspond to the operation of a
single device. Recall that at this point, we have generated
a symbolized time series from the ‘diffs’ data. Let the set of
symbols be S. From the diffs sequence, the transitions be-
tween symbols are recorded to help constitute episodes. We
set the max episode length to be N, corresponding to the N-1
states of a device. Then all the symbols in the symbol set are
permuted with length from 2 to N. As a result, all possible
episodes with length from 2 to N are generated. To select
valid episodes, some constraints checks are performed.

First, steady state values extracted from the previ-
ous step are clustered into a discrete symbol time
series and transitions between symbols are recorded
to identify episodes. Fig. 5 describes how transition
events are generated, resulting in the event series:
(e1, e2, e1, e2, e4, e5, e4, e6, e1, e2, e4, e5, e1, e7, e8, e1). An
episode of length N , E = (e1 → e2 → ...eN ), denotes an
ordered sequence of (not necessarily consecutive) symbols.
To select those episodes that correspond to characteristics of
an electrical device, several constraints are introduced:

1. The sum of the power level changes corresponding to the
events of a episode is nearly zero. Fig. 2 (left) shows an
example, where there are two complete episodes for a
washer-dryer: (+1700, -1700) and (+1700, +800, -2250,
-250).

2. The sum of the power level changes corresponding to any
prefix of a episode is positive. This constraint is particu-
larly geared toward multiple state devices. Fig 6 shows
two examples of episode selection based on this con-
straint The episode (+100,-100) is retained but the episode
(-100,+100) is discarded. As another example, episode
(+600, -400, +1000) is chosen and episode (+600, -1000,
+400) is discarded. Note that this assumes there are no
always on devices.



Figure 7: Illustration of motif mining. Note that there are 3
non-overlapped occurrences of Episode 3.

Figure 6: Episode constraints.

3. The absolute value of the power level of any event in an
episode related to a device must be higher than a sup-
port threshold over the maximum level in the episode.
In other words, power state changes in a device are as-
sumed to be greater than a support threshold. This con-
dition is intended to exclude cases where the low power
consumption of one device inadvertently forms part of
the episode of a high power consumption device. For
instance, using a support threshold of 0.1, the episode
(1000,−850,−90) will get disqualified (because 90 <
100) since this episode is likely generated by more than
one device, rather than a single device.

Probabilistic sequential mining. This step aims to dis-
cover devices that exhibit several power levels sequentially
and which operate frequently within a very short period of
time. We use sequential mining (Agrawal and Srikant 1995),
a levelwise framework, with duration constraints to discover
such devices. We begin by seeking episodes that satisfy the
above three checks and which can be systematically grown
into longer chains of power level changes within a user-
specified window.

Devices in commercial buildings are often scheduled to
turn on/off at fixed time. Therefore, we cluster power lev-
els according to time of day and day of week. We apply hi-
erarchical clustering with Ward Euclidean distance to diffs
of power levels. As a result, each set of power level diffs
that qualifies the three constraints are chosen. For example, a
cluster can identify a power level diff set S = {e1, e2, ...en}
belonging to a single device.

Regarding probabilistic sequential mining, a coverage
probability θ, say 0.9, is introduced to determine what per-
cent of power levels should be covered for each device.
Probabilistic sequential mining only considers the coverage
of power levels rather than the sequence of power levels as
motif mining.

Motif mining. Motif mining aims to find repeti-
tive episodes in a time series using the technique
of non-overlapped occurrences (Laxman, Tankasali,
and White 2008). Assume there are five power
event change symbols {e1, ..., e5} and a time series
(e1, e2, e3, e1, e4, e2, e1, e1, e4, e5, e2) which is produced

by these five symbols as shown in Fig. 7. Consider the
episode Episode 3, composed of two ordered events (e1, e2).
In this time series, there are four e1 and three e2 occur-
rences, and three instance of Episode 3. The first e1 and first
e2 comprise the first instance of Episode 3. The second e1
and second e2 make up of the second instance of Episode 3.
The third instance is composed of the fourth e1 and the third
e2. Other possible instances of Episode 3 which may cause
overlaps with the above instances are not considered in
the non-overlapped count measure, such as (e1, e2) which
consists of the first e1 and the second e2. With this count
measure, all episodes that have support greater than the
specified threshold are discovered by motif mining. For
commercial buildings that have scheduled on/off devices,
we adopt a time-constrained version of non-overlapped
count, where the episode growth is restricted to events that
fall within a specified time window.

Computational complexity Assume m is the number of
power levels in the ‘diffs’ data. Then the computational com-
plexity of DPGMM isO(mnd2+md3), where n is the num-
ber of points in diffs data, and d is the number of feature
dimensions (e.g., time, date). The computational complex-
ity for the episode generation step is (p − 1)O(m2), where
p is the maximal episodes length. Since p, which is 3, and
m, which is 14 or 27, are small, we apply a brute force ap-
proach. The worst-case time complexity of the motif min-
ing algorithm is O(msq), where q is number of candidate
episodes, and s is the size of the episode.

Parameters There are three kind of parameters used: (1)
those pertaining to power level generation, (2) threshold for
moitif mining, and (3) window size for median filtering. For
each of these, a range of values were tried and their values
were set based on performance on a test set.

Evaluation
We use precision, recall and F-measures in our evaluation.
The standard definition of these metrics are: precision =

TP
TP+FP , recall = TP

TP+FN , F-measure = 1
1

precision + 1
recall

We need to define the notions of true/false positives and
negatives in the context of disaggregation.

Now suppose there is a ground truth time series X with
length T; denote the corresponding disaggregated time se-
ries byX∗. For any time t ∈ (0, T ), there are two values: the
ground truth valueXi(t) and the disaggregated valueX∗

i (t).
We define a parameter ρ for the range of true values Xi(t)
and another parameter θ as the noise. For any given measure-
ment, there are four total power values at each point: true
positive ΨTPi, false negative ΨFNi, true negative ΨTNi,
and false positive ΨFPi.
1. When Xi(t) > θ and X∗

i (t) > θ, at this point the dis-
aggregation is a true positive. There are three situations in
turn:
1.1. WhenXi(t)× (1−ρ) < X∗

i (t) < Xi(t)× (1+ρ), then

ΨTPi = X∗
i (t)

ΨFNi = ΨFPi = ΨTNi = 0



1.2. When X∗
i (t) < Xi(t) × (1 − ρ) , then only the disag-

gregated power is considered as true positive and the power
that is not disaggregated is regarded as a false negative:

ΨTPi = X∗
i (t)

ΨFNi = Xi(t)−X∗
i (t)

ΨFPi = ΨTNi = 0

1.3 When X∗
i (t) > Xi(t)× (1 + ρ), then the disaggregated

power is a true positive, and those values which are greater
than the truth values are treated as false positive.

ΨTPi = X∗
i (t)

ΨFPi = X∗
i (t)−Xi(t)

ΨFNi = ΨTNi = 0

2. When Xi(t) > θ and X∗
i (t) < θ, at this point the disag-

gregation is a false positive. Then,

ΨFPi = Xi(t)
ΨTPi = ΨFNi = ΨTNi = 0

3. When Xi(t) < θ and X∗
i (t) > θ, at this point the disag-

gregation is a false negative. Then,

ΨFNi = Xi(t)
ΨTPi = ΨFPi = ΨTNi = 0

4. When Xi(t) < θ and X∗
i (t) < θ, at this point the disag-

gregation is a true negative. Then,

ΨTPi = ΨFNi = ΨFPi = ΨTNi = 0

For the REDD dataset which features a maximal power level
of 4000W, we use θ = 30 and ρ = 0.2.

Experiments on REDD dataset
We conduct experiments on the low frequency data from
the REDD (Kolter and Johnson 2011) dataset. We focus
on ‘House 1’ since it has the most complete information
(for validation purposes) and because it features 18 devices,
providing a good test for our algorithm. The sampling fre-
quency of both the mains is 1s and that of each circuit is 3s.
The power consumption for devices in this dataset ranges
from 50W to 4000W.

Disaggregation experiments
Knowing the ground truth, we synthesize aggregate data
with different combinations of devices/circuits and evaluate
our algorithm by disaggregating the combined data into the
constituent devices. Fig.8 (a),(b),(c) show the plots of preci-
sion, recall, and F-measure values for 14 devices. For each
device the number of aggregate devices was increased from
2 to 11. Since for k devices, there are 14Ck−1 possible com-
binations for each device, the results show the average over
all the combinations. In cases where number of such com-
binations exceeded 100, 100 combinations were randomly
sampled and averaged. Fig. 8(d) plots the power-weighted
precision, recall and F-measure for these cases.

From Fig. 8(a), we can see that devices that are used
frequently (both consuming low and high power), such

as oven2 (4000W), microwave (1527W), kitchen out-
let1 (1076W) (kOutlet1), washdryer2 (2712W), refrigera-
tor(193W) and light1(64W) exhibit a stable precision level
(above 0.7) even with increase in number of devices.

In contrast, devices such as kOutlet2 (1535W) (kitchen-
outlet2), that share similar power levels with microwave
(1527W) and bathroomgfi (1605W) show greater precision
drops with increase in number of synthesized devices. How-
ever, the more frequently such devices are used, the greater
the precision level.

As Fig. 8 (c) shows, devices with higher power or fre-
quent use can be disaggregated well by motif mining. If a
low power consumption device is prone to be influenced by
high power devices, identification depends on the devices
masking it; ultimately frequency of use helps disambiguate
such situations. Finally, as Fig. 8 (d) shows, precision, recall
and F-measure decrease only slightly with increase in the
synthesized number of devices. This shows that power lev-
els of devices play a key role in determining accurate disag-
gregation. When true power levels are supplied, the average
precision, recall and F-measure of motif mining fare slightly
better than AFAMAP.

Comparison of Motif Mining and AFAMAP
Next, we conduct experiments comparing our approach with
the AFAMAP algorithm (Kolter and Jaakkola 2012), and
also develop a method that combines motif mining and
AFAMAP. Unlike motif mining, AFAMAP requires the
power levels of each device; when running AFAMAP sepa-
rately, we use the ground truth power levels for each device.
When using AFAMAP in conjunction with motif mining, we
use the power levels from generated episodes as an input to
AFAMAP. Table 1 lists the results of the comparison.

In all, there are 18 devices but 4 of them are seldom
used; and, thus the remaining 14 devices can be disaggre-
gated by these three methods. For high power consumption
devices, such as oven1&2, bathroom gfi, kitchen outlet1,
kitchen outlet2 and washdryer2, motif mining performs
much better than AFAMAP even when AFAMAP is sup-
plied with the ground truth power levels. For some of the
low power consumption devices (such as light1), AFAMAP
performs better. For high frequency devices, such as the re-
frigerator, motif mining performs much better.

Furthermore, by integrating motif mining and AFAMAP,
we see the performance is much better than the individual
algorithms on multiple state devices such as dishwasher and
light3. Since the power level of light3 is low, the perfor-
mance of the integrated method is better than using only
motif mining.

Commercial Building Dataset
We applied our framework to a dataset from a commercial
building (from HP Labs’ campus in Palo Alto, CA). Data
was collected from a branch in the electrical infrastructure
of a large building and is composed of a root (aggregate)
node and seven child nodes. Although all the nodes are in-
strumented with meters, we assume only the root and two
of the child nodes, a transformer and a sub-panel, are avail-
able. The remaining five child nodes are devices that need to
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Figure 8: We increase the number of synthesized circuits from 2 to 11 and calculate performance measures for disaggregation
of each device. (a) Precision (b) Recall (c) F-measure (d) The precision, recall and F-measure of all the devices are combined
weighed by their average power levels.

Table 1: Comparing Motif mining against AFAMAP on the REDD dataset.

device True
Power
(W)

Motif mining AFAMAP (true power levels supplied) Motif mining & AFAMAP

Precision Recall F-Measure Precision Recalll F-Measure Precision Recall FMeasure
oven1&2 4000 0.9297 0.5209 0.6677 0.4902 0.6750 0.5680 0.4008 0.6708 0.5018
refrigerator 193 0.9759 0.7368 0.8396 0.8825 0.3329 0.4834 0.7791 0.5433 0.6402
dishwasher 1113;

900;
400;
200

0.9786 0.2858 0.4423 0.062 0.4104 0.1077 0.5337 0.7431 0.6213

kOutlets3 100;
60

0.1487 0.0318 0.0524 0.6928 0.0439 0.0825 0.467 0.2892 0.3572

light3 282;
90

0.5768 0.1349 0.2187 0.4396 0.023 0.043 0.5519 0.1973 0.2907

washdryer1 466;
50

0.1789 0.1236 0.1462 0.3621 0.5401 0.4336 0.1703 0.6349 0.2686

microwave 1527 0.8035 0.3799 0.5158 0.5909 0.2907 0.3897 0.4512 0.3741 0.4090
bathroomgfi 1605 0.5199 0.6815 0.5898 0.2642 0.7551 0.3915 0.1075 0.406 0.1700
kOutlet1 1076 0.9320 0.6997 0.7993 0.21 0.7313 0.3264 0.2636 0.6394 0.3733
kOutlet 2 1535 0.2233 0.6261 0.3292 0.1153 0.2821 0.1637 0.0234 0.0826 0.0365
light1 64 0.6199 0.1963 0.2981 0.7972 0.0796 0.1447 0.667 0.1759 0.2784
light2 53 0.2603 0.1404 0.1824 0.6658 0.0817 0.1455 0.446 0.2776 0.3422
washdryer2 2711 0.9563 0.8305 0.889 0.7516 0.4237 0.5419 0.6427 0.3301 0.4361

be disaggregated. These are: a pump, a fan, an exhaust fan,
a blower, and an elevator. The real power of all nodes are

logged at intervals of 10 seconds. Using ground truth data,
we combine all five to synthesize the aggregated data.



Table 2: Evaluation measures for commercial building dis-
aggregation.

Device Precision Recall F–measure
Pump and blower 0.99 0.99 0.99
Fan 0.99 0.99 0.99
Elevator 0.75 0.52 0.61

After the processing steps as described in our framework,
we find five power levels that often occur in a range of just
around 1 minute. Therefore we set the window size to 60
seconds and apply probabilistic sequential mining using a
probability of 0.8 (as described earlier). The precision and
recall for extracting individual devices is shown in Table 2.

In analyzing these results, we discover that the baseline
power is constituted of two devices, namely, the pump and
the blower. The elevator shows a sequential episode involv-
ing six power levels. The scheduled device is a fan. The only
un-disaggregated device in our experiments is the exhaust
fan which has very low power consumption compared to
others and thus can be disregarded.

Discussion
We have described an intuitive motif-based approach to dis-
aggregation that performs well relative to more complex al-
gorithms that perform detailed modeling of temporal pro-
files. More importantly, we have demonstrated how our ap-
proach is not just an aid to disaggregation but, as a byprod-
uct, also extracts temporal episodic relationships that shed
insight into consumption patterns. In this sense, our work
goes further than past work into addressing the real goal of
disaggregation research, namely, to understand systematic
trends in consumption patterns with a view toward identify-
ing opportunities for savings.
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