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ABSTRACT
Agenda setting in online social media is today an inten-
sively competitive space with multiple cascades vying for
growth and adoption. We study here the dynamics of com-
peting cascades: how does one cascade rise against another,
how can we design effective counter-contagion strategies,
and where exactly should they be unleashed? We demon-
strate the effectiveness of our model in capturing real agenda
setting situations observed on Twitter, and in designing
counter contagions in a synthetic setting.

1. INTRODUCTION
Online social media such as Facebook and Twitter have be-
come a fertile ground for launching campaigns for a variety
of purposes, e.g., marketing, social mobilization, and even
spreading rumors. The far reach of social media coupled
with our limited attention span [17] has resulted in intense
competition among ideas for consumption and propagation.
Such competition manifests in the form of contagions in-
teracting with each other constructively or countering each
other [14], vying for prominence in agenda setting [18].

In this work, we study the dynamics of competing cascades
with specific application to agenda setting. We investigate
the conditions under which a counter-contagion can compete
and squash a given contagion and how exactly to design
effective counter contagion strategies. We present exam-
ples from Twitter illustrating instances of successful counter-
contagions.

2. RELATED WORK
We briefly survey related work in agenda setting, diffusion,
and interventions/counter-contagions. Agenda setting the-
ory posits that the prevalence of certain topics and issues
over others as perceived by the general public is determined
by the popular media [13]. In other words, the media decides
what you should think about even if they don’t influence
how you should feel about it. Social media have become
effective tools to set the public agenda [18]. The plethora of
information present in social media clearly dictates how top-
ics compete with each other for public attention [2; 17; 19].
Diffusion processes have become a standard approach to
understanding propagation in social media. Typical mod-
els employed constitute epidemic threshold models (SIR,
SIS, SIRS, SEIR, MSEIR, etc.) [10], linear threshold models
(LT) [9] and independent cascades (IC) [11]. Several recent

Figure 1: State diagrams for a node under the SIRS (left)
and SITRS (right) models.

works also address the diffusion of multiple contagions [8; 15;
14]. Immunization and intervention strategies to in-
hibit contagions have also garnered attention in the research
community. They can be classified into node deletion strate-
gies and limiting spread approaches. The acquaintance im-
munization policy [5] and NetSheild [16] in the SIS and SIR
models are examples of the former and examples of the lat-
ter are [4; 20] in IC and LT models. The assumption under
the IC and LT models is that once a node adopts a conta-
gion (i.e., gets infected), it cannot switch. The two strate-
gies above thus limit the spread of influence/misinformation
under that strong assumption. Our intervention strategy
works under the epidemiological models (SIS, SIRS, etc.),
thus not requiring the node to be removed from the network
while also allowing the individual to ‘change’ his/her mind.

3. PROBLEM DEFINITION
We cast our problem as one of halting the spread of a virus
—i.e. a rumor, misinformation, or bad campaigns— in a so-
cial network. Our strategy, which we call counter-contagion,
releases a stronger contagion into the network that will com-
pete with and eradicate, the first contagion.

The Contagion Propagation Model
The propagation model that we assume is a variant/extension
of SIRS [10] (the SIS model with a temporal immunity)
We extend SIRS to accommodate for multiple contagions
by using an SITRS model. This extension, as opposed to
the SITS model proposed by [15], serves well to capture
a sense of delay, characterized by the temporal immunity
state, between adoptions. As shown in figure 1, each node
in the graph can be in one of four states: S (susceptible), I
(infected by the bad contagion), T (infected by the good con-
tagion), or R (temporarily recovered). As we explain below
(model justification), this delay is particularly important in
the presence of multiple infections.

Attack and Death Rates β and δ: If a node is in state
I or T , then it recovers with a rate of δ1 or δ2 respectively.



An infected (either in I or T ) node transmits the infection
to each of its neighbors independently at the rate of β1 or
β2.
Immunity Loss Rate ρ: If a node is in state R, then it
loses its temporal immunity with the a rate of ρ
Mutual Exclusion: We assume that a node can be in any
one of the states. We claim that this is a reasonable as-
sumption, as an individual cannot accept two competing
ideologies at the same time.
Model Justification: We extend the SIRS model to two
contagions for our setting, but we do not use the Recovered
state in the usual interpretation of having gained temporal
immunity. Rather, we use it as a state of non− spreading,
which is a more natural interpretation for brand/product
adoption. For instance, a telephone provider establishes
an agreement with a smartphone manufacturer and sells a
phone for a low price with a multi-year contract to a cus-
tomer. If the customer is not satisfied with the phone, she
would not cease to use the device due to the initial invest-
ment, but she will not actively participate in advocating the
smartphone to her social contacts. From the result proved
by Prakash et al. [15], we know that the stronger contagion
will eliminate the competition. We extend that result to our
model.

The Counter Contagion Problem
We now define the counter-contagion (CC) problem as fol-
lows: Given a social network G, on which a contagion C1

is spreading under the SITRS model, we want to introduce
a second contagion C2 on the network, such that C1 loses
adoption, and eventually dies out, due to user preference for
C2.

We can also define a timed variant of CC, where C1 must
be eliminated before some time tmax. For the rest of this
paper, we focus on untimed CC.

4. THEORY / BACKGROUND
We approximate the aforementioned epidemic process as a
dynamical system. From t = 0 to t = tk, the propagation is
limited to just one contagion (under the SIRS model). At
time t = tk the second epidemic is introduced making it a
coupled system. Let pk,I , pk,T , pk,S and pk,R be the prob-
abilities that a node k is in state I, T, S or R respectively,
so that pk,I + pk,T + pk,R + pk,S = 1. Therefore,
for t = 0 to t = tk we have:

dpk,I
dt

= β1(1− pk,I)
∑
j

Ak,j1j,i − δ1pk,I

dpk,R
dt

= δ1pk,I − ρpk,R

Then, from t = tk + tε to t = tmax we have,

dpk,I
dt

= β1(1− pk,I − pk,T − pk,R)
∑
j

Ak,j1j,i − δ1pk,I

dpk,T
dt

= β2(1− pk,I − pk,T − pk,R)
∑
j

Ak,j1j,T − δ2pk,T

dpk,R
dt

= δ1pk,I + δ2pk,T − ρpk,R

In the above equations, 1j,i denotes the indicator random
variable which implies that node j is infected by virus i,
(where i is I or T in our case) and A is the adjacency matrix
of the graph where the viruses are propagating.

Proof Sketch of One Contagion Prevailing
In the above coupled system, after applying the mean field
approximation to the indicator random variable, the fixed
points of the above dynamical system would be as follows:

δ1pk,I = β1(1− pk,I − pk,T − pk,R)
∑
j

Ak,jpj,I

δ2pk,T = β2(1− pk,I − pk,T − pk,R)
∑
j

Ak,jpj,T

ρpk,R = δ1pk,I + δ2pk,T

According to classical dynamical system theory, the stabil-
ity of a system at a fixed point requires that the real part
of all the eigenvalues of the corresponding Jacobian be neg-
ative. If we show, that at our fixed point, the probabilities
pk,S and pk,R are non-zero, we can harness the proof sketch
proposed by Prakash et.al. in [15]. The proof essentially
uses the Perron-Frobenius theorem to show that the prob-
abilities converge to the Perron eigenvector and that there
would be three stable fixed points. We prove the following
lemma here to enable us to use that result (in order to be
able to apply the Perron-Frobenius Theorem). They are as
follows:

Lemma 1. For all nodes k, pk,S is non-zero and pk,R is
non-zero.

Proof. We can prove this by contradiction. Let us as-
sume pk,S = 0. By the design of the system, pk,S = 1 −
pk,I − pk,T − pk,R. This implies that the pk,I = pk,T = 0,
which would also imply that pk,R = 0, from the above equa-
tions. This would violate the axiom of sum of probabilities
rule, pk,I + pk,T + pk,R + pk,S = 1. Hence we conclude that
pk,S 6= 0, for all k.
Similarly, if we assume pk,R = 0. Then,

δ1pk,I + δ2pk,T = 0 δ1pk,I = −δ2pk,T =⇒ pk,I
pk,T

= −δ2
δ1

This implies that the ratio of two probabilities is negative,
which is not possible. Hence pk,R 6= 0

Now, a direct application of the result shown in [15], gives
us the following stability conditions.

• If both the epidemics (I and T ) are below the threshold
i.e. β1λ/δ1 < 1 and β2λ/δ2 < 1, then they die out.
• If both are above threshold, then:

– I alone prevails β1λ/δ1 > β2λ/δ2.

– T alone prevails if β2λ/δ2 > β1λ/δ1.

In the above stated conditions for the fixed points, λ is the
first eigen-value of the adjacency matrix (A). We note that
these fixed points attain stability as t → ∞. But, empiri-
cal evidence (experiments on synthetic graphs and examples
from real data) show that for the right values of attack rate
and recovery rate, we can achieve these goals on networks
in finite time.

Graph Based Heuristic - The k-core of a graph
Graph theoretic heuristics based on nodes’ degree and cen-
trality within the network have been standard approaches to
characterize the influence of a node [1]. In our work, we use
the well-known metric k−shell or k−core to identify influen-
tial nodes in our counter-contagion based rumor-squashing



algorithm. In recent work Kitsak et. al. [12] have shown
that k-shell decomposition serves as an effective heuristic in
identifying influential spreaders under the spread models for
virus propagation. For the sake of completeness, we briefly
describe this concept.
The k-shell of a graph: A maximal induced subgraph
where all the vertices of the subgraph have degree at least
k is called a k-shell or k-core.
k-shell decomposition: An algorithm that groups the
nodes in the network based on their k-value.
In the example, the graph has three k-shells. We have four
nodes with k=1, three with k=2 and four with k=3.

5. COUNTER-CONTAGION ALGORITHM
Step 1: Counter-Contagion Strength Determination:
From the previous section, we know that theoretical guar-
antees exist for a stronger contagion, regardless of the birth
time, to eliminate the weaker contagion. Therefore, in de-
signing the counter-contagion, we first calculate β1, δ1 and
ρ from the observed propagation of Contagion 1 using the
standard SIRS diffusion model, as there is only one virus in
the system initially.
Step 2: Identifying Nodes for Injection: The second
part is the identification of seed nodes for Contagion 2. To-
wards that end, we compute the k-shell value for all nodes in
the observed network. We inject Counter-Contagion to m
(based on a budget) nodes with highest k-shell value. The
rationale behind using k-shell as a heuristic is because it
effectively captures nodes that do not just have many con-
nections but are connected well-connected nodes. Brown et.
al. presented a modified version of the k-shell decomposi-
tion algorithm using logarithmic mapping to better estimate
influential nodes in the Twitter space [3].
Intuitively, our algorithm can be summarized as follows:

• Phase 1: Estimate β (δ and ρ) of the current contagion
under the SIRS model
• Phase 2: Compute the k-shell decomposition of the

observed graph and identify top m nodes with high
k-shell values
• Phase 3: With the identified nodes as starting points

for counter-contagion, inject counter-contagion with
β2 > β

6. EXPERIMENTS
We simulate the diffusion process on the real-world network
(BrightKite, an erstwhile location-based social network) ob-
tained from the Stanford Network Analysis Project web-
site.1. The network has 58,228 nodes and 214,078 edges.
For the simulations, we set β1λ/δ1 = 4 and β2λ/δ2 = 6,
where λ is the largest eigenvalue of the network. Note that
both contagions are above the required epidemic threshold
for survival. We show how varying the k-core and the num-
ber of seeds affects the spread of the second contagion. Fi-
nally, we use data from Twitter to verify our theoretical

1http://snap.stanford.edu

results. We collected a sample of the follower graph of users
from Brazil through the Twitter API; this graph has 142,176
nodes and 6,854,368 edges. We also have a 10% sample of
the tweets from Brazil in May and June 2013, which we filter
using a list of keywords related to politics and civil unrest
(e.g. “protest”, “presidente”, “march for peace”). Tweets
must contain at least three keywords to pass our filter. We
use the filtered tweets and the follower graph to infer fol-
lower cascades (described below) where the main topic of
discussion is politics and civil unrest.

Prevalence of One Contagion in Twitter
Following the cascade diffusion model introduced in [7; 6],
on the bottom of Fig. 2 we show the time series of pairs of
cascades from our dataset, with the y-axis representing the
number of users at each time step. Shortly after the sec-
ond cascade (blue) begins, the first one (green) stops grow-
ing and starts to die off. The dotted part of the weaker
cascade decreases each time one of its users decides to par-
ticipate in the stronger one. In order to understand what
makes the overtaking cascades stronger than their competi-
tors, we examined the tweets of the cascades. In figure 2a,
the main topic of the smaller cascade is the political case
between Congressman Jose Genoino and the Brazilian Fed-
eral Supreme Court. In figure 2b, the smaller cascade cor-
responds to freedom of speech, which became a point of
discussion among journalists and the government after the
international agency Freedom House declared that freedom
of speech decreased in Brazil in 2012. In both cases, these
cascades are quelled by two controversial plans of the gov-
ernment: the suspension of the social welfare program Bolsa
Familia and a possible treaty with Cuba in which Brazil
would hire foreign doctors instead of employing local pro-
fessionals. For figure 2c, the weaker cascade discusses the
death of Brazilian billionaire Robert Civita, head of the me-
dia group Abril and defender of freedom of press. Even
though Civita was a well-known public figure, chatter of his
death loses attention to the more urgent news of a poten-
tial violent encounter between the federal police and native
Brazilians who refuse to leave their settlements to allow the
construction of a hydroelectric plant. By computing the Jac-
card coefficient between the sets of users in both cascades,
we confirmed that there is significant crossover of users, as
opposed to two independent groups.

Finally, we show an example of a cascade strong enough to
survive for a longer period of time without being quelled.
Figure 2d shows the time series for the cascade correspond-
ing to the “Brazilian Spring” protests that occurred in June
2013. The events, as well as the cascade, started mid-June
with people joining in different cities over time. During this
period, no other political agenda could take people’s atten-
tion away from the protests.

7. DISCUSSION
We have demonstrated real examples of how counter con-
tagions are being used as an agenda setting strategy. Our
simulation experiments show that we are able to over-ride a
contagion using our designed counter contagions. Neverthe-
less, due to the finite time horizon, we are unable to quell the
weaker contagion entirely, in contrast to the results of [15].
Our model characterizes this observation as the non-zero
probability of the temporal-immunity state. Future work
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Figure 2: Top: Simulations of injecting the counter-contagion into BrightKite by varying the number of seed nodes and k-shell
values. We observe that a few nodes with high k-core value are enough to get the same effect as many seed nodes with a low
k-core value. Bottom: Examples of follower cascades. After the second, more infectious cascade is introduced, the first one
stops growing and dies. The last sub-figure corresponds to the national-level protests in June, which survives for a longer
period.

will focus on identifying network properties underlying effec-
tive agenda setting campaigns, characterizing the dynamics
of multiple competing cascades and studying cascades initi-
ated by both individuals and organizations in social media.
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