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An ability to efficiently compute the electrostatic potential produced by molecular charge
distributions under realistic solvation conditions is essential for a variety of applications. Here, the
simple closed-form analytical approximation to the Poisson equation rigorously derived in Part I for
idealized spherical geometry is tested on realistic shapes. The effects of mobile ions are included at
the Debye—Hiickel level. The accuracy of the resulting closed-form expressions for electrostatic
potential is assessed through comparisons with numerical Poisson—-Boltzmann (NPB) reference
solutions on a test set of 580 representative biomolecular structures under typical conditions of
aqueous solvation. For each structure, the deviation from the reference is computed for a large
number of test points placed near the dielectric boundary (molecular surface). The accuracy of the
approximation, averaged over all test points in each structure, is within 0.6 kcal/mol/|e| ~kT per
unit charge for all structures in the test set. For 91.5% of the individual test points, the deviation
from the NPB potential is within 0.6 kcal/mol/|e|. The deviations from the reference decrease with
increasing distance from the dielectric boundary: The approximation is asymptotically exact far
away from the source charges. Deviation of the overall shape of a structure from ideal spherical does
not, by itself, appear to necessitate decreased accuracy of the approximation. The largest deviations
from the NPB reference are found inside very deep and narrow indentations that occur on the
dielectric boundaries of some structures. The dimensions of these pockets of locally highly negative
curvature are comparable to the size of a water molecule; the applicability of a continuum dielectric
models in these regions is discussed. The maximum deviations from the NPB are reduced
substantially when the boundary is smoothed by using a larger probe radius (3 A) to generate the
molecular surface. A detailed accuracy analysis is presented for several proteins of various shapes,
including lysozyme whose surface features a functionally relevant region of negative curvature. The
proposed analytical model is computationally inexpensive; this strength of the approach is
demonstrated by computing and analyzing the electrostatic potential generated by a full capsid of
the tobacco ring spot virus at atomic resolution (500 000 atoms). An analysis of the electrostatic
potential of the inner surface of the capsid reveals what might be a RNA binding pocket. These
results are generated with the modest computational power of a desktop personal computer. © 2008

American Institute of Physics. [DOI: 10.1063/1.2956499]

I. INTRODUCTION

The utility of the electrostatic potential for gaining un-
derstanding of the function of proteins1 and nucleic acids®
has long been established.'*'* Electrostatic effects can be
expected to be critical to the function of viruses;' > in the
emerging field of nanomaterials, electrostatic properties of
viral capsids have been exploited to package nonviral
cargoes.17 Traditionally, methods based on numerical solu-
tions of the Poisson-Boltzmann (PB) equation—the numeri-
cal Poisson-Boltzmann (NPB) approach—have been used to
compute the electrostatic potential of biological structures.
While currently these methods are arguably the most accu-
rate among practical approaches based on the implicit sol-
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vent framework,'® the use of the NPB methodology to study
electrostatic properties of biomolecules is often associated
with algorithmic complexity and high computational costs,
especially for large structures. For example, a 2001 pioneer-
ing NPB-based study of the ribosomal complex—a structure
of nearly 100 000 atoms—required sophisticated parallel
computations on 343 CPUs of the Blue Horizon
supercomputer.19 Over the seven years that have passed since
that landmark result, the computational costs of NPB algo-
rithms continued to decrease,”"*' although the computational
price one has to pay for the associated accuracy is still non-
trivial, as even larger atomic-resolution structures such as
viral capsids move into the focus of structural biology.22

In Part I of this work, we have shown that a set of
simple, closed-form expressions valid everywhere in three-
dimensional (3D) space can be derived for the electrostatic
potential produced by an arbitrary charge distribution inside
a highly symmetrical molecular shape. Since the goal of this
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FIG. 1. (Color online) Definition of the geometric parameters that enter the
analytical formulas (1) and (2) used to compute the electrostatic potential ¢;
due to a single charge located inside an arbitrary biomolecule (in the ab-
sence of mobile ions). Here d; is the distance from the source charge ¢; to
the point of observation where ¢; needs to be computed. The distance from
the point of observation to the dielectric boundary (molecular surface) is p;
p <0 for points inside the boundary. The so-called effective electrostatic
size of the molecule, A, characterizes its global shape and is computed
analytically as described in Ref. 24. The distance from the point of obser-
vation to the “center” is then defined as r=A+p. Likewise the position of
the charge, r;, is defined as A minus the distance of the charge to surface
(not shown).

work is to deliver the most computationally effective imple-
mentation of the analytical approximations from Part I, we
focus on the simplest of them. Should we find that the accu-
racy of these approximations on realistic structures is accept-
able, the implementation of the analytical approximation will
represent the first practical model based on the ideas pre-
sented in Part L.

The main result of Part I is a set of analytical approxi-
mations to the Poisson equation that give the electrostatic
potential produced by a single point charge ¢g; inside the mol-
ecule. The analytical potential is defined everywhere in
space, both inside and outside the dielectric boundary sepa-
rating the solvent from the solute,

¢1nsideziﬁ_@<L_L> 1
' €in di A €in €out 1+ aﬂ
€out
A2 €in

+ o
VA2 =)A= ) + A% Eou

(1)

a(l - &>
¢9utside — & 1 (1 + a) _ €out (2)
l €in €in di r ,
<l + a-)
€out
where the proposed adaptation of the geometric parameters
of the formula to realistic geometries is given in Fig. 1. In
what follows, we will be using the value?® of the constant
a=0.580127 for consistency with Part I. Although this value
is only optimal in the specific sense discussed in Part I that
pertains to perfect spherical geometry, we will see below that
for real biomolecular structures of variable shapes, the “op-
timal” interval is very broad and includes a=0.580127.
The above formulas represent the potential generated by
a single charge ¢;; the total potential due to a realistic charge
distribution is obtained by the superposition principle via

J. Chem. Phys. 129, 075102 (2008)

\\\ gbut
g)ut,k“ ————— T %1

FIG. 2. (Color online) The definition of geometrical parameters that enter
Egs. (3)-(8) in the case of nonzero ionic strength of the solvent. A sharp
dielectric boundary is assumed; the inside of the molecule, region I, is
characterized by its constant dialectic value €,; the dielectric of the outside
(solute, regions II and III) is also a constant, €,,. Salt ions exist only in
region III. The boundary between regions II and IIl—the Stern layer—is
shown as a dashed line. The geometrical parameters are the same as the «
=0 case (Fig. 1) with the addition of one new parameter s;, defined as the
distance from the charge g; to the intersection of the Stern layer with the
“distance to surface” line. The thickness of the Stern layer—distance from
the surface of the molecule to the Stern layer—is denoted by b.

summation over all charges inside the molecule. Note that
the analytical approximation for the potential in the solvent
space is nonsingular everywhere, while the analytical ap-
proximation for the inside potential diverges at every point
charge.

Two additional steps are required for Egs. (1) and (2) to
be useful in practice. First, the model must be adapted to
incorporate the effects of nonzero ionic strength in the sol-
vent space. Second, the accuracy of the model must be as-
sessed for realistic biomolecular shapes. In particular, one
has to identify and classify regions of space where the ap-
proximation may break down.

We begin by incorporating salt effects into the approxi-
mation given by Egs. (1) and (2). It is unclear whether the
approach we used in Part [—starting from the exact infinite
series solutions of the (linearized) PB equation—can pre-
serve the appealing simplicity of these formulas in the case
of k# 0. This is because, in the « # 0 case, the mathematical
structures of the solution of the PB equation inside and out-
side the dielectric boundary are significantly more complex
and substantially different from each other unlike in the
k=0 case. We therefore follow a different strategy: The use
of a physically realistic ansatz that becomes exact in a set of
limiting cases considered below. The ansatz is constructed to
give the desired approximate solution in the Debye—Hiickel
limit. We note that this general strategy has been successfully
used to adapt the generalized Born model for the case of
nonzero ionic strength.25

Compared to the no-salt case (Fig. 1), the space is now
partitioned into three regions: Solute (region I), solvent in
the immediate vicinity of molecular surface (region II), and
solvent containing mobile ions (region IIT) (see Fig. 2). The
Stern layer accounts for the effects of ion hydration, which
sets a minimal distance b around the molecular surface
beyond which mobile ions do not penetrate.

There are no mobile ions in regions I and II, and thus the
ansatz we seek in these regions can differ from the no-salt
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formulas [Egs. (1) and (2)] by the same additive constant.
We find an approximate ansatz for electrostatic potential in
the region with mobile ions (region IIT in Fig. 2) by noting
that without mobile ions, Eq. (2) is mathematically equiva-
lent to the sum of two point charge potentials proportional to
1/d; and 1/r, respectively. A point charge potential in the
presence of a homogeneous ionic environment has the form
of a Yukawa potential: ~e™*"/r. Therefore, it is natural to try
the following ansatz (we denote €,/ €,,=B):
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The ansatz has introduced three unknown constants, D,
E, and F. The approach we take to determine the value of the
constants is as follows. We assume a spherical geometry and
apply a set of boundary conditions and limiting cases for
which exact solutions of the PB equation are known for
some simple charge configurations. The first two constants,
D and E, are determined by (i) requiring that Eq. (5) be-
comes the exact solution of the (linearized) PB equation for
a point charge at the center of a sphere and (ii) by requiring
the continuity of the tangential components of the electric
field at the Stern layer, (9/36)¢pr|arp= (9/ 3O D" |4sp. The
value of constant F is chosen to ensure the continuity of the
approximate potential between regions II and III,
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with s; defined in Fig. 2.

When constructing the above equations we had a choice
of boundary conditions to satisfy. As discussed in Part I, the
approximate solution cannot satisfy all of the boundary con-
ditions simultaneously: In the no-salt case the continuity of
dielectric displacement perpendicular to the dielectric bound-
ary was not enforced. For consistency, we also do not en-
force this condition here. As it turns out, this choice results in
algebraically simpler approximate formulas. One can also
check explicitly that with F, D, and E so defined, in the limit
k—0 Egs. (3)—(5) reduce to the no-salt case of Egs. (1) and

2).
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Il. METHODS
A. Structures

The structures used to test the analytical electrostatic po-
tential against the numerical PB reference are selected as
follows. We start from the 600 representative biological mol-
ecules used for the testing purposes in earlier works. 2%
Then, numerical PB solvers DELPHI-II (Refs. 1 and 27) and
MEAD (Ref. 28) with settings described in Sec. IT C below are
used to generate the electrostatic potentials on a 255X 255
X 255 cubic grid. Then, 20 of the 600 structures are excluded
from the test set because either DELPHI-II or MEAD fail to
output the potential map. For most of the failed cases the
attempted calculation fails due to the requested memory ex-
ceeding the 1 Gbyte random access memory (RAM) capabil-
ity of our PC. In addition to the above structures, we have
also considered a 12 base-pair fragment of B-DNA con-
structed with canonical parameters. This important test case
is discussed separately and is not included in the bulk statis-
tical analysis of the above 580 structures.

The tobacco ring spot virus (TRSV) capsid is con-
structed from 60 identical monomers. The Protein Data Bank
(PDB) file 1A6C contains the x-ray crystallographic coordi-
nates of the single monomer at 3.50 A resolution; the trans-
formation matrix given in the PDB file header is used to
properly rotate and align each monomer to form the com-
plete capsid icosahedral structure.

B. Generation of molecular surfaces

For each of the 580 biomolecules in the test set de-
scribed above, we obtain the molecular surface through the
program MSMS.? Unless otherwise specified, we use a
probe radius of 2.0 A and a triangulation density of 3.0 ver-
tices per square A. The molecular surface sets the boundary
between the solute and solvent dielectric environments. The
vertices that make up the molecular surface are then used as
a basis for the sample points used to test the analytical for-
mulas against the NPB reference. We use 2.0 A probe radius
instead of the more typical 1.5 A as a means of mitigating
the effects of differences in the surface representation used
by the reference NPB solvers and MSMS.

C. Generation of reference NPB electrostatic potential

The reference electrostatic potential around each of the
test structures is computed using DELPHI-I (Refs. 1 and 27)
with a 255X 255X 255 cubic box. The default MEAD and
DELPHI-II convergence criteria are used in all cases. Grid
spacing is 0.5 A.

The following physical conditions have been used for
the 580 realistic biomolecular structures. The solvent is as-
sumed to have a dielectric constant of 80, a salt content of
0.145M, and an ion exclusion radius of 2.0 A. The internal
medium is assumed to have a dielectric constant of 4.

D. Sampling points

The electrostatic potential estimations provided by nu-
merical solvers at the molecular surface—which is taken to
represent the dielectric boundary in this work—are sensitive
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to the details of the definition of the surface. To make a
connection with physical reality (finite ligand size) and to
avoid artifacts related to surface definition, the points are
sampled 1.5 A away from the surface by projecting each
surface vertex outward 1.5 A along its surface normal.

For each sample point defined above, two potential val-
ues are obtained: ¢ (the analytical approximation) and @NPB
(the numerical reference). ¢ is calculated via Eqs. (4) and
(5). We use «=0.122 throughout, which corresponds to
0.145M concentration of monovalent salt in the solvent.
¢"PB is taken to be the value of the potential of the nearest
finite-difference grid point.

When testing a potential field on a surface in the vicinity
of the dielectric boundary, one has to make sure that all the
test points lie within the intended region of interest: Either
the high dielectric solvent space, regions II and IIT (outside
the boundary), or the low dielectric solute regions I (inside
the boundary) (see Fig. 1). One can check that this condition
is satisfied for the set of parameters used here: NPB grid
resolution R=0.5 A, probe radius used to compute the mo-
lecular surface probe=2.0 A, and the projection length along
surface normal p=1.5 A. In general, the condition
probe radius >p+R/2 ensure that a normal vector of length
|p| that begins at the dielectric boundary remains entirely
within one dielectric region. It also ensures that the NPB grid
point closest to the end of that vector—where the reference
potential is sampled—is also in the same region.

1. Visualization

The potential ¢ or ¢N*® computed at each sampling
point as described above is visualized at the corresponding
vertex point right on molecular surface; that is, the potential
value is “projected back” on the dielectric boundary along
the normal to the surface. We use a continuous color scale
and the accepted color scheme, in which red corresponds to
negative values of the potential, blue to positive, and white
to zero. All analytical calculations and visualizations are
performed by the GEM package described below.

E. Protonating the TRSV capsid

The standard continuum electrostatics me:thodology30’31

is used to protonate the viral capsid. The full structure con-
tains 4617 titratable groups—too many for this methodology.
We therefore reduce the number of titratable groups via the
following steps: We generate a subsection of the capsid sur-
face such that one monomer unit is completely surrounded
by other monomers. This results in a nine monomer (en-
neamer) subsection of the surface with one unit in the center
and eight units surrounding it. The enneamer contains 981
titratable sites, which are still too many for the standard ap-
proach. Only the groups in the central unit are considered to
be titratable in the calculations, the others are set in their
standard protonation states. The total number of groups
treated as titratable is therefore reduced to 125.

The AMBER (Ref. 32) set of partial atomic charges is
used here for the protein charges. For the protonated states of
Asp and Glu, in which the correct location of the proton is
not known a priori, we use a “smeared charge” representa-
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tion in which the neutralizing positive charge is symmetri-
cally distributed: 0.45 on each carbonyl oxygen atom and 0.1
on the carbon atom. The web server H++ (Ref. 30) is used to
perform the calculations with the following settings: 0.145M
monovalent salt concentration, internal dielectric of 4, and
external dielectric of 80. The computed pK, of the central
unit are used to set its protonation state at each pH. The full
capsid is then constructed from this protonated unit as de-
scribed above. The biologically relevant pH interval from 4
to 9 is divided into 100 equidistant points: For each pH value
we construct the full capsid in the corresponding protonation
state.

F. Software implementation of the analytical model

Analytical formulas described in this work are imple-
mented in a software package, GEM, freely available from the
authors upon request. GEM is a tool for computing, extract-
ing, visualizing, and outputting the electrostatic potential
around macromolecules. Basic selection tools and structural
representations are available. In addition, GEM supports read-
ing and writing potential field files in the format adopted by
the DELPHI-II package, reading potential field files in the for-
mat of the MEAD package, mapping electrostatic potential to
the molecular surface, image output in Targa file format
(TGA) format, and a graphical user interface. There is no
predefined limit on the spatial resolution of the input/output
potential field maps. All electrostatic surface images used in
the paper were generated through GEM. The program can
either be run in batch mode or through a graphical
user interface and is currently available for Linux and
Macintosh OSX.

1. GEM performance analysis: Memory overhead

One attractive feature of GEM that sets it apart from all
available packages based on NPB methodology is the ability
to solve for electrostatic potential at points of interest inde-
pendently from each other. NPB-based solvers must solve for
the entire domain in order to provide solutions to even a
single point of interest; this prerequisite is the source of ex-
tremely high memory requirements when those methods are
applied to large molecules. The freedom from this limitation
that GEM provides is a crucial practical advantage when ana-
lyzing the electrostatic properties of such molecules. As an
example, the RAM required by GEM to store the potential
map of the surface of the TRSV virus consisting of 651 544
surface grid points is only 30 Mbytes. This is an insignificant
overhead for even a modest desktop computer. The corre-
sponding requirements are orders of magnitude larger for the
NPB solutions. For example, in order to store a typical finite
mesh (at a typical resolution of 0.25 A per grid point) of
floating point values for a molecule of the size of TRSV
virus, about 1200° (1 440 000 000) separate grid points
would be needed, requiring a minimum of nearly 13 Gbytes
of memory, assuming 8 byte double representation per mesh
point.

2. GEm performance: Computational overhead
Due to the additivity of the electrostatic potential, GEM
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must compute the contributions from each charge in the mol-
ecule to each point of interest; without any further approxi-
mations its time complexity is O(NP), where N is the num-
ber of atoms in the molecule and P is the number of points of
interest. The algorithm scales well with the number of points
of interest or the number of charges in the molecule. Of
course, the current implementation does not scale so well if
the problem is such that the number of points of interest is a
function of the number of atoms in the molecule. Work is
now in progress to improve the time complexity in the worst
case using standard numerical techniques such as multipole
expansion.

lll. RESULTS
A. Accuracy of the analytical approach

Exact solutions of the PB equation for realistic biomo-
lecular shapes are not available in practice; we therefore re-
sort to the accepted approximate numerical solutions to test
our analytical approximations for the electrostatic potential.
For testing, we use a set of 580 representative biomolecules®®
(see Sec. II).

The reference numerical solutions are generated with the
popular finite-difference PB solver DELPHI-II (Refs. 1 and 27)
using the default parameter settings. As discussed in Part I,
there is no unique way of comparing two scalar fields in
three dimensions. One could, for example, consider a global
metric such as root-mean-square deviation (rmsd) from the
reference over the entire solute space. (The metric would
have to be appropriately defined to ensure convergence.)
However, such a metric would likely underestimate the er-
rors involved: Note that by construction the approximate ¢
becomes asymptotically exact far away from the charge
sources. Conversely, one expects the error to increase as one
approaches the molecular surface. We therefore argue that
comparing the potentials at or right outside the dielectric
boundary (which is defined as molecular surface) is a reason-
able choice for the purposes of testing the quality of our
analytical approximation ¢. As was shown in Part I for ide-
alized geometries, this metric is a more sensitive test of ac-
curacy of the approximation than one based on electrostatic
part of solvation free energy, which is an indirect metric. An
additional argument for assessing the errors of the potential
directly is that due to continuity of ¢ at the boundary, this
metric will automatically test both the inside and the outside
analytical approximations. Also, we shall soon see that the
ability to visualize the potential at the 2D surface proves
critical for investigating the performance of the approximate
solutions in various regions of space. To make connection
with physical reality—ligand probe of finite size—we com-
pute the actual error not right at the dielectric boundary but
at a surface located 1.5 A outside the dielectric boundary
(see Sec. II). In this work, the error is estimated as ¢
- ¢"PB over a combined total of approximately ten million
vertex points that define the sets of triangulated molecular
surfaces for the test molecules. The distribution of the error
is shown in Fig. 3; the deviation from the NPB reference is
within kT (per unit charge |e|) for the vast majority of points.
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FIG. 3. (Color online) The distribution of error (¢p—¢""B) between the
electrostatic potential values computed via the analytical approach intro-
duced here and the standard numerical PB reference DELPHI-I. The error
value is computed 1.5 A outside the dielectric boundary, for every vertex on
the corresponding molecular surface of each of the 580 representative bio-
molecules used as the test set. A total of 9 421 303 vertices are analyzed; to
obtain the distribution, the horizontal axis is partitioned into 1000 equidis-
tant bins. For 91.5% of the vertices, the error |p—¢NPB| lies within k7/|e|.
The error is within 2k7/|e| for 98.1% of the vertices.

An examination of molecular structures corresponding to
the tails of the error distribution in Fig. 3—cases where the
per vertex deviation from the NPB reference far exceeds
kT—should give clear clues as to what one may expect from
the analytical approximation in the worst case. To this end,
we have identified the maximum value of the deviation
|p— NPB| for each of the 580 structures in the test set. For a
given structure, the maximum deviation was determined
among all vertices on the test surface described above. The
structures were then sorted down, from the worst performers
to the best, according to these maximal deviations from the
NPB reference. A careful analysis of 15 structures at the top
of this list reveals that all of the worst performers share the
same geometrical characteristic: The largest |p— ¢™"B| devia-
tion occurs in deep and narrow indentations on molecular
surface. The two typical cases, actually corresponding to the
first and second worst performers, are shown in Fig. 4.

Several conclusions can be made by examining the dis-
tribution of (¢— @ '®) in the near vicinity of the dielectric
boundary. First, it is clear that inside some of the deepest and
narrowest indentations on the dielectric boundary, the ana-
lytical approximation significantly underestimates the maxi-
mum absolute value of the reference NPB potential, by
8.5 kcal/mol/|e| in the worst case, and by 7.1 kcal/mol/|e]
the next worst. This type of underestimation of |$NPB| for
these regions of solvent space should not be surprising: The
solutions of the Poisson equation around deep narrow re-
gions of high dielectric are very different from that for a
sphere.3 3 Similar deviations were observed and discussed
earlier in the context of the generalized Born model.** Note
that the radius of curvature of a sphere can, in principle,
range from zero to +o (plane) but can never be negative. The
indentations shown in Fig. 4 correspond to regions of high
negative curvature.
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FIG. 4. (Color) The distribution of the deviation of the approximate analyti-
cal potential from the NPB reference (¢p— ¢"*B) near the dielectric boundary
of the two “worst performer” biomolecular structures. These exhibit the
largest and second largest absolute deviations from the NPB reference
among all the 580 molecule test set. Top: PDB ID 1BXO; bottom: 1CI1D.
The difference (¢p— ¢NPB) is computed 1.5 A outside the dielectric boundary
(molecular surface) and visualized on the surface using a continuous color
scale. Blue: positive values; white: zero; red: negative. The numerical value
of the largest deviation for each structure, in kcal/mol/|e|, is shown on the
surface near the region where it occurs. The largest deviation is reduced
considerably, right panel, if a smoother dielectric boundary is used. The
smoothing effect is achieved by using a larger probe radius of 3.0 A to
compute the molecular surface that represents the boundary. The GEM pack-
age is used for computing the approximate analytical potential and visual-
izing the deviation from the NPB reference potential computed by DELPHI-IL.

At the same time, these large deviations of the approxi-
mate potential from the NPB reference occur only at a small
subset of points deep inside the narrow indentations and do
not occur outside these regions of highly negative curvature.
This is easily seen both from the potential maps (Fig. 4) and
from the rms values of (¢p—@™'B) computed over the entire
test surface: For the two structures shown in the figure, the
rmsds are 1.3 and 1.2 kcal/mol/|e|. Although several kcal/
mol difference with the NPB reference may seem like a very
large error, we argue that most of it may not be physically
realistic. Both the analytic and the NPB models are based on
the linear response, continuum solvent approximation, which
certainly breaks down inside the narrow crevices that can
barely host a single water molecule along at least one dimen-
sion. These strongly confined water molecules are unlikely to
have properties of the bulk and certainly cannot be described
by a continuum dielectric of e=80 used to compute the po-
tentials. We argue that the |¢p— ¢8| deviations become
much smaller if one excludes regions of space where the
continuum approximation is definitely inapplicable. While
the exact boundaries of the applicability of the continuum
model are unknown, one can get a rough idea of how the
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|p— pNPB| deviation behaves as these regions are reduced.
Namely, we have recalculated both potentials at the molecu-
lar surface obtained with the probe radius of 3.0 A, which is
twice the typical water radius (Fig. 4, right panel). Clearly,
the analytical versus NPB deviations are now substantially
reduced: For the worst performer max|p—@NE| s
3.4 kcal/mol/|e| and the rmsd over the entire dielectric
boundary is 0.5 kcal/mol/|e|. Interestingly, the qualitative
prediction of our analytical approximate model for this
structure—that the potential is highly negative inside the
crevice relative to the rest of the surface—appears to be con-
sistent with the NPB result regardless of the probe radius
used (results not shown). The max|¢p—@™N'B| deviation that
remains after smoothing of the dielectric boundary is even
less for the second worst performer structure:
1.1 kcal/mol/|e|, with rmsd of 0.4 kcal/mol/|e|. The reduc-
tion is so significant in this case because the deep “burrow”
seen in this structure in Fig. 4 has completely disappeared
when the smoother dielectric boundary is used.

Having explored the relatively rare cases of large devia-
tions from the NPB reference, we now turn our attention to
the performance of the analytical approximation on struc-
tures that fall within the bulk of the error distribution in Fig.
3. Somewhat unexpectedly, even structures whose global
shape deviates considerably from the perfect spherical per-
form quite well as judged by visual inspection (Fig. 5) and
by the computed max|¢— N8| values. In fact, for the top
two structures in Fig. 5, these maximum deviations from the
reference are within ~1 kcal/mol/|e|, rmsd is less than
0.3 kcal/mol/|e|, and thus the analytical approximation is
quantitatively correct for these shapes.

Not surprisingly, the largest deviations are seen for the
lysozyme structure that features a distinct region of negative
curvature of the dielectric boundary—the enzymatic pocket.
At a single point in the pocket region, |¢p— @™ B| reaches
2.2 kcal/mol/ |e ; however, the rmsd over the entire surface
of the protein is 0.4 kcal/mol/|e|. The smoothing of the di-
electric boundary, performed as described in the legend to
Fig. 4, reduces the maximum deviation to 1.7 kcal/mol/|e],
and the rmsd to 0.3 kcal/mol/|e|. Unlike the very narrow
indentations and deep narrow “burrows” in the dielectric
boundary seen in Fig. 4, which most likely hold only highly
structured water, the enzymatic pocket of lysozyme is large
enough so that the continuum approximation is expected to
have a reasonable degree of physical realism in this region.
Thus, the deviations from the NPB reference in this case are
meaningful. Exactly how significant is the ~2 kcal/mol/|e]
maximum error relative to the NPB reference for biological
function of lysozyme is less clear: This question is beyond
the scope of this methodological work. One should bear in
mind that the continuum solvent PB framework itself is only
an approximation to the more realistic explicit solvent repre-
sentation: The differences between the two are not
negligible.35 Despite the quantitative deviations from the
NPB, our approximate method correctly identifies the enzy-
matic pocket of lysozyme as the region of the highest nega-
tive electrostatic potential, relative to the rest of the structure.
Thus, we conclude that the approximation provides a correct
qualitative picture in this case, within the framework of the
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FIG. 5. (Color) Electrostatic potential computed near the dielectric bound-
ary of various biomolecules whose shape deviates considerably from spheri-
cal. The potential is computed 1.5 A outside the dielectric boundary (mo-
lecular surface) and visualized on the surface using a continuous color scale.
Blue: positive values; white: zero; red: negative. The range indicated on the
color bar corresponds to the absolute maximum of the potential for a given
structure. Left column: numerical reference. Right column: approximate
analytical potential. Structures: The Alzheimer disease amyloid A4 peptide,
PDB ID 1AML (top); human apolioprotein C-II, PDB ID 115J (middle);
lysozyme, PDB ID 2LZT (bottom). The GEM package is used for the com-
putation of the analytical potentials and the visualization.

continuum model. We have also examined the accuracy of
the approximation for the important case of the DNA struc-
ture. For a 12 base-pair fragment in canonical B-form,
max|¢p— B is 1.2 kcal/mol/|e|, or 25% relative error to
#NB. In agreement with the conclusions made above, the
deviation occurs inside the deepest part of the minor groove.
The overall agreement with the NPB reference is similar to
that for the proteins shown in Fig. 5, with the rmsd from the
reference of 0.5 kcal/mol/|e|. We stress that both ¢ and
&P used here correspond to the linearized form of the PB
equation.

We have already seen that the NPB reference potential is
approximated by the analytical approach within kT per unit
charge for the vast majority of the points sampled from just
outside the dielectric boundaries for all of the 580 test mol-
ecules. Cases of significant deviations in localized regions of
space have been identified and analyzed. However, it is in
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FIG. 6. (Color online) Distribution of the deviation in average potential
between the analytical approximation and the NPB reference. The potentials
are computed as described in Fig. 3. Horizontal axis: The average absolute
error per structure (|¢p— @ B|); [Eq. (9)]. Vertical axis: Number of structures
corresponding to the given average error.

principle possible that for a small subset of structures, the
agreement between ¢ and ¢N*B may still be uniformly poor
overall for most surface points of these few structures (al-
though better than the local deviations seen in the worst per-
formers in Fig. 4). Such errors would be “lost” in Fig. 3, as
this particular representation does not distinguish between
contributions coming from separate molecules. As a means
of investigating the role that the overall molecular shape
plays in the accuracy of the approximate method, we have
calculated the average absolute vertex error per molecule as
n; . NPB/ -
(b= )= |6(7 i n¢ (])(1)|, ©)

j=1 i

where the summation extends over n; test surface vertices for
each structure i. As seen in Fig. 6, the distribution of the
average error has a finite width, and so molecular shape does
indeed play a role in determining the accuracy of the method.
However, no extreme outliers with average errors above kT
are seen. This conclusion is consistent with the qualitative
agreement between ¢ and @' on globally nonspherical
shapes presented in Fig. 5.

At this point, we can also provide an additional support
for the statement made in the beginning of this work that the
maximum errors of the analytical approximation are likely to
occur in regions closest to the dielectric boundary. The claim
is further substantiated by the results in Fig. 7 where the
decrease of max|¢p— ¢8| is seen for the three very different
molecular shapes shown in Fig. 5. While the origin of this
behavior for large distances from the boundary is obvious—
the approximate solution is asymptotically exact far away
from the sources—the fact that the same result holds near
dielectric boundaries of rather complex shapes may appear
puzzling. While we do not have a rigorous mathematical
proof for it in the case of an arbitrary surface, we note that
the error bound derived in Part I for a single source charge
below the spherical boundary does decrease monotonically
with distance from the boundary. Presumably, this rigorous
result is not far off the mark for realistic shapes that do not
exhibit drastic deviations from spherical in the sense dis-
cussed above, that is, do not have regions of very high nega-
tive curvature. This may explain the low and decreasing
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FIG. 7. The decrease of the maximum deviation max|¢— @""B| between the
analytical approximate potential and the NPB reference as a function of
distance to the dielectric boundary for the three structures shown in Fig. 5.
The “smooth” surface (solvent probe=3 A) is used.

max|p—¢NPB| for 1ALM and 115] structures in Fig. 7. For
the lysozyme (2LZT), the rigorous result is unlikely to hold,
but note that the max|¢p— @NPB| is known to occur inside its
enzymatic pocket, that is, in the region of negative curvature.
As the test surface moves outside the pocket, the error is
expected to decrease substantially simply because the test
points move out of the region where the sphere-based ap-
proximation is less accurate compared to the rest of the
space. Consistent with this explanation, the noticeable de-
crease in max|¢p— @ 'B| is seen in Fig. 7 for lysozyme.

We have also explored the possibility that the parameter
a that enters all of our analytical formulas may not be opti-
mal for realistic molecular shapes. Perhaps not surprisingly,
we find that varying a within most of its range (0.5-0.8)
resulted in virtually no change in the shape or width of the
error distribution curve in Fig. 3. Thus, as long as we are
looking for a single value of « optimal for an average shape
relevant to biomolecular computations, the “first principles”
value we derived earlier is acceptable.

The reasonable performance of our analytical approach
to compute the electrostatic potential around realistic bio-
molecules is not completely unexpected; after all, successful
use of simple shapes in a related problem—deriving approxi-
mate expressions for biomolecular solvation energy—has
had a long history.M’%’3 ’ Given the accuracy of our analytical
approximations in the perfect spherical case, see Part I, we
speculate that for some of the more spherical molecules and
for some regions of space in most structures, the analytical
approximations introduced here may even be closer to exact
results than the corresponding NPB solutions obtained with
commonly used parameter settings.

B. Application example: Surface potential of the
TRSV viral capsid

The TRSV belongs to the Comoviridae family of the
Genus Nepovirus. The TRSV virus is believed to represent a
very simple (the capsid is made of single protein subunit, no
lipid coat, no cleavage sites in polyproteins) precursor to the
nepovirus, picornavirus, and comovirus families.™ Despite
its apparent structural simplicity, the capsid is extremely se-
lective for its RNA.*® The precise mechanism underlying the
selectivity of the TRSV capsid for its RNA is still unknown,
although experimental evidence suggests that it is structure
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based rather than sequence based.***! Since electrostatic fac-

tors play a major role in protein-nucleic acid interactions,
taking these effects into account is expected to be critical for
solving the puzzle. In what follows we use the analytical
approach presented above to compute the electrostatic poten-
tial on the surface of the TRSV capsid at full atomic reso-
lution. We will show how the details of the potential distri-
bution might hint at plausible mechanisms of the capsid’s
puzzling selectivity for its RNA. A detailed study of the
“capsid selectivity” puzzle is well beyond the scope of this
purely methodological work; the analysis of the TRSV sur-
face potential presented below should not be viewed as a
rigorously justified solution of the problem, but rather as a
way of demonstrating the computational potential of the pro-
posed analytical approach.

From the structural standpoint, the capsid can be consid-
ered as serving a dual purpose, one from the exterior and one
from interior. The outside interacts with the environment dur-
ing the various stages of the virus’ life cycle. As the virion
moves from the vertical vector to the cytoplasm of a tobacco
plant cell to the plant sap, it experiences environments of
different pH. As we shall see, the induced changes in the
outside electrostatic potential are nearly uniform. In contrast,
the inside of the capsid has a set of repeated pockets of
distinct, positive electrostatic potential that persist over a
wide range of pH. These areas are located at the center of a
five-monomer subunit (pentamer); we will speculate that
these pockets might serve as RNA binding locations.

1. The outer surface

The electrostatic potential at the molecular surface of the
TRSV capsid is computed for a wide range of pH values;
Fig. 8 contains three representative snapshots from the range
of values used. The potential appears to be nearly uniform on
the outer surface and changes distinctly and uniformly with
the pH of the environment. The computed isoelectric point of
the capsid is at pH 7.15, and the potential is distributed uni-
formly across the outer surface (see Fig. 8). The surface po-
tential is uniformly close to zero at neutral pH (Fig. 8,
middle panel). The absence of strong electrostatic repulsion
in the capsid leading to its structural stability in the neutral
pH range makes sense biologically; the virion is known to
use the sap of a healthy tobacco plant of pH 6.2 as a means
for circulating through the plant in attempt to find other me-
chanically damaged cells to infect.** The buildup of a fairly
uniform negative charge across the capsid at high pH [Fig. 8
(right panel)] diminishes its stability due to Coulombic re-
pulsion. This is consistent with the swelling of the capsid at
pH greater than 8.0."” In living cells, swelling might be the
mechanism allowing the virion to release its RNA in cell
compartments that have high pH.

2. The inner surface

In contrast to the relatively featureless outer surface po-
tential, the inner surface reveals a distinct pocket of highly
positive potential (blue region in the middle of the pentamer
in Fig. 9), which is robust to pH changes in the physiologi-
cally relevant range.
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FIG. 8. (Color) The outer surface of the TRSV viral capsid color-coded according to the electrostatic potential computed 1.5 A outside the surface.
Continuous color scale is used, from red (corresponding to —4.68 kcal/mol/|e|) to white (zero) to blue (+4.68 kcal/mol/|e|). The charge state of the capsid
changes with the pH of the environment: The computations are performed at a constant salt concentration (0.145M) and three different pH values shown under
each structure. The molecular surface of the capsid is triangulated with the resolution of 2.5 A; the electrostatic potential is computed at the end of the
outward surface normal at each vertex point via the closed-form analytical approximations of the PB equation presented in this work. The GEM package is used

for all the computations.

The source of the positive potential is two adjacent
arginines (R453 and R454) in each of the five monomers that
form the pentamer structure. In the assembled capsid, these
2 X 5=10 arginines form a “ring” of positive charges near the
inner surface of the capsid. The pocket resembles a narrow-
ing dome: Near the surface it is approximately 50 A wide,
and it narrows deeper into a more cylindrical shape with a
diameter of roughly 20 A. The entire site from top to bottom
is roughly 40 A deep. We conjecture that this pocket repre-
sents the RNA binding site and plays a role in the observed
high selectivity of the TRSV capsid for its RNA. The posi-
tively charged arginine ring attracts RNA; geometry deter-
mines which RNAs are structurally compatible with the
pocket.

Computational arguments alone rarely provide a defini-
tive proof of structure-function relationships in complex sys-
tems such as TRSV. In this purely methodological work we
will not pursue this issue any further, and thus our conclu-
sions about the structure-function relationships in the TRSV
capsid should be considered as conjectures. Still, we believe
that the observations we have made and tools we have de-
veloped might provide useful leads and starting points for
further experimental and theoretical studies of this intriguing
system.

IV. CONCLUSIONS

In Part T of this work a simple closed-form expression
for calculating molecular electrostatic potentials everywhere

in space was rigorously derived for an ideal spherical geom-
etry. Here, we use a physically justified ansatz to extend the
approximation to include the screening effects of mobile ions
in the Debye—Hiickel limit. We have tested the accuracy of
the approximate potential ¢ extensively against NPB refer-
ence on a set of 580 molecular structures representing vari-
ous structural classes. Among various possible accuracy met-
rics we chose direct deviation (¢p— ¢N'B) computed where it
is expected to be largest: Near the dielectric boundary. For
each structure, (¢— @ 'B) is computed under typical condi-
tions of aqueous solvation for a large number of test points
placed 1.5 A outside the molecular surface that defines the
sharp dielectric boundary. The absolute error |¢p—¢NB| av-
eraged over all test points in each structure is within
0.6 kcal/mol/|e|~kT per unit charge for all structures
tested. For 91.5% of the individual test points, the absolute
deviation from the NPB potential is within 0.6 kcal/mol/|e|;
the deviation is within 1.2 kcal/mol/|e|~2kT per unit
charge for 98.1% of the individual test points.

For an approximation originally derived for perfect
spherical boundary, one may expect that its accuracy would
decrease dramatically for structures whose global shape de-
viates considerable from spherical, such as structures with
aspect ratio >1. This, however, does not appear to be the
case: We analyzed several structures that appear very non-
spherical globally and found that the maximum deviations
from the NPB reference are within 1 kcal/mol/ |e, with a

FIG. 9. (Color) The inner surface of the pentamer subunit color-coded according to the computed electrostatic potential. The computations are performed at
three different pH values shown under each structure with a constant salt concentration of 0.145M. A continuous color scale is used from red (corresponding
to —4.00 kcal/mol/|e|) to blue (+4.00 kcal/mol/|e|). The regions of zero potential are shown in white. The proposed RNA binding pocket is seen as a bright
blue spot in the center of the structure which remains distinct throughout the entire pH range. The primary source of this region of intense positive potential
is a “ring” of ten arginines. Each monomer of the pentamer provides two sequential arginines (residues 453 and 454) which are in close proximity to each
other in the pentamer structure. The potential is computed 1.5 A outside molecular surface and visualized on the surface. The GEM package is used.
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rmsd between 0.2 and 0.4 kcal/mol/|e|. The understanding
of this somewhat unexpected result came from the analysis
of the absolute largest deviations from the NPB reference
and regions of space where they occurred. We have identified
15 “worst performer” structures—those that exhibited the
largest maximum deviations from the NPB in at least one test
point near the dielectric boundary. In all 15 cases, these larg-
est deviations of several kcal/mol/|e| occurred only in local-
ized pockets of highly negative curvature, that is, inside very
deep and narrow indentations on the dielectric boundary.
Outside of these regions, the deviations were generally
within ~1 kcal/mol/|e|. This behavior of the approximation
based on a sphere is not unexpected: A spherical surface can
have any curvature from zero to positive infinity (plane
limit), but never a negative one. The idea that the approxi-
mation is least accurate near regions of locally highly nega-
tive curvature is supported by the fact that the maximum
deviations from the NPB are reduced dramatically when the
dielectric boundary is smoothed by using a larger probe ra-
dius (3 A) to generate the molecular surface. From a prac-
tical standpoint, the above extreme cases may not be relevant
though: The dimensions of the regions where these largest
deviations occurred were such that they likely can host only
highly constrained solvent with properties very different
from the bulk dielectric continuum implied by the PB model
itself. In the case of lysozyme that features a functionally
important region of negative curvature (an enzymatic pocket)
on its dielectric boundary, the maximum deviation of the
approximate potential from the NPB reference is
2.2 kcal/mol/|e| and is reduced to 1.7 kcal/mol/|e| when
the smoother boundary is used. The rmsd from the NPB
potential for this structure is 0.4 kcal/mol/|e|. All qualita-
tive features of the distribution of the reference NPB poten-
tial for lysozyme are preserved by the analytical approxima-
tion. The approximation behaves as expected in the case of
another important structure that contains pronounced regions
of negative curvature on its dielectric boundary: The DNA.
For a 12 base-pair fragment in canonical B-form, the maxi-
mum deviation of 1.2 kcal/mol/|e| or 25% relative error to
NPB occurs in the deepest part of the minor groove. Outside
of that spot, the agreement with the (linearized) PB is con-
siderably closer and is similar to that for the proteins dis-
cussed above.

The computational complexity of the analytical method
based on a simple formula is fundamentally lower compared
to the NPB. This advantage has been exemplified by using
the new approach to compute electrostatic potential on the
surface of the capsid of TRSV at atomic resolution. The
analysis of the electrostatic potential of the inner surface of
the capsid reveals what might be a RNA binding pocket: This
observation might provide a useful lead for further experi-
mental and theoretical studies of this intriguing molecular
system. All computations on this large structure—nearly half
a million atoms—were performed on a desktop personal
computer. In contrast, the use of the traditional numerical
approach to study electrostatic properties of molecular
systems of this size at atomic resolution would most likely
require sophisticated algorithms and supercomputers.

From the methodological standpoint, the presented ana-
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Iytical approach is particularly well suited for the analysis of
the electrostatic potential around very large structures. The
additional computational expense associated with “zooming
in” on a local region of interest is small—to increase the
spatial resolution locally one needs to perform extra compu-
tations only at the positions of the added sampling points.
This example highlights a fundamental difference between
field-based approaches such as NPB where the potential ev-
erywhere in space is found as a solution of a partial differ-
ential equation and the source-based approaches such as the
one presented here. In the latter case, the approximate
Green’s function is known, and so the computational cost of
computing the potential at a single point is virtually zero,
whereas to obtain the single point potential using a field-
based method, one would still require a much more expen-
sive self-consistent solution over a large number of points in
a finite 2D or 3D region of space.

The need for computationally facile theoretical tools for
the analysis of molecular electrostatic properties exists in
many areas. The general approach presented here provides
an analytical approximation for the potential everywhere in
space and might provide a concrete starting point for the
development of other practical alternative tools to be used
alongside the traditional numerical PB treatment.
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