
The Deshredder: A Visual Analytic Approach
to Reconstructing Shredded Documents

Patrick Butler∗ Prithwish Chakraborty† Naren Ramakrishan‡

Department of Computer Science and Discovery Analytics Center, Virginia Tech, Blacksburg, VA 24061

Figure 1: Overview of Deshredder. (Left) original document; (Middle) Document shreds to be reconstructed and preview of matchings
identified by Deshredder; (Right) image reconstructed from the shredded pieces. Some parts of the figure courtesy of [1].

ABSTRACT

Reconstruction of shredded documents remains a significant chal-
lenge. Creating a better document reconstruction system enables not
just recovery of information accidentally lost but also understand-
ing our limitations against adversaries’ attempts to gain access to
information. Existing approaches to reconstructing shredded docu-
ments adopt either a predominantly manual (e.g., crowd-sourcing) or
a near automatic approach. We describe Deshredder, a visual ana-
lytic approach that scales well and effectively incorporates user input
to direct the reconstruction process. Deshredder represents shredded
pieces as time series and uses nearest neighbor matching techniques
that enable matching both the contours of shredded pieces as well
as the content of shreds themselves. More importantly, Deshred-
der’s interface support visual analytics through user interaction with
similarity matrices as well as higher level assembly through more
complex stitching functions. We identify a functional task taxonomy
leading to design considerations for constructing deshredding solu-
tions, and describe how Deshredder applies to problems from the
DARPA Shredder Challenge through expert evaluations.

Index Terms: I.7.5 [Document and Text Processing]: Document
Capture—Graphics recognition and interpretation; I.4.7 [Image Pro-
cessing and Computer Vistion]: Feature Representation—; H.5 [In-
formation Interfaces and Presentation]: User Interfaces—Graphical

∗e-mail: pabutler@vt.edu
†e-mail:prithwi@vt.edu
‡e-mail:naren@cs.vt.edu

user interfaces (GUI)

1 INTRODUCTION

Putting back shredded pieces of documents into a whole is an im-
portant problem in many domains, such as intelligence, security in-
formatics, health informatics, and insurance claim analysis. Engi-
neering a better document reconstruction system enables not just re-
covery of information accidentally lost but also understanding our
limitations against adversaries’ attempts to gain access to informa-
tion. Because significant domain knowledge can be exploited in the
reconstruction process, human input is crucial. At the same time, the
scale at which shreds have to be processed necessitates automated
algorithmic support. It is hence natural to view deshredding as a
visual analytics problem where human judgment and automated al-
gorithmic assistance can be fruitfully combined.

However, designing a semi-automatic deshredding system is quite
a challenge. A range of research problems manifest, from the need to
address imperfections caused by the actual shredding process, to de-
signing best algorithmic strategies for matching shreds, to supporting
novel problem solving strategies for human users. The span of back-
grounds from which techniques have to be drawn is also broad: im-
age matching, computer vision, and picture reconstruction, to name
a few. Here, we present a systematic pipeline of processing stages
that address practical issues in analyzing shredded pieces and also
provides significant leverage to users in directing the reconstruction
process.

We present Deshredder, a visual analytic framework for recon-
structing shredded documents. Our specific contributions are:

1. A novel time series approach to represent shreds that enable
matching both the contours of shredded pieces as well as the
content of shreds themselves.



2. Interfaces that support both matching shreds through interac-
tion with similarity matrices as well as higher level assembly
through more complex stitching functions.

3. Evaluations with two expert users that successfully illustrate
both the capabilities of Deshredder and also reveal different
problem solving strategies of users.

2 BACKGROUND AND DESIGN CONSIDERATIONS

2.1 DARPA Shredder Challenge

The DARPA Shredder Challenge [1] can be credited with the re-
cent spurt of interest in the deshredding problem. This was a contest
where participants were required to re-assemble five sets of shredded
documents, with increasing levels of difficulty, and answer specific
questions that pertain to the contents of the documents. Different
teams adopted widely varying strategies and it is instructive to re-
view these strategies. Interaction with these winning teams enabled
us to understand the strategies of those that were placed first, second,
third, fifth, and sixth (strategies of the fourth wasn’t available.)

The winning solution (‘All Your Shreds Are Belong To U.S.’) used
a custom-coded computer vision algorithm that suggested fragment
pairings to human assemblers for verification [1]. Among other tech-
niques, the team employed a scoring mechanism to evaluate their
matching algorithm [10]. Also, the team found repeating patterns of
yellow dots which, according to the team, were a characteristic of
the problem set and used the dots to guide the shred matching stage.

Similar ideas were adopted by the second (’Shroddon’), third
(‘wasabi’) and fifth (‘mmbd’) placed teams. The ’Shroddon’ team
also noted that the shredders can shear the papers in depth, and used
this information in their final solution [10]. In addition the team
searched for the most probable character that can follow the set of
characters recognized by the human eye, during the process of shred
assembly, through dictionary search. The ‘wasabi’ team [20] em-
ployed a number of computer vision algorithms such as image ro-
tations, trimming, and computed similarity matrices between shreds
based on a few simplifying assumptions. These matrices were based
on line connections, edge similarity, color similarity, and pen con-
nections. For the initial puzzle sets, the pieces were assembled using
picture editing software (e.g., gimp). However, according to [20] a
custom assembly tool was used for the latter problems.

An interactive query based system was used by the ‘mmbd’
team [14]. According to their public webpage [14], this team used
features such as line connectivity and stroke connectivity as the ba-
sis to connect shreds. A Google Drawing powered interactive frame-
work was next used where best possible matches for the pieces were
presented for perusal and selection by the user.

The sixth team (‘UCSD’) adopted a crowdsourcing approach [7]
that was effective at solving the first few problems. This team was
plagued by player fraudulence and the designers had to implement a
new security feature to qualify users.

2.2 Commercial Tools

The field of commercially available tools to address the deshredding
problem is surprisingly sparse. To the best of our knowledge, only
one system exists, viz. Unshredder [18]. Unshredder is primarily
targeted at traditional shredding, while our approach is applicable
to cross-cut shredding (traditional shredding cuts in one direction,
whereas cross-cut shredding yields parallelogram-shaped pieces).
From the limited information available online, this approach makes
most of its matches using computer vision algorithms, offering lim-
ited opportunities for user interaction. However, multiple users have
the ability to collaborate in solving a deshredding problem.

2.3 Functional Task Taxonomy

Before we introduce our Deshredder approach, it is helpful to cast
the above deshredding solutions along an axis that emphasizes the
‘mixing’ between automated analysis and human/visual input:

• Near-automated solutions: Unshredder.

• Backend analysis with visual front-ends: ‘All Your Shreds Are
Belong To U.S.’, ‘wasabi’ and ‘mmbd’.

• Visual analytic frameworks: Deshredder.

• Predominantly manual (e.g., crowdsourcing) approaches:
‘UCSD’.

In our visual analytic approach, we emphasize automated algo-
rithms for shred matching, the interactivity enabled by users to cri-
tique matches, and most importantly the ability to incorporate user
feedback to improve the reconstruction process. It is this closed loop
framework that sets Deshredder apart from the other solutions above.

A functional taxonomy of tasks that must be supported by a vi-
sual analytic solution involves four aspects as shown in Table 1.
Shreds can be represented in numerous ways that emphasize the
features crucial for effective matching. Deshredder uses a time se-
ries representation that aids in identifying matches quickly with low
underlying computational complexity. Second, we must decide on
the matching algorithm for comparing shreds and identifying nearest
neighbors; here we show how the use of the Chamfer distance mea-
sure enables us to expressively take multiple factors into account,
including brightness, physical shape, and color. More importantly,
it enables the ready incorporation of user feedback. Third, the strat-
egy for shred assembly can be automated to different levels. Here
we demonstrate how the use of a similarity matrix visualization en-
ables a truly visual analytic approach that can incorporate user feed-
back continually in the process to identify and discard bad matches.
This enables the user to follow different strategies of interest in re-
constructing documents, e.g., ‘go for the low hanging fruit first’
(i.e., identify easy matches and rule out other fragments based on
these matches) or a ‘toddler approach’ (i.e., identify random matches
across the board and then piece them together). Finally, higher-level
functions are crucial as the number of shreds increases. We demon-
strate the use of features such as constraint propagation, and state
capture and reuse, to enable the creation of more complex problem
solving strategies.

A comparison of Deshredder with other systems alongside some
system features is given in Table 2.

Table 1: Functional taxonomy of the deshredding process.

Shred representation – How are shreds represented?
image representations
time series

Matching algorithm – How are shreds matched?
OCR tags
pen connectivity
stroke continuity
Chamfer distance

Assembly – How are shreds assembled?
Manual assembly
Similarity matrix interaction

Workflow tools – Higher-level reconstruction
Constraint propagation
State capture and reuse

3 RELATED WORK

The design of Deshredder draws upon work from many related back-
grounds, which we survey below.
Computer Vision: Stitching images together based on overlapping
regions, i.e., panoramic stitching, is a well studied problem in the
field of computer vision [21, 8, 3]. One of the seminal works in
this field is attributed to Lowe [17]. This paper proposed SIFT (scale
invariant feature transform), an algorithm to detect and describe lo-
cal features of images, which has become one of the mainstays of
major image stitching algorithms. SIFT has been used by Brown et
al. [6] for automatic panoramic stitching. In 2006, Ward [32] pre-
sented a HDR-photography stitching algorithm and in 2010 Xiong et
al. [35] presented a mobile and faster panoramic stitching method.
A good review of the major stitching algorithms can be found in
Woeste [33]. A key lesson from these works is the choice of feature
representation and their capabilities for supporting rapid and accu-
rate stitching. In our work, significant knowledge exists in the de-
tailed shapes and content of pieces which are often non-overlapping



Table 2: Comparative analysis of capabilities of various deshredding
algorithms

Criteria D
es

h
re

d
d

er

U
n

sh
re

d
d

er

‘A
ll

Y
o

u
r

S
h

re
d

s
A

re
B

el
o

n
g

T
o

U
.S

.’

‘w
as

ab
i’

‘m
m

b
d

’

‘U
C

S
D

’

Cross-Cut
Shreds

Yes No Yes Yes Yes Yes

User Collabo-
ration

Yes Yes No N/A N/A Yes

Algorithmic
Support for
matching

Yes Yes Yes Yes Yes No

Visual Analyt-
ics

Yes No No No No No

Applicable to
Sensitive Data

Yes Yes Yes Yes Yes No

and hence we focus on capturing them in a suitable time series repre-
sentation. There have been several preliminary attempts at academic
solutions to document reconstruction, however they either deal with
large pieces [9, 25, 29], non-cross cut shreds [19], or they do not pro-
vide user guided iterative machine learning techniques [23]. Some
other approaches can be found in [15, 22, 26, 28, 30]
Motif Mining and Time Series Modeling: Concurrent to advance-
ments in image processing tools, there have been extensive research
in representing images through 1-dimensional time series and mining
motifs from these time series in order to match image objects [4, 11].
These methods work with image boundaries in general and hence do
not require overlapping regions to compare two images. Keogh et
al [16] in 2006 detailed the process of converting a 2-D shape into
a time series and matching two shapes based on the motifs discov-
ered in these time series, allowing for rotations. Yankow et al [36]
and Xi et al. [34] extend this framework further to more complex
scenarios of matching and similarity search. In 2007, Yankow et
al. [37] presented a uniform scaling approach to match differently
scaled shapes. Rakthanmanon et al. [24] matched near duplicate fig-
ures found in historical documents using a time series approach. Our
work is motivated by the above techniques but, as we will show, we
require significantly specialized pipelines to accommodate shredded
documents.
Similarity matrix interaction and visualization: Similarity matri-
ces are the underlying basis for many data mining and visual analytic
algorithms, e.g., clustering [13]. There is significant work on matrix
visualization and interaction, in general (e.g., [27]) and similarity
matrix visualization, in particular (e.g., [31]). Much of these works
are focused around problems like social network analysis, bioinfor-
matics, and network traffic. Here, we demonstrate the use of sim-
ilarity matrix visualization and interaction as a primary mechanism
for users to understand the landscape of possible shred matches and
how they can systematically prune this space to identify key shreds
that can (or cannot) form important segments in the reconstructed
image.

4 OVERVIEW

We introduce Deshredder by identifying three of its salient themes.

4.1 Representing Shapes as Time Series

The first step in Deshredder is to process the individual shreds and
extract two time series from each of these shreds. Although it might
appear unconventional to represent fragments as time series, as in-
troduced in the related work section there is precedence for such a
representation and it provides significant benefits in matching as we
shall see. The two extracted time series correspond to the left and

right side of the shreds, respectively, and closely follows the relevant
contours of the raw shreds as shown in Figure 2. Using a perfectly
vertical line as reference, the time series captures the distance of the
shred boundary from the vertical line. Subsequently, the time se-
ries are used to compute different similarity metrics between shreds
which in turn form the basis of the assembly process.

Figure 2: Extraction of left and right time series from a shred.

4.2 Visualizing and Interacting with Similarity Matrices

One of the basic interfaces available in Deshredder is the similarity
matrix interaction capability (e.g., see Fig. 4 (A)), which provides a
high level overview of the best matches between all pairs of shreds
(assuming all possible orientations). It enables the user to spot pat-
terns that occur over large sets. One such useful pattern occurs with
blank or nearly blank pieces, which are composed of primarily the
background color and therefore yield relatively good matches with
most other shreds. This can be seen by prominent rows and columns
of blue pixels in Figure 4 . The user can use this view to choose
a threshold (‘Threshold’ slider) of what equates to a good match,
and then automatically discount any pieces that have too many good
matches (‘Max Positives’ slider).

Figure 3: Four possible orientations between two shredded pieces.

4.3 Constraint Propagation via User Interaction

Constraint propagation is an important tool for reducing the number
of possible matches to the user. During the process of reconstructing
documents in the physical world humans employ constraint propaga-
tion in order to reduce the number of choices remaining. Deshredder
automatically employs several forms of constraint propagation. The
first is enabled when a user matches all possible spaces along a single



piece’s side. Deshredder then knows not to show any further matches
that include the ‘used side’ of that piece. Deshredder is also aware
of orientation possibilities (see Fig. 3). Once a match is identified,
Deshredder will remove from consideration other candidate matches
whose orientations do not align with the identified match(es). Fur-
thermore if a user matches an unoriented piece with an oriented piece
it propagates the orientation information to the unannotated piece,
leading to a cascade of simplifications, that often results in a signifi-
cant reduction to the number of matches that a user must consider.

4.4 Example workflow

An example of a typical work flow of a user is provided in Figure 4.
A user’s attention typically focuses on only a few shreds. At the
start, it is important to be able to quickly sort through the difficult
or uninteresting pieces to find the easiest pieces to match – this is
analogous to focusing first on the border pieces in a jigsaw puzzle.
In step A of Fig. 4 the user is presented with all possible matches
and a visualization of the similarity matrix with known constraints
resulting from the chosen match algorithm. As mentioned before,
one of the largest sources of false positives is due to the presence of
blank pieces that are seemingly good matches to many other pieces.
In Deshredder, the user can observe these pieces as creating long
rows and columns of blue pixels in the visualization. The user sets
the threshold slider and the max positives slider to first decide what
makes a good match and then discounts any piece that matches with
too many other pieces. In step B, we see the results of discount-
ing these pieces in the similarity matrix, where invalid matches are
marked in black and the corresponding matches shown in red. In
step C, the user annotates the orientation of several pieces, which
has the result of updating the constraints (notice the greater presence
of black lines in the similarity matrix view). When the orientations
of both pieces in a possible match are known, it allows us to remove
two out of four possible matches between the two shreds (see Fig. 3).
(When the orientation as well as the match is confirmed, it allows us
to remove three out of the four possible matches.) These prunings
enable the removal of displayed matches that have incompatible ori-
entations. this removes one of the matches displayed because the
match represents two pieces with incompatible orientations. In step
D, the user confirms two matches which involve the right side of the
shred containing ‘V’. This further constrains any matches that might
aim to match that side of the shred, but not ones that use the left side
of that shred. Furthermore, the orientation annotation is propagated
to matched pieces, which again reduces the number of pieces under
consideration. In step E, the user confirms two more matches which
again propagate their orientations to other pieces, as well as serving
to remove matches that overlap the confirmed matches. In step F,
the user returns to the overview display to observe the fruit of his
interactions.

5 DESHREDDER IN DETAIL

The overall algorithmic pipeline of Deshredder is given in Figure 5.
Deshredder takes as input a single image containing all the shreds
from the original document. Then using computer vision algorithms
outlined below we separate each shred into a single image, and apply
a straightening algorithm to guarantee that each shred has a known
orientation. Next, we apply a feature matching technique to find
the best matches between each pairwise set of shreds. The features
can be based on shape, brightness, or a particular color. This in-
formation is then used in the Deshredder interface where a user is
presented with the best of matches for a given shred, and visualiza-
tion of the similarity to see overall progress and to help weed out
unhelpful shreds. The user can then choose the correct matches and
further eliminate possibilities by annotating the shreds with a correct
orientation. Deshredder takes the verified matches and orientation
information and performs constraint propagation to further eliminate
potential matches. If the users wishes, at any time they can change
the features to match on, either focusing on a color using the color
selector or choosing shape, or brightness. These steps are repeated
until the original document is reconstructed. More details are pro-
vided below. We now detail each of the stages below.

Figure 4: An example Deshredder session of interacting with sim-
ilarity matrices and propagating identified matches to reconstruct a
shredded document.

5.1 Segmentation, Filtering, and Straightening

To begin the reassembly, the first step is to typically place all pieces
face down on a scanner and then algorithmically separate them from



Figure 5: The pipeline of the Deshredder algorithm and user interface.

the background. A noise filtering step accounts for many shred de-
fects such as non-straight cuts, bleaching, tearing, and crumpling.
This step involves discounting areas near the top and bottom of the
edges, and considering an average value of colors near the edges to
account for degradations.

(a) (b)

Figure 6: Two methods for determining the correct shred orientation.
(a) Maximizing the number of edge pixels. (b) Minimizing the least
squares deviation of the edges of the shred. The arrows represent the
deviation from vertical.

If it is assumed that the shreds are cut into strips which are taller
than they are wider and relatively straight, pieces, there are several
simplifying assumptions to help determine the correct orientation.
One team (‘wasabi’; [20]) in the DARPA Challenge noted that in
a perfect rectangle, a correctly oriented shred will have a maximum
number of edge pixels oriented along a single vertical line. In prac-
tice, however, this is not the case because each piece is not perfectly
cut, some cuts can be slightly curved, some may have mangled cuts,
and these could lead to errors in using this metric. Instead we build
a vertical edge time series as mentioned earlier, in Fig. 2.

Definition 1. A Vertical Edge Time Series is a time series V (y) in-
dexed by row and gives the distance from the left-most or right-most
pixel from a perfectly vertical line. For each shred there exists a ver-
tical edge time series for the left and for the right-hand sides (Vl(y)

and Vr(y) respectively).

An image that is well oriented should seek to minimize the aver-
age distance between each edge pixel and a vertical line. Therefore
in finding the correct orientation for each shred we seek to find the
optimum θ

∗ such that:

θ
∗ = argmin

θ

(V (y)−E)2

where E is the average location of the vertical edge that we are trying
to orient (Note that V (y) is implicitly a function of θ ).

In Figure 7, we study the performance of this approach for Puz-
zle 1 of the DARPA Shredder Challenge. We can see that our ori-
entation approach performs with ≤ 2% error for the vast majority
of shreds; the greater errors are predominantly confined to shreds
that are not completely separated from their neighbors. The visual
analytics approach described later brings in crucial user input that
alleviates some of these outlier cases.

Figure 7: Distribution of straightening errors for Puzzle 1 of the
DARPA Shredder Challenge.



5.2 Image Analysis

In matching two pieces together, there are several pieces of infor-
mation which are available in order to find the optimum matches be-
tween them. The first has already been discussed as a tool for finding
the correct orientations, viz. the shape of the vertical edges. This in-
formation is encoded as the vertical edge time series and used further
below. The second piece of information is the content of the shreds
themselves. This information is encoded in the Luma (a measure of
brightness) time series:

Definition 2. A Luma Time Series is a time series L(y) indexed by
row and gives the value of the Luma of the left-most or right-most
pixel of that row. For each shred there exists a Luma time series for
the left and for the right-hand sides (Ll(y) and Lr(y) respectively).

Although the datasets we use here contain full color information
(and thus three channels of data, one for each primary color), we
have found that using Luma [12], defined as L = .3R+ .59G+ .11B
was sufficient.

While both Luma and edge shape information exist for the top and
bottom edges, it is important to note that our algorithm focuses on
primarily the left and right edges. This is because the cross cut shred-
ding action creates large numbers of deformities on the cross-cuts
and often mangle the top and bottom edges. Furthermore, because
the top and bottom edges are much smaller, there is less information
to match on and consequentially much harder to match effectively.

Each of the two encoded data sources pose different advantages
and disadvantages. The vertical edge time series, while extremely
useful for jigsaw style pieces that had exaggerated features in the
edges, did not by itself provide enough information to identify good
matches. It resulted in false negatives when pieces were mangled
on one side of a cut but not on the other, or when both pieces were
mangled in different ways. Furthermore, false positives were created
as a result of cuts being too straight and thus matching every other
straight cut. The Luma time series, on the other hand, provides a
better source of data, but brought its own problems. The Luma chan-
nel allows for matching content but is susceptible to false positives
such as regularly spaced features e.g., the background lines on ruled
paper, as can be seen in Figure 6. Furthermore, the data provided by
the Luma channel is mostly discontinuous, as the features contained
in the shredded documents tend to be sharp and distinct. This means
that, in comparing two time series, near misses will generate as much
error as complete misses.

Figure 8: A sample Luma time series for the left- and right-hand
sides of the example shred.

5.3 Color Targeting

While by default the Deshredder feature matching algorithm ob-
serves the luminosity of the shreds for points of interest to match
with, Deshredder also allows the user to filter out a specific color to
match pieces against. For instance, in Figure 9a the user desires to
begin to match by the colored ruling on the page. The user then uses
an eye-dropper tool to select that color from an example piece and

(a) (b)

Figure 9: Deshredder allows a user to guide the matching algorithm
to focus on a particular color in comparing shreds.

can use a threshold slider to set the variability of colors to consider.
Deshredder responds by highlighting the colors of interest and then
rerunning the matching algorithm in the background focusing on the
specific colors chosen. In Figure 9b, conversely, the user wishes to
match against the black pen color; in response Deshredder highlights
the black pen strokes and focuses on matching the pen strokes as it
reruns the matching algorithm.

5.4 Matching Shreds

Figure 10: The process for converting an edge, first to a Luma time
series, then finding the edges, and finally creating a Chamfer distance
distribution. The red lines denote the locations of the features.

While being able to compare shreds based on their content and
their shape is useful it is still not sufficient to make good matches. In
order to make the best use of the information in the Luma channel,
we developed a nearest neighbor matching algorithm based upon the
notion of Chamfer similarity, described next.

For each side of each image we build a Luma time series, and from
this time series we use a simple one dimensional convolution kernel
with weights [−1,0,1] to find the edges along the Luma time series.
Next, we filter the Luma time series and note the largest peaks in the
graph. to find the largest such edges in the image and mark these as
our features. Finally, we build a Chamfer distance distribution which
denotes the distance of a pixel to the nearest feature. Figure 10 shows
each step of the process of building the Chamfer distance distribu-
tion [5]. After building a Chamfer distance distribution for each ver-
tical edge of the shred, we can then use these distributions to find the
most suitable match between two edges. Suitable matches are found
using the Chamfer similarity of two Chamfer distance distributions
c1 and c2 defined as:

ChamferSim(c1,c2) =
c1 · c2

max(c1 · c1,c2 · c2)
Here, c1 and c2 are distributions defined over the common bound-

ary of the shreds. The entries of these distributions denote distances
from the nearest feature in the corresponding shred. c1 · c2 denotes
the scalar (dot) product of the vectors.

We compute the Chamfer similarity four times for every pair of
shreds, once for every possible orientation (see Fig. 3). These sim-



(a) (b)

Figure 11: Examples of (a) good and (b) bad matches. The good
match has a Chamfer similarity value of .880, while the bad match
as a similarity value of .743.

Figure 12: Schematic of a stitching work flow using Deshredder. (a)
Basic layout of UI; (b)-(e) One run in long mode and demonstrat-
ing reconstruction palette features;(f)-(j) parallel run using more ad-
vanced features of the reconstruction palette and use of the parent
column; (k) merging of two runs. The similarity matrix is a pop-up
feature and not shown in the work flow.

ilarity values and the locations for the best similarity in each match
are recorded and compiled into the similarity matrix for performing
a nearest neighbor search and presenting the best matches to the user.
Figure 11 gives examples of good and bad matches as determined by
our approach.

6 STITCHING WORKFLOWS IN DESHREDDER

The Deshredder interface, at its core, provides an interactive
approach for the user to explore the matches extracted from the

algorithmic phase and helps organize them into a composite image.
We used a checkered background to provide contrast to the gaps in
the shreds. The framework can be broken down into a number of
interdependent processes which are explained below:

Match Selector: The matching facility is organized along two
columns. The first column (called the parent column) helps the
user select a specific shred to be matched. The set of best matches
identified for this shred are presented as a stream of shreds in the
second column (called the chooser column). Shreds other than the
one(s) being currently matched are grayed out. In the simplest
mode a user can select the most appropriate match from the chooser
column. Figure 12(a) gives an example of this mode of operation.
In contrast, the Deshredder also provides an advanced mode, called
the long mode, where the user can choose to view all the matches
as an ordered matrix . Example of such an operation is shown in
Figure 12(b). On one hand this mode enables the user to quickly
scan through all the possible matches to focus on an active shred in
the parent column; at the same time it aids the user to be efficient
about the match making process by providing semi non-serial access
to the matches.Once the user is satisfied with a suggested match,
Deshredder provides the capability to store this match in a palette to
the right (as in Figure 12(c)) referred to as the reconstruction palette

Reconstruction Palette: The reconstruction palette provides a
number of functionalities to the user, including (1) the ability to
rotate the complete match, (2) drag either shred participating in
the match for fine tuning of the placement of the match, (3) drag
the entire match to another region of the reconstruction palette, (4)
delete the match, (5) zoom in/out of the reconstruction palette. We
now explain how each of these capabilities are organized into the
workflow of a deshredding session. Functionality (1) is required
because the alignment of the shreds can be inverted with respect to
other matches in the reconstruction palette. Regarding functionality
(2), giving the user the ability to fine tune the placement of the match
is an important design requirement as this places less stringency on
the alignment matching part of the algorithm. It also helps to better
incorporate user experience directly into the interface so that future
matches for a participating shred can be displayed from this modified
placement. An example of the user activating functionalities (1) and
(2) can be seen in Figure 12(d). As the user is traversing through the
stitching process, he/she may begin to develop some idea about the
relative placements of disconnected regions of matches developed
till that point of the time. Functionality (3) enables the user to
organize the matches in the reconstruction palette to represent these
ideas and accelerate the stitching process and an example can be
seen in Figure 12(e). Finally, any match chosen by the user need
not be the best when placed relative to other pieces and hence
functionality (4) enables the user to explore a number of matches
from the chooser column without forcing the user to adopt stringent
requirements on the allowed number of trials. Functionality (5) is
perhaps one of the most important feature as the zoom in/out feature
allows the user to closely inspect a match by zooming in and also
view the entire palette in a modestly-sized screen by zooming out
(refer Figure 12(i,j).

Other Features: There are a few additional features we imple-
mented with respect to the parent column. Similar to the simple
mode of the chooser, the parent column can also be traversed one-
at-a-time in either direction. For each traversal, the active element is
changed and the chooser reflects the matches corresponding to this
element. An advanced feature of this column is a ‘hide’ mode (Fig-
ure 12(g)) in which the user can decide on a piece to be trivial and
hide it from all the suggested matches in the chooser column (for
all the remaining matches in the current run). Further, in this col-
umn one can rotate a piece and this state can be locked. This feature
was implemented as it took away the burden of trying to suggest ori-
entations from the user and instead enables the user recognize the
orientation most suitable to him/her (Figure 12(f)). Also, when the
active element in either the parent or the chooser column matches a



piece, already matched and saved in the reconstruction palette, the
pieces in the palette are highlighted(Figure 12(h)). Finally, we im-
plemented a state save-loader mechanism, whereby a user can save
his current state of the reconstruction palette and load it for future
runs. This is a very important feature as it enables the user to safely
keep track of the progress made and at the same time allows col-
laborative stitching with other users. This feature also opens up the
possibility of parallelism with respect to the user as a team can di-
vide up the pieces to be matched among themselves and which can
be merged at a later time (Figure 12(k).)

Aside from these features, Deshredder also provides tools like
color selector (Figure 9) and similarity matrix visualizer (Figure 4)
which are designed to pop-out on user command.

All of the above features can be used by a user any number of
times in a stitching session. One such sample run where the user is
able to reconstruct part of the document is shown in Figure 12 which
depicts all the functionalities being used to make the match.

7 RESULTS

We describe results of using Deshredder on Puzzle 1 of the DARPA
Shredder Challenge. From the image containing the shreds (Fig-
ure 1), 225 pieces were extracted for reconstruction. In the challenge
some questions about the document were asked which could be an-
swered only after proper reconstruction [1].

Figure 13: Performance of matching strategies in DARPA Shredder
Challenge Puzzle 1 [1].

First, we outline some quantitative results to assess the effective-
ness of our matching algorithms. For each edge, we considered all
possible matches, and then compared where each correct match oc-
curred in the ordered ranking for each edge. We used four different
evaluations for the matches: 1) Chamfer similarity, 2) the RMSE of
the vertical edge time series of the match, 3) the RMSE of the Luma
time series of the match, and 4) a combination of 1) and 2). Of these,
the combination metric worked the best. The graphical results of this
exercise are depicted in Figure 13.

The Luma evaluation performed the worst because as stated
above, the discontinuous nature of the Luma time series function de-
creases the accuracy of the evaluation. Observing the behavior of the
Chamfer+Vertical line we see that 50% of the correct matches will
show up in the first 20% of the recommendations, ideal for quick
visual inspection by analysts.

Deshredder was then used by two experts to reconstruct the first
puzzle from scratch. One expert was a trained knowledge discovery
professional. The second expert was a practicing professional in the
national security industry. We outline the overall strategies employed
by them respectively.

(a) (b)

Figure 14: Expert user rejecting apparently good matches. (a) The
words formed are meaningless, or (b) the words seem out of context.

(a) (b) (c)

Figure 15: Stitching strategy used by the Expert. (a) Stitching shreds
to a single region, (b) using the long mode while stitching the image
(c) avoiding matching an already matched piece

7.1 Expert 1 Strategy

The knowledge discovery expert usually favored shreds that have
traces of handwriting in them rather than empty shreds of legal pad.
Nevertheless, apparently good matches (with respect to the contin-
uation of boundaries) were rejected by this user because the words
formed either did not make sense or appeared out of context. An
example run is shown in Figure 14. In (a), the words are evidently
meaningless and are rejected by the user although the boundaries
match quite nicely. In (b), a single ’D’ appears in the text and hence
was rejected by the user as being an out-of-context match. In this re-
spect, an OCR subsystem to suggest words could be useful but may
add increased lag due to dictionary search.

In terms of ‘positive’ strategies, once confident of a particular
match, this expert usually chose to extend the matches to regions
by choosing the shred from the chooser column as the new parent
column, rather than finding disconnected groups of matches. Fur-
ther, while finding the matches, this expert usually chose to view the
best suggested matches for a shred by scrolling rapidly via keyboard
options. Based on the observations, the expert decided on whether
to look into such matches or move to the next shred. Some of the
aspects of the Deshredder, such as the highlight feature, helped the
expert to keep track of the pieces and avoid spurious matches. Illus-
trations of these behaviors are shown in Figure 15. The suggested
matching regions between two shreds were also in general accept-
able and only 17 percent of time dragging a suggested match for a
more favorable boundary match was required.

7.2 Expert 2 Strategy

In contrast to the strategy of expert 1, the security expert employed
some subtly different ones. This expert really preferred certain fea-
tures of the Deshredder such as the hiding mode by which he was
able to hide blank shreds. Also the linear search seemed more ac-
ceptable to this expert than the long mode. This expert felt more
comfortable organizing his thoughts and looking into the details via
the simple mode. The strategy employed was to match up via lines on
pages and then via words. The expert was also seeking distinguish-
ing features of the shreds to make the match. This expert suggested
some features such as matching more than two pieces at a time and
reorganizing the lines of the strip to retain every piece in the same
orientation. The concept of the ’long mode’ was appealing in princi-
ple, but practically rarely useful, to this expert.



8 DISCUSSIONS

We outline below some of the lessons learned from our overall
project leading to possibilities for future work.

8.1 Lessons Learned

The working model of the Deshredder described here was arrived
at after a number of missteps-steps which led to the current design
considerations. As described in the paper, the Deshredder works
by comparing the boundaries of two image fragments and inferring
best possible matches based on their similarities. Recall that this
matching process was implemented by modeling the boundaries as
time series (Section 5) and then finding the best possible matches
based on a modified Euclidean distance.

Choice of fragment encoding: There are a number of ways de-
scribed in the literature [16, 37, 24] for converting a image boundary
into a time series. One approach that we initially attempted was
to encode the image boundary as a time series based on the radial
distance of the boundary from the image center. However, a num-
ber of the image shreds were rotated [1] and hence rotation invariant
strategies [16] were necessary. To understand the performance of this
strategy in comparison to our model of time-series extraction we de-
scribe the results of the said strategy on a sample image in Figure 16.
The blue image matches the red image exactly along a boundary as
shown in the Figure 16 (left). Figure 16 (right) shows the best place-
ment of the time series for the matching part of the two images, com-
puted as described in [16].The dissimilarity of these time-series for
perfectly aligned pieces as seen in the figure, indicates these methods
as unsuitable for use as a similarity measure.

Figure 16: Matching edges using the time series modeling approach
of [16].

This lack of accuracy in similarity detection could be attributed to
the difference in scales of the two images. Scale dissimilarity leads
to radial distortions and if such differences in scales are appreciable,
the increased dissimilarity between two such time series will lead the
nearest-neighbor algorithm to reject the shred in favor of a possible
non-matching but similarly scaled shred. A scale invariant approach
was outlined in [37]. However, this method incorporates additional
computational complexities. Our proposed method of abstracting
out the vertical edges is scale- and rotation- invariant in the sense
that the figures in the DARPA Shredder Challenge appeared to
be shredded in average in a rectangular manner. Furthermore,
comparison of such vertical edges is relatively faster as the possible
orientation space has been reduced to 4 combinations for a pair of
shreds.

Fragment matching strategy: Reconstruction of original images
from the shred was found to be sub-optimal when the time-series
was encoded based on the distance of the boundary from the linear
edge alone. For example, image 1 of [1] appears to be a handwritten
note on a legal pad. Hence, two lowest distance matched edges may
result in a reconstruction where the edges are non-continuous with
respect to the colors. As such, the distance metric was combined
with the color information obtained via a variation of neighboring

pixel intensity, to produce a color-aware time-series.

Visual analytics vs. fully automated strategies: Before adopting
a visual analytic approach, we evaluated a fully automated method
of stitching. A string-based physics model, where the similarity
between the time-series representation of two images shreds were
used as the attraction measure, was fitted on the shredded images.
The aim was to automatically reduce the distance between neighbor-
shreds and increase the distance between non-neighbor shreds. This
induces a multi-level interaction between image shreds and to prop-
erly define such interactions, similarities should be recomputed as
we combine image shreds into subunits. As the number of initial
shreds is quite large, the number of comparisons required at each
level quickly grows exponentially. This method further necessitates
the similarity measures to have high fidelity. The visual analytic
approach of Deshredder however can tolerate a high degree of dis-
tortion in matches and the matching process can be done only for the
pair of shreds, thus being computationally more tractable.
Interface Design: For the interface we started with the ‘long mode’
as the default view to an user. However, we realized quickly that
‘simple mode’ helps a user to focus on the current piece more in-
tently than the ‘long mode’. But at the same time the ‘long mode’
offered the possibility of glossing over multiple recommendations
very quickly. After debating a number of possibilities for integrating
these two modes such as a separate window, a pop out, or a window
overlay, we decided on the final design based on expert user sug-
gestions. In the similarity matrix and the color chooser we decided
on an integrated approach to have a consistent look and feel of the
software.

8.2 Future Work

Deshredder brings together the fields of time series representation,
computer vision, and visual analytics to assist users in reconstruct-
ing shredded documents. It is our intent to further develop Deshred-
der into a complete problem solving environment for reconstructing
shredded documents. One of the most important aspects of the sys-
tem is creating good metrics to choose and evaluate matches. We
would like to evaluate and develop metrics to further improve the
suggestions that the algorithm makes. A second area which we de-
sire to address is the need for a rotationally invariant matching. Our
current techniques focus on the vertical edges only, and developing
a rotationally invariant matching algorithm would enable us to pro-
vide more effective matching for differently shaped shreds as well as
avoid the straightening step. Also, akin to Digistrips [2], a gesture
and touch-screen driven interface for assisting air traffic controllers
in schedule management, we aim to evaluate Deshredder on a large
high definition touch screen display and evaluate touch-based and
gesture-based techniques for user input. Finally, we would like to
conduct a complete user study and articulate usability concerns.

9 CONCLUSION

Automatic deshredding of documents makes a powerful argument
for a visual analytics strategy, as we have shown here. Deshred-
der combines the advantages of automated methods (in identifying
possible matches) and enables user input (to drive the reconstruction
process). Our goals in this paper were to articulate the many de-
sign decisions that we have made along the way and catalog them so
that others working in this space can build upon these strategies. As
we explore larger shredding puzzles using Deshredder, we believe
the need for interesting problem solving strategies would become
paramount, which will hopefully spur more research into visual ana-
lytic methods.

ACKNOWLEDGEMENTS

This work is supported in part by US NSF grant CCF-0937133 and
the Institute for Critical Technology and Applied Science (ICTAS),
Virginia Tech.



REFERENCES

[1] DARPA Shredder Challenge. http://archive.darpa.mil/

shredderchallenge/, Last Visited: March 31, 2012.

[2] Digistrips : humaniser les interfaces. http://pii.tls.cena.

fr/index.php?Itemid=7&id=10&lang=en&option=com_

content&view=article, Last Visited: June 23, 2012.

[3] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn,

B. Curless, D. Salesin, and M. Cohen. Interactive Digital Photomon-

tage. ACM Transactions on Graphics, 23(3):294–302, 2004.

[4] Z. A. Aghbari. Effective Image Mining by Representing Color His-

tograms as Time Series. Journal of Advanced Computational Intelli-

gence and Intelligent Informatics, 13(2):109–114, 2009.

[5] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Paramet-

ric Correspondence and Chamfer Matching: Two New Techniques for

Image Matching. In Proceedings of the 5th International Joint Confer-

ence on Artificial intelligence, volume 2 of IJCAI’77, pages 659–663,

1977.

[6] M. Brown and D. G. Lowe. Automatic Panoramic Image Stitching

using Invariant Features. International Journal of Computer Vision,

74(1):59–73, 2006.

[7] M. Cebrin. UCSD DARPA Shredder Challenge Team. http://

shredder-challenge.ucsd.edu/login.php, Last visited:

June 23, 2012.

[8] S. Dasgupta and A. Banerjee. A Real-time Panoramic Vision System

for Autonomous Navigation. In Proceedings of the 36th Conference on

Winter Simulation, WSC ’04, pages 1706–1712, 2004.

[9] M. Diem, F. Kleber, and R. Sablatnig. Document Analysis applied

to Fragments: Feature Set for the Reconstruction of Torn Documents.

In Proceedings of the 9th IAPR International Workshop on Document

Analysis Systems, DAS ’10, pages 393–400, 2010.

[10] T. Geller. DARPA Shredder Challenge Solved.

http://cacm.acm.org/magazines/2012/8/

153812-darpa-shredder-challenge-solved/

fulltext, Last visited: August 1, 2012.

[11] M. H. A. Hijazi, F. Coenen, and Y. Zheng. Image Classification using

Histograms and Time Series Analysis: a Study of Age-related Macular

Degeneration Screening in Retinal Image Data. In Proceedings of the

10th Industrial Conference on Advances in Data Mining: Applications

and Theoretical Aspects, ICDM ’10, pages 197–209, 2010.

[12] International Telecommunications Union. Studio Encoding Parameters

of Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ra-

tios, 2011.

[13] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review.

ACM Computing Surveys, 31(3):264–323, Sept. 1999.

[14] B. Jou, H. Li, M.-H. Tsai, D. Pei, F. Marques, and S.-F. Chang.

DARPA Shredder Challenge 2011. http://www.ee.columbia.

edu/ln/dvmm/shredder/, Last Visited: June 23, 2012.

[15] E. Justino, L. S. Oliveira, and C. Freitas. Reconstructing Shredded

Documents through Feature Matching. Forensic Science International,

160(2-3):140 – 147, jul 2006.

[16] E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos. LB Keogh Sup-

ports Exact Indexing of Shapes Under Rotation Invariance with Arbi-

trary Representations and Distance Measures. In Proceedings of the

32nd International Conference on Very Large Data Bases, VLDB ’06,

pages 882–893, Sept. 2006.

[17] D. Lowe. Object Recognition from Local Scale-Invariant Features. In

Proceedings of the 7th IEEE International Conference on Computer

Vision, volume 2 of ICCV ’99, pages 1150–1157, 1999.

[18] D. Lowe. Unshredder: Shredded Document Reconstruction System.

http://www.unshredder.com/, Last vsited: March 31, 2012,

2007.

[19] M. A. O. Marques and C. O. A. Freitas. Reconstructing Strip-shredded

Documents using Color as Feature Matching. In Proceedings of the

2009 ACM Symposium on Applied Computing, SAC ’09, pages 893–

894, 2009.

[20] M. Newlin. No Snow, No Pants.: You should Probably Start

Burning your Mail: What I Learned from the DARPA Shred-

der Challenge. http://www.marcnewlin.com/2011/12/

you-should-probably-start-burning-your_02.html,

Last Visited: June 23, 2012.

[21] T. Ozawa, K. M. Kitani, and H. Koike. Human-centric Panoramic Imag-

ing Stitching. In Proceedings of the 3rd Augmented Human Interna-

tional Conference, AH ’12, pages 20:1–20:6, 2012.

[22] M. Prandtstetter and G. R. Raidl. Combining Forces to Reconstruct

Strip Shredded Text Documents. In Proceedings of the 5th International

Workshop on Hybrid Metaheuristics, HM ’08, pages 175–189, 2008.

[23] M. Prandtstetter and G. R. Raidl. Meta-heuristics for Reconstructing

Cross Cut Shredded Text Documents. In Proceedings of the 11th An-

nual Conference on Genetic and Evolutionary Computation, GECCO

’09, pages 349–356, 2009.

[24] T. Rakthanmanon, Q. Zhu, and E. J. Keogh. Mining Historical Doc-

uments for Near-Duplicate Figures. In Proceedings of the 2011 IEEE

11th International Conference on Data Mining, ICDM ’11, pages 557–

566, 2011.

[25] S. A. SantoshKumar and B. K. ShreyamshaKumar. Edge Envelope

based Reconstruction of Torn Document. In Proceedings of the Seventh

Indian Conference on Computer Vision, Graphics and Image Process-

ing, ICVGIP ’10, pages 391–397, 2010.

[26] C. Schauer, M. Prandtstetter, and G. R. Raidl. A Memetic Algorithm for

Reconstructing Cross-cut Shredded Text Documents. In Proceedings

of the 7th international conference on Hybrid metaheuristics, HM’10,

pages 103–117, 2010.

[27] Z. Shen and K.-L. Ma. Path Visualization for Adjacency Matrices. In

EuroVis07 Joint Eurographics - IEEE VGTC Symposium on Visualiza-

tion, pages 83–90. Eurographics Association, 2007.

[28] A. Skeoch. An Investigation into Automated Shredded Document Re-

construction using Heuristic Search Algorithms. PhD thesis, University

of Bath, 2006.

[29] A. Stieber, J. Schneider, B. Nickolay, and J. Krüger. A Contour Match-

ing Algorithm to Reconstruct Ruptured Documents. In DAGM Confer-

ence on Pattern Recognition, pages 121–130, 2010.

[30] A. Ukovich, G. Ramponi, H. Doulaverakis, Y. Kompatsiaris, and

M. Strintzis. Shredded Document Reconstruction using MPEG-7 Stan-

dard Descriptors. In Signal Processing and Information Technology,

2004. Proceedings of the Fourth IEEE International Symposium on,

pages 334 – 337, dec. 2004.

[31] J. Wang, B. Yu, and L. Gasser. Classification Visualization with Shaded

Similarity Matrix. Technical report, GSLIS University of Illinois at

Urbana-Champaign, 2002.

[32] G. Ward. Hiding Seams in High Dynamic Range Panoramas. In Pro-

ceedings of the 3rd Symposium on Applied Perception in Graphics and

Visualization, APGV ’06, pages 150–150, 2006.

[33] H. Woeste. Mastering Digital Panoramic Photography. Rocky Nook

Series. 2009.

[34] X. Xi, E. Keogh, L. Wei, and A. Mafra-Neto. Finding Motifs in

Database of Shapes. SDM ’07, 2007.

[35] Y. Xiong and K. Pulli. Fast Panorama Stitching for High-Quality

Panoramic Images on Mobile Phones. IEEE Transactions on Consumer

Electronics, 56(2):298–306, 2010.

[36] D. Yankov and E. Keogh. Manifold Clustering of Shapes. In Proceed-

ings of the Sixth International Conference on Data Mining, ICDM ’06,

pages 1167–1171, 2006.

[37] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detect-

ing Motifs Under Uniform Scaling. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’07, pages 844–853, 2007.


