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Abstract: The paper describes a dataset comprising indoor environmental factors such
as temperature, humidity, air quality, and noise levels. The data were collected from
10 sensing devices installed in various locations within three single-family houses in Vir-
ginia, USA. The objective of the data collection was to study the indoor environmental
conditions of the houses over time. The data were collected at a frequency of one record
per minute for a year, combining to a total over 2.5 million records. The paper provides
actual floor plans with sensor placements to aid researchers and practitioners in creating
reliable building performance models. The techniques used to collect and verify the data
are also explained in the paper. The resulting dataset can be employed to enhance models
for building energy consumption, occupant behavior, predictive maintenance, and other
relevant purposes.

Dataset: https://doi.org/10.17605/OSF.IO/BAEW7.

Dataset License: CC0

Keywords: indoor environment dataset; remote sensing; IoT data collection; distributed
data infrastructure

1. Summary
Data generated in a building environment can provide a comprehensive understanding

of various aspects of a building, enabling informed decision-making, improving occupant
experiences, and enhancing overall building performance and sustainability. Data related
to energy consumption; heating, ventilation, and air conditioning (HVAC) systems; light-
ing; and water usage can help identify inefficiencies and opportunities for optimization.
This information allows for more informed decision-making regarding system upgrades,
retrofits, or maintenance schedules. Data on how occupants interact with a building’s
spaces, systems, and technologies can reveal patterns, preferences, and habits. This infor-
mation can be used to improve occupant comfort, well-being, and productivity by adjusting
environmental factors, such as temperature, lighting, and air quality, according to their
needs and preferences.

The accessibility of open datasets is of paramount importance in the investigation of
indoor residential environments and their respective habitats. Such availability expedites
research on housing performance and fosters the development of advanced energy analysis
methodologies. The building environment not only exerts active influences but also yields
passive effects on human productivity. It bears a significant impact on the health and
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comfort levels of the inhabitants within the residential setting [1–6] as individuals spend
87% of their time in indoor environments [6]. Consequently, it is imperative to maintain
optimal conditions to enhance the overall experience of both the built environment and
its inhabitants.

Open indoor environmental data possess considerable potential to enhance archi-
tectural designs and simulations and inform future decisions pertaining to building con-
struction, operations management, and innovative design approaches. It facilitates the
establishment of performance evaluation benchmarks across diverse geographic locations,
building ages, and typologies [7,8]. These datasets can further contribute to the bench-
marking of machine learning models in the context of building and habitat data analysis,
thereby promoting the development and evaluation of more accurate and robust predic-
tive algorithms [9,10]. Consequently, indoor environmental datasets have emerged as a
critical component with the potential to enhance the overall built environment by pro-
viding novel and innovative development guidelines. These improvements encompass
reducing building operating expenses and elevating the living experience within indoor
environments. In recent years, the trend of developing open-source building performance
data (BPD) and the public dissemination of such datasets have garnered increasing interest
and momentum [11–19]. Advancements in Internet of Things (IoT) technologies [20–22]
have brought forth new techniques and methods for leveraging indoor environmental
datasets. Air quality sensing and monitoring systems proposed in Zakaria et al. [23] and
Marques et al. [24] can be useful for habitats in multiple manners like detection of harmful
gases, measuring optimal oxygen levels, creating alerts for the extensive presence of carbon
monoxide, etc.

The present study introduces a dataset comprising one year of indoor environmental
data, totaling over 2.5 million records from three single-family houses in Virginia, USA.
This dataset is part of a larger longitudinal study investigating the relationship between
indoor environmental conditions and occupant behavior. The dataset serves as an initial
release, providing a rich foundation for researchers working on building performance
modeling, occupant comfort, and energy efficiency.

All participating households gave their informed consent to partake in the study,
and the research was conducted in compliance with all Institutional Review Board (IRB)
protocols. The indoor environmental data were collected using 10 sensing devices across
the three households, deployed through the Building Data Lite (BDL) system [25]. These
devices integrate multiple sensors to capture temperature, humidity, air quality, noise
levels, and light intensity. Data collection began in the summer of 2021 and continued for
approximately a year at a frequency of one record per minute, resulting in a large-scale
dataset suitable for time-series analysis. The subsequent sections of this paper delineate
the data collection procedures, the characteristics of the dataset, its potential applications,
and the technical validation methods used to ensure data reliability.

2. Data Description
The dataset has been made publicly available on the Open Source Framework reposi-

tory [26]. It includes a text guide on the data organization. The data are located in the data
folder, which includes two sub-folders named “plus” and “reg” respectively containing
data from Enviro Plus and Enviro sensor arrays. The dataset includes a folder named
“meta_data” which contains separate metadata files of corresponding data files. Each meta-
data file is named after the corresponding data file with a trailing “meta” keyword. The
dataset also includes a folder named “code” that contains two Python Notebook files. One
is used for generating the metadata files from the data file and another is used for validation
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of the collected data. The remainder of this section describes the data and corresponding
metadata present in the dataset.

2.1. Background and Summary

The data presented here have been collected through the Building Data Lite (BDL)
sensing system [25,27]. A total of 10 sensing nodes were deployed on specific locations
of three households. Table 1 provides detailed sensor placement information. It also
includes information on the date range of the placement of the sensing devices along with
the number of records each device collected during that period. Out of the 10 sensing
nodes, 5 used the Enviro+ [28] sensor array, and the remaining 5 used the regular Enviro
board [28].

Table 1. Sensor placements and record summary.

SENSOR_TYPE RPI_ID ROW_COUNT START_DATE END_DATE LOCATION

Enviro Plus 20 283,074 June 16, 2021 January 17, 2022 House B—Bedroom

Enviro Plus 21 309,591 June 16, 2021 March 11, 2022 House B—Kitchen

Enviro 22 279,801 June 16, 2021 January 12, 2022 House C—Room B

Enviro 23 280,030 June 16, 2021 January 12, 2022 House C—Room A

Enviro Plus 30 438,090 July 12, 2021 July 1, 2022 House C—Room A

Enviro 37 85,669 August 3, 2021 July 6, 2022 House A—Guest Room

Enviro Plus 39 242,101 August 3, 2021 July 6, 2022 House A—Kitchen

Enviro 41 43,465 August 3, 2021 September 7, 2021 House A—Guest Room

Enviro 45 352,087 August 3, 2021 July 6, 2022 House A—Living Room

Enviro Plus 50 222,585 August 3, 2021 July 6, 2022 House A—Master Bedroom

Each record in this dataset either contains 12 attributes for Enviro boards or 15 for
Enviro+ boards. The attributes are represented as columns in the CSV files. Columns 1 to 3
represent unique identification information and timestamps. Each of the rest of the columns
represents an environmental attribute captured by the sensors. Columns 4 and 7 contain
proximity and light data. The LTR-599 sensor is used to measure surrounding proximity
and light level. Without making any physical contact, the sensor is capable of identifying
the existence of objects that are close by. Proximity is recorded in the nanometer (nm) unit
and light is measured in the Lux unit. Columns 5, 6, and 8 represent humidity, air pressure,
and temperature data, respectively. A BME280 sensor is used to measure surrounding
humidity, air pressure, and temperature. These are measured in relative humidity (%RH),
hectopascal (hPa), and degrees Celsius (◦C), respectively.

The Enviro boards feature a microelectromechanical systems (MEMS) microphone
designed to capture sound events. The recorded sound data are represented in columns 9
through 11, which, respectively, correspond to high, mid, and low sound levels. Column 12
represents the amplitude of sound. The recorded sound data can be utilized for different
purposes depending on the application. All sound levels are measured in decibels (dB)
unit, which is the standard unit for measuring sound intensity.

Columns 13 to 15 are only available in the Enviro+ CSV files. Columns 13, 14, and
15 represent oxidised, reduced, and ammonia (NH3) data collected from the MICS6814
sensor. The Enviro+ board includes an analog-to-digital converter (ADC) which is useful
for interpreting gas sensor readings. The (ADC) takes the voltage readings generated by
the sensor, and converts them into resistances that can vary from several hundred Ohms to
several tens of thousands of Ohms based on the different gas levels that are present. Gas
particle levels are recorded in forms of resistance (Ohms).
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Table 2 presents attribute details such as the sensors used to capture different envi-
ronmental data and the units in which the data were recorded. Additionally, it shows the
median values of each attribute from three devices located in three different households.
The table reveals that the median temperature of the three houses falls within the range
of 26 ◦C to 29 ◦C. Moreover, similarities in other attributes are also visible, such as the
median sound amplitude ranging between 20 dB to 30 dB. House A (device 39) shows a
median proximity reading of 0, indicating that during that reading, there was no movement
around the sensing device resulting in zero proximity values. The low Lux level in the light
recordings of all three houses indicates that the devices were possibly kept in shadows
inside the houses. Although the median light reading of House C (device 30) is 0 Lux, the
reading varies widely from 0 Lux to 500 Lux over the recording period of approximately
one year. Figure 1 presents a light heatmap of device 30, confirming this variation.

The sensing devices used in this study were supposed to work 24/7 throughout the
entire duration. However, after analyzing the retrieved data, it came to light that, there
were some time-frames when no data were collected. For example, Figure 2 shows the
heatmap of the count of daily entries from sensing device 30. Each device is expected to
record 1440 (24 × 60) entries every day throughout the collection period except for the first
and the last day. This is because the devices were programmed to capture one record every
minute. In Figure 2, it can be seen that most of the days are bright yellow, representing
the desired 1440 entry count. However, there are a few days showing a lower entry count,
somewhere around 1000 marked in green. There is also a period from December 2021 to
January 2022, where there are zero entries recorded. The sensing devices are programmed
to continue data collection in the event of network failure or other connectivity issues. The
missing segments of Figure 2 indicate that the sensing device was manually turned off.

Figure 1. Light heatmap data from device #30.

Figure 2. Daily entry count heatmap of device #30 data.
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Table 2. Reading units and median values of 3 devices in 3 houses.

Attribute Sensor Unit House A (39) House B (21) House C (30)

proximity LTR-559 nm 0 5 11

humidity BME280 %RH 20.44 33.14 23.63

pressure BME280 hPa 1006.85 941.22 939.91

light LTR-559 Lux 4.22 2.33 0

temperature BME280 ◦C 29.01 26.55 26.59

sound_high MEMS dB 30.43 30.02 30.03

sound_mid MEMS dB 34.08 31.9 31.81

sound_low MEMS dB 99.24 54.01 53.14

sound_amp MEMS dB 27.52 20.28 20.12

oxidised MICS6814 kΩ 46.32 114.64 126.79

reduced MICS6814 kΩ 268.21 240.15 171.31

nh3 MICS6814 kΩ 78.2 89.63 99.16

2.2. Metadata

The dataset includes additional metadata files to provide supplementary information
about the data collected by each sensing device. The metadata are in text files named with
the identification number of the corresponding sensing device. Each metadata file contains
the following six types of information:

• ID: the ID section of the metadata files represents the unique identification number
assigned to the sensing device from which the data were collected. This number is
recognized by the BDL central system and is specific to a single sensing device.

• Data preview: this section of the metadata file displays the first five rows of data
collected by the sensing device, along with the names of each attribute. This provides
a quick glimpse into the data recorded by the device.

• Columns: this section of the metadata file lists the names of the attributes recorded
in the corresponding data file, separated by commas. For example, it may include
attribute names such as ‘id’, ‘date_time’, ‘rpi_id’, ‘proximity’, ‘humidity’, ‘pressure’,
‘light’, ‘oxidised’, ‘temperature’, ‘sound_amp’. This section provides a quick reference
for the types of data collected by the sensing device.

• Data info: the data info section provides information on the data structure of each
attribute, including the index range and total number of entries. It also includes
information on the data type and memory consumption of each attribute. This infor-
mation can be useful for understanding the size and format of the data, as well as for
optimizing memory usage and data processing.

• Data description: the data description section provides a statistical summary of the
collected data for each attribute in a numeric manner. It includes the minimum,
maximum, mean, median, and standard deviation information for each attribute.
Table 3 shows an example of the data description section for one of the data files.

• Date range: this section in the metadata file provides information on the time span
of the data collected by the particular sensing device. Specifically, it shows the date
and time of the first and last recorded data points. This information is important for
understanding the temporal scope of the dataset and for identifying any potential
gaps in the data collection. The date–time data are provided in the following format:
“YYYY-MM-DD HH:MM:SS”.
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Table 3. Sample data description section of a data file.

Proximity Humidity Pressure Light Oxidised Reduced nh3 Temperature

mean 10.43935 22.52375 857.1613 59.54044 205.5385 183.4451 103.5953 26.49848

std 5.972486 6.419771 101.0621 87.02963 326.5619 36.8538 24.45422 2.037828

min 0 4.543291 649.5737 0 0.721915 7.505155 3.230769 11.40154

25% 7 17.88105 742.3814 0 92.79227 154.2389 88.2623 25.1387

50% 11 23.63057 939.9159 0 126.7893 171.3063 99.16373 26.59042

75% 14 27.52975 947.0916 8.13295 222.733 212.9956 111.8474 27.89083

max 55 62.58616 961.5713 692.7939 3567.529 2877.333 1931.097 33.36806

The authors have developed a Python script for generating the metadata files from the
CSV files downloaded from the BDL server. The script employs Pandas and CSV libraries
for analyzing the data and generating the metadata file in text format. The script has been
made available within the dataset [26].

2.3. Data Verification

Ensuring the reliability of readings is of paramount importance in cases where data
are obtained through an individual case study. This is due to the lack of similar studies for
comparison for the identification of any potential anomalies. The data presented in this
description encompass multiple domains of building performance data (BPD) and require
the use of multiple instruments. However, due to the discrete nature of the experiment, it
was not possible to directly verify every category of data presented in this dataset against
real-world data. To maintain the integrity of the data, the authors frequently monitored
the data being collected through the user interface of the BDL system [27] during the
recording period. In addition, the authors obtained actual weather data from Weather
Underground [29] and conducted a side-by-side comparison with the data collected by the
BDL system to ensure its validity.

Figures 3 and 4 depict a comparison between the indoor temperature readings obtained
from the placed sensing devices and the actual outside temperature records acquired from
the Richmond International Airport Station through Weather Underground [29]. Since
capturing indoor temperature readings directly is not feasible, the authors used outside
temperature as a reference scale. It is reasonable to expect a correlation between outdoor
and indoor temperatures. The weather data used in this study were collected from the
Weather Underground database [29].

Figure 3 depicts the temperature recordings from June 2022 obtained from four sensing
devices located in different areas of the house. The green line represents device 39 in the
kitchen, the violet line shows device 37 in the guest room, the pink line represents device
45 in the living room, and the red line represents device 50 in the master bedroom. The
bold black line indicates the actual outdoor temperature. The figures illustrate that the
temperature readings of different devices demonstrate parallel patterns. Additionally, the
data show a striking resemblance between the actual outdoor temperature readings and the
indoor temperature readings from different rooms. Moreover, temperature peaks observed
in the outside temperature around 10th, 12th, and 17th of June are also visible in the indoor
sensor readings.

Figure 4 presents a comparison between the actual outdoor temperature and indoor
temperature readings from two distinct houses (House A and House B) situated in Rich-
mond, VA. The graph displays data from three sensing devices, specifically device 20
located in the bedroom of House B (blue line), device 21 located in the kitchen of House
B (orange line), and device 45 placed in the living room of House A (pink line). The
outside temperature is indicated by a bold black line. The data in this figure pertain to a
4-month period spanning from September 2021 to the end of December 2021. A noteworthy
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observation from this figure is that, despite the decline in the outdoor temperature during
this period, the indoor temperature did not decrease significantly, presumably because of
the use of room heaters. The indoor temperature lines also demonstrate a parallel nature,
indicating a consistent pattern. Comparison of the collected data with the actual outdoor
temperature displayed in Figures 3 and 4 shows a plausible change pattern in temperature
over different time periods, thus substantiating the reliability of the collected data.

Figure 3. Comparison of outside temperature data of June 2022 in Richmond, VA with indoor
temperature records collected by the deployed sensors.

Figure 4. Comparison of outside temperature data from September 2021–December 2021 in Richmond,
VA with indoor temperature records collected by the deployed sensors.
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The verification of certain attributes, such as oxidised, reduced, or sound levels, is
technically challenging due to the absence of a benchmark dataset for comparison. However,
it is plausible for some attributes to have similar readings among the devices of the same
house and also among devices of different houses located nearby. Humidity is such an
attribute. Figure 5 shows the humidity records collected by three sensing devices placed
inside House A and House B. Device 20 is located in the bedroom of House B (blue line),
device 21 is located in the kitchen of House B (orange line), and device 45 is located in
the living room of House A (pink line). Humidity records are recorded in the relative
humidity (% RH) unit. The indoor humidity is in general lower than the outside humidity.
Here, a similarity in the humidity readings can be seen among different devices throughout
the 4 months. Even devices placed in different houses demonstrate resemblance which
indicates the validity of the collected data.

Figure 5. Comparison of humidity records collected by the deployed sensors from September 2021 to
December 2021 in Richmond, VA.

While direct validation of oxidized gas, reduced gas, and sound levels remains chal-
lenging due to the lack of established reference datasets, future research efforts could
explore alternative validation methods, such as sensor calibration experiments, controlled
environment testing, or comparisons with external datasets from similar studies. Addi-
tionally, statistical anomaly detection methods could help assess data consistency over
time. We acknowledge this as an important area for future work, particularly as the dataset
expands in subsequent phases of the study.

2.4. Limitation and Threats to Validity

While this dataset provides a comprehensive record of indoor environmental con-
ditions, certain limitations must be acknowledged. One key challenge is the presence of
missing data, which may occur due to temporary power loss, sensor disconnections, or
hardware malfunctions. Although the data collection system supports both offline and
online modes, instances where devices lose power or are inadvertently removed from their
placement result in data gaps. To mitigate this, multiple sensors were deployed in each
household, allowing for redundancy in data collection. Furthermore, the dataset is limited
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to three single-family houses within the same geographic region, which may affect the
generalizability of findings to other climates or building types. However, this study is part
of a larger data collection effort involving more households and sensing devices, and future
expansions will address this limitation.

3. Methods
This section elaborates on the different components of the data collection methods

used in this study. Beginning with the data collection architecture, sensors used in the
process, sensing device deployment, and participant declaration. The study utilized the
Building Data Lite (BDL) [25] system to collect data. A unique set of sensors were used
to capture the different information from the surroundings. The sensing devices were
deployed to multiple individual houses with the informed consent of the occupants.

3.1. Building Data Lite

The data presented in this paper were obtained using the Building Data Lite (BDL)
system [25]. BDL is a distributed, portable, scalable, and cost-effective indoor environment
sensing system. The BDL system is an open-source platform [30] that facilitates the devel-
opment of customizable and portable sensing devices capable of connecting to a central
server. These sensing devices continuously transmit collected data to the central server via
the internet. However, in case of a connection interruption, the data are stored on the local
storage available in each sensing device. The BDL system features a web interface through
the central server to access and download the collected data.

The data collected in the BDL system are first stored in the local database of the sensing
devices and then transmitted to the central database located in the central server. Both of
these databases are relational databases and share similar characteristics. The Raspberry
Pi (RPi) devices by Raspberry Pi Foundation from Cambridge, United Kingdom, use the
inbuilt MariaDB [31] to store offline data. The central server utilizes MySQL [32] to organize
all collected data and share them through the visualization interface.

3.2. Sensor Array

The BDL sensing nodes used for data collection consisted of either an Enviro or an
Enviro Plus sensor array [28] along with a Raspberry Pi Zero. These sensor arrays were
developed by the company Pimoroni located in Sheffield, Yorkshire, United Kingdom.
Both of these sensor boards function similarly and include the same sensors except for the
analog gas sensor which is exclusive to the Plus edition of Enviro. The following are the
descriptions of the different sensors used in this study.

3.2.1. Temperature, Pressure, and Humidity Measurement

The BME280 sensor [33,34] on the Enviro+ board is a high-precision sensor that can
measure temperature, pressure, and humidity. The placement of the sensor was deliberately
made on the left side of the board with the intention of preventing any potential heat
produced by the Raspberry Pi’s CPU from reaching the sensor, which could interfere with
the precision of the readings. The BME280 is commonly used for indoor environmental
monitoring and can provide valuable information on the conditions of a home or other
indoor space. There is a little slot right next to the sensor which can be useful to lessen
the amount of heat that is generated from the Enviro+ board towards the direction of the
sensor, further improving the accuracy of the readings.

3.2.2. Light, and Proximity Measurement

The LTR-559 sensor [34] on the Enviro and Enviro Plus sensor array can detect the
amount of light in Lux. Lux represents the measure of the intensity of visible light. This
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sensor is useful for monitoring lighting conditions in indoor environments. Additionally,
the LTR-559 sensor includes a proximity sensor, which can detect the presence of objects
within a certain distance from the sensor. This feature can be used to create proximity-
sensitive inputs, which can be useful in applications such as touchless control interfaces.

3.2.3. Sound Measurement

The Enviro+ device features a miniature Micro-Electro-Mechanical System (MEMS)
microphone [28], which facilitates the recording of audio and detection of noise levels [35].
This functionality is particularly useful for monitoring and assessing the degree of noise
pollution. The device is capable of detecting high, mid, and low sound levels, as well as
measuring the amplitude of the sound.

3.2.4. Gas Measurement

The MICS6814 [36] is an analog gas sensor that is exclusively available in the Plus
variant of the Enviro boards. This sensor can detect three distinct groups of gases catego-
rized as reducing, oxidizing, and NH3 according to the datasheet. Notably, the MICS6814
can detect the presence of major gas or vapors like carbon monoxide (reducing), nitrogen
dioxide (oxidizing), and ammonia (NH3), in addition to other gases including hydrogen,
ethanol, and hydrocarbons. The recommended approach to interpret MICS6814 gas data is
to record readings until they reach a steady state, establish a baseline, and then examine
changes in relation to that baseline. This method provides a general indication of the air
quality trend. Further information on how to interpret these readings and the chart is
available in the guide provided by Pimoroni [28].

3.3. Sensing Device Deployment

The dataset presented in this study is part of a larger ongoing study primarily located
in Virginia, USA. In this larger study, a total of 48 sensing devices were deployed in different
locations of 12 individual households. Four sensing devices were placed in each house.
The devices were placed with the acknowledged consent of the occupants living in the
houses following the regulations of the Institutional Review Board (IRB), Virginia Tech.

The deployment of the sensing devices took place during the summer of 2021 and the
devices have been collecting data since. However, not all the sensing devices are connected
to the internet and such devices are collecting data in offline mode. The data from the
offline devices can be retrieved manually with physical access to the devices once they
are brought back. The current study presents data from 10 devices of three individual
houses. Some of these devices were retrieved from the households and some were online
throughout the time span of a year. The rest of the deployed sensing devices are still in the
occupant houses and are still collecting data.

The dataset presented in this study was derived from a singular, non-random case
study. The data collection process took place in three separate housing units, namely
House A and House B, both located in Richmond, Virginia, and House C situated in
Christiansburg, Virginia. Information regarding the placement locations of the sensing
devices can be found in Table 1. The sensors were installed in specific areas of each site,
such as living rooms, kitchens, and bedrooms.

Figure 6 shows an example of sensor deployment in House A floor layout. The green
rectangles in the figure symbolize the sensing devices, while the light green circle that sur-
rounds each sensing device represents the hypothetical coverage area of the device. These
devices are directly connected to the central server through a Wi-Fi internet connection.
Additionally, each device includes a local data backup in case of connectivity issues. These
sensing devices are also portable and can be easily relocated to any location with access to
power and network connection.
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Figure 6. Sensor deployment plan of House A.

4. User Notes
This dataset and the accompanying methodology can serve as a valuable resource

for researchers and practitioners working in various domains, including building energy
efficiency, occupant behavior modeling, and predictive maintenance. Researchers may
leverage the dataset to validate building performance models, facilitating studies on the
interaction between indoor environmental conditions and occupant behavior [37]. The
dataset is well-suited for educational purposes in interdisciplinary fields such as environ-
mental science, data analytics, and smart building technology. It can serve as a foundation
for future studies on the interaction between indoor environmental conditions and resi-
dential health outcomes. Researchers can investigate how temperature stability, humidity
control, and air quality influence occupant well-being, including respiratory health and
sleep quality [38]. Incorporating data on insulation and airtightness in future expansions
of this dataset can further enhance its utility in evaluating energy efficiency and thermal
comfort [39]. This information can also be utilized for predictive smart home automation
modeling, and HVAC control methods are realized depending on environmental trends.
Through the facilitation of cross-disciplinary research in areas such as environmental health,
smart buildings, and human-oriented energy management, this dataset provides a wealth
of resource material to attain sustainable and intelligent living environments.

The presented data have been collected through multiple similar sensing devices thus
the data files include similar categories of data. The authors used the Pandas (Open-source,
Version 2.2.3) [40] and Matplotlib (Open-source, Version 3.9) [41] libraries of Python (Open-
source, Version 3.10) for data analysis and visualization. An example is available in the
form of Jupyter Notebook (Open-source, Version 7.2.2) [42] on Open Science Framework
(OSF) [26]. Given the rapid growth of smart building technologies, this dataset holds the
potential to drive advancements in understanding and optimizing indoor environmental
quality. It may also inform the development of innovative solutions for energy management,
occupant comfort, and health. By making this dataset publicly available, the authors aim
to contribute to the broader scientific community, enabling researchers to explore novel
perspectives and conserve significant time and effort.
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