
@ ~ Computer Graphics, Volume 22, Number 4, August 1988

C o n M a n : A V i s u a l P r o g r a m m i n g L a n g u a g e f o r I n t e r a c t i v e G r a p h i c s

Paul E. Haeberli

Silicon Graphics, Inc.
Mountain View, CA 94043

ABSTRACT

Traditionally, interactive applications have
been difficult to build, modify and extend.
These integrated applications provide bounded
functionality, have a single thread of control and
a fixed user interface that must anticipate every-
thing the user will need.

Current workstations allow several
processes to share the screen. With proper com-
municat ion between processes, it is possible to
escape previous models for application develop-
ment and evolution.

ConMan is a high-level visual language we
use on an IRIS workstation that lets users
dynamical ly build and modify graphics applica-
tions. To do this, a system designer dis-
integrates complex applications into modular
components . By interactively connect ing simple
components , the user constructs a complete
graphics application that matches the needs of a
task. A connect ion manager controls the flow of
data between individual components . As a
result, we replace the usual user-machine dialog
with a dynamic live performance that is orches-
trated by the user.

CR Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Tools and Techniques - User interfaces, D.3.2 [Pro-
gramming Languages]: Language Classifications - Data-flow
languages, Nonprocedural languages; 1.3.6 [Computer Graphics]:
Methodology and Techniques - Interaction techniques, Languages;

Additional Key Words and Phrases: Visual Programming
Languages.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1 9 8 8 ACM-0-89791-275-6/88/008/0103 $00.75

Introduction
Often we think of a user interface toolkit as a set of

facilities that a developer can use to shape the feel o f an
application. For example, to make a choice available a
developer can use a pop-up menu or a screen button. But
after the developer compiles an application, the user is left
with a static user-interface that reflects the developer 's
vision. I f the user ' s task doesn ' t fit into the developer ' s
model , then the user must use a different approach or try
to find another application that does a better job.

An alternative is to present users with a toolkit and
let them match it to a given task. In the UNIX* world,
there are lots o f simple tools a user can combine to solve
different problems. The mechanism that joins these tools
is a pipe, a simple one-directional interprocess communi-
cation (IPC) facility. This is an approach where the power
of the sum is much greater than the power of the indivi-
dual parts. ConMan (Connect ion Manager) provides a
conceptual ly similar graphical facility for connecting
visually-oriented tools. With ConMan, developers can
concentrate on the purity of simple components . With
good components that perform individual tasks well, a
user can find a combinat ion to solve problems that the
designers d idn ' t envision.

To escape the mechanical world o f tools and tool_kits,
we ' l l use the culinary metaphor o f a sandwich. Conven-
tional systems present you with a ready made sandwich.
You can add mustard and relish, but most choices have
been made by the sandwich maker and your job is to find
a sandwich that is closest to your needs. ConMan gives
you the ingredients for the sandwich and leaves it to you
to design a good one. This glosses over an important
point: if you aren ' t a good cook, then the sandwich w o n ' t
be very tasty. This isn ' t entirely facetious - the t radeoff
between an expressive system and a ready-made system
will a lways benefit some users and leave others
unsatisfied.

Background
Although there have been amazing advances in

graphics display hardware in the last ten years, applica-
tions have been slow in using the new capabilities pro-

* UNIX is a trademark of Bell Laboratories.

103

¢ SIGGRAPH '88, Atlanta, August 1-5, 1988

vided by the current generation of interactive graphics
workstations. The structure of interactive applications has
changed very little.

A typical application is integrated and self-contained
with a single process and address space. The user
interface is compiled into the program, or read in from an
external description as in [Schulert 85]. The behavior of
the application is described by a textual language that is
compiled into an executable program. Functional binding
happens at compile time and is static.

Users are prevented from expanding the design space
interactively because the scope of an application is often
limited by the vision of its designer. Also, traditional
graphics applications are anti-social because they don' t
play nicely with other applications.

These characteristics often result in the user being
dominated by applications. Instead of the user driving an
application, the user is often driven and constrained by the
application.

We want to use the facilities of the modern interac-
tive medium more effectively to give the user more
expressive power and freedom to construct and modify
applications in a flexible way. Why isn't application
development more like making a bacon, lettuce, and
tomato, cucumber, salami, avocado, OolI-O®t [Heckbert
87] and sushi sandwich? Can't we use the interactive
medium itself to help us?

Visual P rog r a mm ing

Visual programming describes any system that lets
the user specify a program using a two dimensional nota-
tion. Instead of editing a one dimensional stream of char-
acters, the user interacts with a two dimensional represen-
tation. A good discussion of various visual programming
languages is given in [Myers 86].

Smith's Alternate Reality Kit [Smith 86] is a
dynamic simulation environment with a visual interface.
Objects have mass, velocity and a visual representation.
The user can interact with the objects and change how one
object influences another,

Other interesting visual programming systems are
described in [Kimura 86a], [Kimura 86b], [Cardelli 86],
[Blythe 86], and [Galloway 87]. These use two dimen-
sional data-flow constructs to describe program behavior.
Kimura's system, Show and Tell, runs on the Macintosh
computer. It 's a general purpose system that handles pic-
torial and textual data. It has some interesting graphical
constructs for conditionals and iteration.

Cardelli has developed a conceptual framework for a
system he calls Fragments of Behavior. In his system,
each fragment has an interface for communicating with
other fragments and possibly a dialog for communicating
with users. The behavior of each fragment is described in
the Squeak language [Cardelli 85], which resembles
Hoare's language for communicating sequential processes
[Hoare 78].

"~ JotI-O • is a trademark of General Foods.
104

The systems by' Blythe and Galloway use data-flow
constructs to control music synthesis and design digital
filters interactively.

Tanner 's Switchboard [Tanner 86] supports flexible
communication between a population of processes run-
ning under the Harmony operating system.

The World of ConMan

In ConMan, we also use a data flow metaphor. The
user constructs and modifies applications by creating com-
ponents that are interconnected on the screen. The win-
dow manager supports creation and deletion of individual
components, while the user changes the interconnection
by interacting with ConMan, the connection manager.

Figure 1 shows how this interconnection can be
described by a directed graph with components as nodes,
and connections as edges. Connections establish depen-
dencies between one component and another. Each com-
ponent can have up to eight input ports and up to eight
output ports. By interacting with the connection manager,
the user may alter this dependency graph at any time,
without the knowledge of the components.

Figure 1. A directed graph representation.

Any dynamic interaction is easier to demonstrate than
to describe. To show how ConMan works, we'l l discuss a
composite application that lets the user interactively
design swept surfaces. This example will use six simple
components:

• view-ed with sliders. This component controls
the view of a surface with a set of sliders.

• view-ed with hemispherical control. This com-
ponent allows the user to control the view of a
surface with hemispherical control.

• curv-ed. A simple curve editor lets the user
interactively enter or modify two dimensional
shapes.

• sweep. The sweep component takes a shape, for
example a curve from curv-ed, and sweeps it
through space to create a surface.

@ Computer Graphics, Volume 22, Number 4, August 1988
i

Figure 2. A simple ConMan application.

• t a p e . The tape recorder has one input port and
one output port. By interacting with a menu we
can erase the recording, start recording, or play
back what has been recorded. While the
recorder is in record mode, new objects are
saved in a linked list as they arrive.

• r e n d e r . T h e rendering component supports dif-
ferent rendering qualities from wire-frame to ray
tracing. As input, it takes a description of a
geometric object and a set of viewing transfor-
mations.

Now we will show how to combine these tools to
interactively design swept surfaces. First, the user starts
the components and connects them together as shown in
Figure 2. The curve editor is connected to a sweep com-
ponent. Two view editors are connected to the sweep
component. One of these controls the view of the surface.
The other provides a transformation that is iterated to
create a swept surface. We can make a wide variety of

surfaces in this way. For instance, a surface of extrusion
is created by setting this to just translate in z, while a sur-
face of rotation is made by setting the sliders to rotate in x
or y.

There are two types of data that are being communi-
cated between components in this application: short lists
of transformations from the view editors, and descriptions
of geometry from the curve editor and the sweep com-
ponent. A typical output f rom one of the view editors is
shown in Figure 3, while Figure 4 shows the output of the
curve editor.

The user constructs this composite application by
interacting with the connection manager. To do this, the
components were created by making selections on a menu.

Next, the components were interconnected by displaying
the terminals on each component, and drawing wires
between them. This complete network was built in less
than a minute.

I o o o,o

Figure 3. Output from a view editor.

i / " I

i

k

pnt 0.273631 0..696517 to.o
pnt 0.139303 0.363184 0.I)
p i l t 0.457711 0.21393 0.0
p l l t 0.6F6616 0..102985 D.O

o n d p o I y
beoi n t i , m

pnt 0,189054 0,860696 0.0
.pitt 0.661691 0.64f.,766 iF.tl

m i d I t n o

Figure 4. Output from a curve editor.

105

SIGGRAPH '88, Atlanta, August 1-5, 1988

Interacting with the Application
Every component provides a separate context for

interaction: an interaction frame. The interaction frame
of each component supports a visual representation and
lets the user interact with this representation using the
mouse. The window system allows the user to direct
input events to a particular interaction frame.

The composite application consists of a population of
interactive components. Each component reacts to mes-
sages that are received from the user or from other com-
ponents. This reaction normally involves updating the
visual representation and possibly sending a message out
one of its output ports. Since components are dependent
on each other, changes made while interacting with one
component can propagate to other components.

In this example, interactive changes to the shape in
two dimensions can propagate to the sweep component.
This lets the user edit the shape in two dimensions and see
the result in three dimensions, Interacting with the top
view editor causes the sweep component to display the
surface from different view points. In the same way,
interaction with the lower view editor modifies the incre-
mental transformation that is applied by the sweep com-
ponent as it generates the surface.

Extending the Application
This composite application (sandwich) can easily be

modified or extended. Suppose we want to create an
animated set of views of the swept surface. This can be
done by adding a component that acts as a tape recorder,
as shown in Figure 5.

The tape recorder has one input port and one output
port. By interacting with a menu we can erase the record-
ing, start recording, or play back what has been recorded.

While the recorder is in record mode, new objects are
saved in a linked list as they arrive. Notice that the view

editor output is connected to the recorder and the sweep
component. Any output port can deliver data to any
number of input ports. This lets us monitor the effect of
the view editor as we record its output. After a series of
objects has been recorded, the recording can be played
back once or continuously in a loop. While the recorder is
playing and the view of the surface is changing, we can
interact with the shape of the surface or the sweep
transformation and see the result in real time.

The recorder is a general purpose component that can
be used to save and replay a sequence of objects whether
they are viewing transformations or geometrical shapes.
So we could also use a recorder to play a sequence of dif-
ferent shapes created by the curve editor.

If we decide we don' t like using sliders to control our
view of the swept surface, we can use different kind of
view controller. Figure 6 shows how a hemispherical
viewer can be added to the application. Notice that the
output of b o t h view editors are connected to the view
input of the sweep component. The view of the swept sur-
face will follow the sliders or the hemispherical view edi-
tor, depending on which component we interact with.

This demonstrates how different user interfaces may
be bound to an application. I t 's equally easy to support
multiple simultaneous user interfaces.

As a final example, let 's create a shaded rendering of
the swept surface. To do this, a general purpose rendering
component is used with its own view editor. Figure 7
shows how the renderer has been connected.

i ~;~:.~a 7 - ? - 7 - 7 - - ?i-~

: [<" o ~ " 5 t t , , , e

Figure 5. Adding a tape recorder.

106

~ Computer Graphics, Volume 22, Number 4, August 1988

. . . . - 7 ,

"! °u"u~:5 t- ,-.oa,- '

' I i
l I

: [

Figure 6. Using a Hemispherical view editor.

Figure 7, Connecting in a renderer.

107

SIGGRAPH '88, Atlanta, August 1-5, 1988

Other Useful Data-Flow Components
Many other components have been developed for this

data-flow environment. A watch component lets the user
inspect data that is flowing across the screen, and a simple
interface to the file system has also been developed. A
mixer has two input ports and one output port, This com-
ponent can be used to interpolate between two views, two
shapes or two rgb colors. The mixer can also be used to
concatenate the two inputs or randomly interpolate
between individual components of the inputs.

A component called tolines converts an image into
outline geometry. Figure 8 shows this component being
used with sweep and render to make an extruded logo. A
low-pass filter component can be placed between a view
editor and another component to filter view transforma-
tions over time (See Figure 9). With this component in
place, a sudden step translation will result in the geometric
model moving along an exponential curve towards the
new position in time. This kind of pseudo-dynamics gives
the model a feeling of mass. The low-pass filter com-
ponent is also competely generic - it can be applied to
changing geometry as well.

A graftal plant [Smith 84] component accepts a gene
description on one of its input ports, a leaf shape and view
transform on other input ports. Figure 10 shows this com-
posite application.

As a final illustration, figure 11 shows a paint com-
ponent that gets the current drawing color from a simple

color editor, and the brush shape from a curve editor, The
curve editor output is connected to a component that
transforms a geometric shape. This gives the user control
over the scale and rotation of the brush.

Implementation
ConMan runs on the Silicon Graphfcs IRIS Worksta-

tion under the Mex window manager [Rhodes 85]. Each
component process is programmed in the C programming
language using the IRIS graphics library [Silicon 84] for
graphic display. A detailed description of how this system
is implemented can be found in [Haeberli 86].

The connection manager ConMan is a user process
running under the window manager. Client components
need to describe text labels for input and output ports,
The user needs to be able to alter the interconnection of
components.

When a client component starts up, it sends messages
to ConMan indicating the input and output ports it uses,
with a text string to label each port. The user can interact
with the connection manager to add or delete connections
between different ports on different components. The
structure of the interconnection is maintained by the con-
nection manager.

The graphics system supports an input queue to
deliver events to each component. User, system and
interprocess communication (IPC) events appear in this
input queue. User events indicate changes in the mouse

Figure 8. Extracting geometry from an image to make an extruded logo.

108

~ Computer Graphics, Volume 22, Number 4, August 1988

Figure 9. Using a low-pass filter
for pseudo-dynamics.

Figure 10. An application for
graftal plant design.

Figure 11. A paint application.

109

SIGGRAPH '88, Atlanta, August 1-5, 1988

buttons, or position. System events notify a component
that it should redraw because its window has received
additional exposure. IPC events indicate that a message is
available from another component.

Communication between components is accom-
plished by typed, variable sized, synchronous messages.
To send a message, data is written into a file that is associ-
ated with the output port. Then the component notifies the
system that there is new data available from this particular
output port. This blocks the sender and places notification
tokens in the input queues of all the components that are
dependent on this output port. When a component
receives an IPC event, it reads the message from the
appropriate file, and explicitly replies.

In the current implementation, all data is transferred
using a textual interchange format. System performance
could be improved by using binary messages. The IPC
mechanism described briefly above, using files and special
system calls has recently been reimplemented to use stan-
dard UNIX sockets.

Conclusions
By providing graphical support for communicating

sequential processes we create a primitive visual language
that lets users interactively construct and modify applica-
tions on the fly. The connection manager lets the user
create dynamic visual expressions out of interactive com-
ponents.

Currently, the only data types (nouns) being transmit-
ted between components are transformations, geometric
shapes, RGB colors and bitmap images. We plan to
extend the vocabulary by adding data types to describe
text, fonts, and streams of input events. We also expect
the vocabulary of data-flow components (verbs) to grow
to support key frame animation, solid deformations and
image processing.

ConMan has many implications for application
developers and users of interactive workstations. Applica-
tions are really programmed at two distinct levels. A
developer uses a conventional programming language at
the component level. Both the user and the developer use
a visual language at the level of the application.

Developers are encouraged to break monolithic appli-
cations into functional components that communicate with
each other using high level data structures. Careful design
of components makes them usable in many different con-
texts, and communication between applications is easy.
ConMan promotes software modularity and healthy com-
petition between components. For example, if a better
view editor becomes available, it can easily be used by
everyone. In this system, sharing of functionality happens
at the component level.

Instead of supporting a single interaction frame with
a single process, we use multiple processes in a windowed
environment to provide multiple interaction frames, each

with their own user interface state. An application is an
orchestrated collection of interaction frames.

Components and the data passed between them form
a vocabulary that is used to express the behavior of an
application. This allows the user to explore the design
space instead of being limited by the vision of the system
implementors. The functionality of applications is open-
ended.

Control over the application is returned to the user.
Components of the user interface can be easily exchanged
with each other. In this system, multiple simultaneous
interaction techniques may be dynamically bound to an
application. The functional binding of an application is
completely dynamic.

That applications must be monolithic and self-
contained is an illusion. We use the interactive medium
itself to let the user design and extend applications.

Acknowledgement
I would like to thank Rob Myers for his continued

enthusiasm for this project. Eric Brechner now at RPI
implemented a version of ConMan that uses UNIX sockets
for interprocess communication. Thanks to John Danskin
at Digital Equipment Corporation in Pain Alto for allow-
ing me to use their digital film recorder for the illustra-
tions. Special thanks also to Dan Sears and Amy Smith for
help with the manuscript.

References
[Blythe 86] David Blythe, John Kitamura, David Gallo-
way and Martin Snelgrove, "Virtual Patch-Cords for the
Katosizer", Computer Systems Research Institute, Univer-
sity of Toronto, Toronto, Ontario, Canada, 1986.
[Cardelli 85] Luca Cardelli, "Fragments of Behavior",
Personal Communication. DEC Systems Research
Center, Pain Alto, CA, 1985.
[Cardelli 85] Luca Cardelli, and Pike, R., "Squeak: a
language for communicating with mice", Computer
Graphics, 1985.

[Galloway 87] David Galloway, David Blythe and Martin
Snelgrove, "Graphical CAD of Digital Filters", Proceed-
ings of IEEE Conference on Computers, Communications,
and Signal Processing, June 1987.
[Haeberli 86] Paul Haeberli, "A Data-How Manager for
an Interactive Programming Environment", Proceedings
of Usenix Summer Conference, 1986.
[Heckbert 87] Paul S. Heckbert, "Ray Tracing dolI-O ®
Brand Gelatin", Computer Graphics, 1987. [Hoare 78]
C.A.R. Hoare, "Communicating Sequential Processes",
Communications of the ACM 21(8), August 1978.

[Kimura 86a] Takayuki Dan Kimura, "Deterrninancy of
Hierarchical Dataflow Model", Technical Report WUSC-
86-5, Department of Computer Science, Washington
University, March 1986.

110

t ~ ~(~ Computer Graphics, Volume 22, Number 4, August 1988
I I

[Kimura 86b] Takayuki Dan Kimura, Julie W. Choi, and
Jane M. Mack, "A Visual Programming Language for
Keyboardless Programming", Technical Report WUSC-
86-6, Department of Computer Science, Washington
University, June 1986.
[Myers 86] Brad A. Myers, "What are Visual Program-
ruing, Programming by Example, and Program Visualiza-
tion?", Proceedings of Graphics Interface 1986.

[Rhodes 85] Rocky Rhodes, Paul Haeberli, and Kipp
Hickman, "Mex - A Window Manager for the IRIS",
Proceedings of Usenix Winter Conference, 1985.
[Schulert 85] Andrew J. Schulert, George T. Rogers and
James A. Hamilton, "ADM A Dialog Manager",
Proceedings of SIGCHI 1985.

[Silicon 84] Silicon Graphics Inc., IRIS User's Guide,
1984.
[Smith 84] Alvy Ray Smith, "Plants, Graftals, and Formal
Languages", Computer Graphics, 1984.
[Smith 86] Randal. B. Smith, "The Alternate Reality Kit:
An Environment for Creating Interactive Simulations."
Proceedings of the IEEE Computer Society Workshop on
Visual Languages, 1986.
[Tanner 86] Peter B. Tanner, Stephen A. MacKay, Dar-
lene A. Stewart, and Marceli Wein, "A Multitasking
Switchboard Approach to User Interface Management",
Computer Graphics, 1986.

Ill

