Abstract

Objective

The objective of the project was to develop a visual interface to the Microsoft Visual C++ Debugger. By organizing and drawing the nodes of linked data structures such as lists, trees, and graphs, the Visual Debugger could greatly improve a programmer’s efficiency in coding, debugging, and testing linked data structures. Furthermore, the debugger could support algorithm animation. Finally, the debugger should be transparent to the client (that is, the debugger’s functionality should not depend on special directives in or modifications to the client’s source code).

The Microsoft Visual Studio debugger uses a tree hierarchy to depict the relationship between a pointer and its target, or between an object and its data members. Although this tree contains all the information needed to debug a program, the tree structure does not allow a user to quickly determine the values or locations of multiple elements in a linked data structure. Our task was to collect runtime data from the existing debugger, and to organize and draw that data in a manner that allowed the user to easily visualize linked data structures.

Design

To obtain the runtime values of variables, the Visual Debugger uses the API of the Microsoft Visual Studio Debugger. The API permits the Visual Debugger to query the Visual Studio Debugger for the runtime values of variables and expressions. The API evaluates these variables and expressions as if they were typed in the Visual Studio Debugger’s watch window. Three limitations of that API constrained the Visual Debugger’s design. First, while the watch window can evaluate a function call by executing that function and capturing its return value, the API cannot evaluate function calls. Therefore, the Visual Debugger cannot synchronize its execution with the execution of the client’s program by passing function calls through the API. Second, the API assumes that the query variable exists in the current stack frame (the stack frame at the top of the runtime stack). To obtain the value of a variable from some other stack frame, the Visual Debugger must specify the scope of that variable in the query to the API. Finally, given an instance of user-defined type, the API does not return the value of each data member of that type. Instead, the API returns the string “{…}”. Therefore, to obtain the value of an object, the Visual Debugger must evaluate each data member of that object individually.

To overcome the latter two limitations of the API, the Visual Debugger maintains a database of symbolic information related to the client’s program, storing the composition of classes, the correspondence between identifiers and values in enumerated types, and the names, types, and scopes of “watched” variables. Ideally, the debugger could parse the client’s .h and .cpp files to gather that symbolic information. Unfortunately, the complexity of the parser needed to extract that symbolic information rivals the complexity of a C++ compiler. Thus, while a parser remains the preferred method for the extraction of symbolic information, designing and implementing a C++ language parser in the allotted time was not feasible. Because the debugger could not automatically gather all the necessary symbolic information, we created an interface that allows the client to specify the composition of classes (that is, the identifiers and types of public and private data members of each class), the relationship between enumerators and integer values in enumerated types, and the names, types, and scopes of variables to be “watched” by the debugger. For example, consider a linked tree data structure consisting of a tree class and a tree node class. To debug the tree’s implementation, the client must specify the composition of the tree node class, the composition of the tree class, and the name, type, and scope of an instance of the tree. The debugger can then determine the value of every node and pointer in the tree, as well as the value of the data element in each node.

Aside from collecting symbolic information related to the client’s program, the other major design obstacle involved handling dynamic arrays. Many implementations of common data structures such as graphs, general trees, and skip lists use dynamic arrays of pointers to represent the relationships between nodes. To support these implementations, the debugger must first support intelligent handling of dynamic arrays. To that end, the debugger uses a transparent heap map to determine the sizes of dynamic arrays. To implement the heap map, we overloaded the global new and delete operators in C++. The overloaded operators not only allocate and de-allocate memory, but also track these memory management operations using a simple data structure. In short, the heap map always stores the base address and size of each dynamically allocated memory block. The Visual Debugger uses that heap map to determine the sizes of dynamically allocated arrays.

Future Work

At present, the Visual Debugger basically consists of three databases. One database stores a project’s symbolic information, which the client specifies using a set of simple forms. The symbolic database has been tested extensively; it contains no known bugs. The second database implements a heap map, which transparently tracks the addresses and sizes of dynamically allocated memory blocks. The heap map has also been tested extensively; again, it contains no known bugs. The third database stores the runtime values of all watched variables. This database has been tested using dynamic arrays and linked lists. Although no known bugs exist, the algorithms that operate on this database are quite complex. Therefore, the runtime database should be tested extensively using complex data structures such as graphs, general trees, and skip lists.

While the Visual Debugger’s back-end databases are well documented and well tested, the existing visualization algorithms (which use the runtime database to draw the watched variables) are undocumented and relatively untested. These algorithms may or may not be useful in the continuing design and implementation of the Visual Debugger. We recommend that these algorithms be completely redesigned to take make better use of the interfaces to the runtime database, the heap map, and the symbolic database. The last major obstacle to the completion of this project is the design and implementation of efficient visualization algorithms that use the existing databases to organize and draw linked data structures.
PAGE
i

