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1. INTRODUCTION

The effects of solvent environment must be taken into account for realistic mod-
eling of bio-molecules. Traditionally, this has been accomplished by placing a
sufficiently large number of individual water molecules around the solute, and
simulating their motion on an equal footing with the molecule of interest. While
arguably the most realistic of the current theoretical approaches, this explicit solvent
methodology suffers from considerable computational costs, which often become
prohibitive, especially for large systems or long time-scales, such as those involved
in the folding of proteins. Other problems with the approach include the difficulty,
and often inability to calculate relative free energies of molecular conformations
due to the need to account for very large number of solvent degrees of freedom.
An alternative that is becoming more and more popular—the implicit solvent
model [1-7]—is based on replacing real water environment consisting of discrete
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molecules by an infinite continuum medium with the dielectric and “hydropho-
bic” properties of water. Presented below is a very brief overview of the cur-
rent state of the methodology, with specific focus on the hierarchy of underlying
approximations and the use of corresponding computational models in molec-
ular dynamics (MD) simulations. One specific example—the Generalized Born
model—is discussed in relatively greater detail, reflecting the author’s own ex-
perience with the development of this model.

2. IMPLICIT SOLVENT FRAMEWORK

Implicit solvent models have several advantages over explicit water representa-
tions, especially in molecular dynamics simulations. These include the following.

Lower computational costs for many molecular systems, and better scaling on
parallel machines. The effective cost reduction may be particularly significant if
one takes into account the improved sampling: in contrast to explicit solvent mod-
els, solvent viscosity that slows down conformational transitions can be turned off
completely within implicit representations.

Effective ways to estimate free energies; since solvent degrees of freedom are
taken into account implicitly, estimating free energies of solvated structures is
much more straightforward than with explicit water models.

Since implicit solvent models correspond to instantaneous dielectric response
from solvent, there is no need for the lengthy equilibration of water that is typically
necessary in explicit water simulations. This feature of implicit solvent models
becomes key when charge state of the system is changed many times during the
course of a simulation, as, for example, in constant pH simulations.

Finally, the implicit solvent approach has a clear advantage over explicit sol-
vent in computing and making physical sense of energy landscapes of molecular
structures. Here, implicit averaging over solvent degrees of freedom eliminates the
“noise”—an astronomical number of local minima arising from small variations in
solvent structure.

2.1 The hierarchy of underlying approximations

When contemplating a use of practical techniques based on the implicit solvent
framework, one should be keenly aware of the fact that all of the attractive fea-
tures of the methodology listed above come at a price of making a number of
approximations whose effects are often hard, if not impossible, to estimate. Note
that the discrete — continuum step is not the only deviation from reality: as one
descends the “tree of approximations” that the methodology is based upon, Fig-
ure 7.1, down to models used in practice today, more and more approximations
are made. Also note that some familiar descriptors of molecular interaction, such
as solute-solvent hydrogen bonds, are no longer explicitly present in the model—
instead, they come in implicitly, albeit at a mean-field level, and contribute to the
overall solvation energy.

In many molecular modeling applications, and especially in molecular dy-
namics, the key quantity that needs to be computed is the total energy of the
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FIGURE71 An “approximations tree” of the implicit solvent framework.

molecule in the presence of solvent. This energy is a function of molecular con-
figuration, its gradients with respect to atomic positions determine the forces on
the atoms. The total energy of a solvated molecule can be conveniently written as
Etot = Evac + AGgoly, Where Ey 5 represents molecule’s potential energy in vacuum
(gas-phase), and AGg)y is defined as the free energy of transferring the molecule
from vacuum into solvent, i.e. solvation free energy.! In practice, once the choice
of the gas-phase potential function, or force-field, Ey,c is made, its computation
is relatively straightforward [8]. The difficulty comes from the need to estimate
the effects of solvent, encapsulated by the AGq}y term in the above equation. At
present, the implicit solvent framework makes the following simplifying approxi-
mation to estimate AGgqly:

AGsoly = AGel + A Gnonpolar/ 1)

where AGnonpolar is the free energy of solvating a molecule from which all charges
have been removed (i.e. partial charges of every atom are set to zero), and AGg
is the free energy of first removing all charges in the vacuum, and then adding
them back in the presence of a continuum solvent environment. To proceed, one
needs practical methods of computing both AGe) and AGponpolar- The “hydropho-
bic” part AGnonpolar Tepresents the combined effect of two types of interaction:
the favorable van der Waals attraction between the solute and solvent molecules,
and the unfavorable cost of breaking the structure of the solvent (water) around
the solute. The common approximation widely in use today [9] assumes both of
these contributions to be proportional to the total solvent accessible surface area

1 Technically, the above decomposition is already an approximation made by most classical (non-polarizable) force-
fields, as it assumes this specific separability of the Hamiltonian.
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(A) of the molecule, thus taking AGponpolar & 0 x A, with the proportionality con-
stant derived from experimental solvation energies of small non-polar molecules.
Substantial uncertainty exists in what appropriate value of the surface tension o
should be used in simulations, which perhaps reflects the limitations of this ap-
proximation itself. Strong arguments for the use of less drastic approximations for
AGnonpolar, €-g- those that treat solute-solvent van der Waals interactions (“volume
term”) separately from the surface area term, have also been made [10,11]. At the
same time, some researchers choose to neglect the surface area term altogether in
MD simulations, especially if no large conformational changes are expected, for
example in simulations of proteins in their native states. Regardless of the specific
form, computing the hydrophobic term has not so far been the computational bot-
tleneck of a typical MD simulation. Currently, the most time-consuming part is
the computation of the electrostatic contribution to the total solvation free energy,
AGg]. The underlying long-range interactions are critical to function and stability
of many classes of biological and chemical structures, and so it is not surpris-
ing that considerable effort was put into making these computations accurate and
fast.

2.2 The Poisson—Boltzmann model

If one accepts the continuum, linear response dielectric approximation for the
solvent, then the Poisson equation of classical electrostatics provides an exact for-
malism for computing the electrostatic potential ¢(r) produced by a molecular
charge distribution p(r). The screening effects of salt can be added at this level via
an approximate mean-field treatment, resulting in the so-called Poisson—Boltzmann
(PB) equation [13]. In general, this is a second order non-linear partial differential
equation, but its simpler linearized form is often used in biomolecular applica-
tions:

V[e@Ve(r)] = —4np(r) + k%e(r)g(r), @)

where €(r) is the position-dependent dielectric constant, and the screening effects
of salt enter via the Debye-Hiickel parameter « ~ /[salt]. Once the ¢(r) for a given
molecular configuration is obtained via numerical solution of the PB equation, the
electrostatic part of the solvation energy, AGg|, can be computed. Details of nu-
merical procedures for solving the PB equation along with a discussion of some
of the related technical issues, can be found in recent literature on the subject,
e.g. [12] and references therein. While the numerical PB formalism has been suc-
cessfully applied to “static” structures for the past 20 years, it was not until quite
recently that its use in MD simulations has been reported. In part, this delay was
due to the relatively high costs associated with solving the PB equation at every
MD step. Technical difficulties associated with computing forces due to dielectric
boundary had to be overcome as well. So far, very few, mainly “proof-of-concept”
PB-based MD simulations have been reported [7,14-16]. Still, the approach holds
tremendous potential for MD simulations [13]. This is because the PB model has
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arigorous physical basis and requires fewer fundamental approximations to phys-
ical reality than most other implicit solvent approaches currently in use. The model
also serves as a natural reference point on the “approximations tree,” Figure 7.1.
Comparisons of results from PB-based simulations with those based on the more
fundamental explicit solvent model helps reveal basic limitations of the implicit
solvent approach itself, while comparisons with even more approximate methods,
such as the widely used generalized Born model discussed below, help assess the
accuracy of the latter [17].

2.3 The Generalized Born model

The need for computationally facile models for dynamical applications requires
further trade-offs between accuracy and speed. Descending from the PB model
down the approximations tree, Figure 7.1, one arrives at the generalized Born
(GB) model that has been developed as a computationally efficient approxima-
tion to numerical solutions of the PB equation. The analytical GB method is an
approximate, relative to the PB model, way to calculate the electrostatic part of the
solvation free energy, AGg, see [18] for a review. The methodology has become
particularly popular in MD applications [10,19-23], due to its relative simplicity
and computational efficiency, compared to the more standard numerical solution
of the Poisson-Boltzmann equation.

2.31 The underlying approximations of the GB model

GB models evaluate electrostatic part of solvation free energy as a sum of pairwise
interaction terms between atomic charges. For a typical case of aqueous solvation
of molecules with interior dielectric of 1, these interactions are approximated by
an analytical function introduced by Still et al. [24]:

1 1 qiq;
AGe ~ —5 (1 ew) Z : > (3)

ij \/ri]. + RiR; exp(—wi’Rj)
where r;; is the distance between atoms i and j, g; and g; are partial charges and
€w > 1 is the dielectric constant of the solvent. Screening effects of monovalent
salt can be introduced at the Debye-Hiickel level by a simple, computationally
inexpensive empirical correction to the above equation [25].

The key parameters in the GB function are the effective Born radii of the inter-
acting atoms, R; and R]-, which represent each atom’s degree of burial within the
solute. More specifically, the effective radius of an atom is defined as the radius of
a corresponding spherical ion having the same AGg as would the same molecule
with partial charges set to zero for all atoms except the atom of interest. Assum-
ing that effective Born radii can be computed efficiently for every atom in the
molecule, computational advantages of Eq. (3) relative to numerical PB treatment
become apparent: the GB formula is simple, its analytical derivatives with respect
to atomic positions immediately provide the forces. In practice, the effective ra-
dius for each atom is generally calculated by first approximating the electrostatic
energy density due to the atom of interest by some reasonably simple expres-
sion and then integrating over the appropriate volume [26-32] or surface [33].
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The Coulomb field approximation—CFA—is historically the first approximation
of that nature. Although it makes what appears to be a fairly drastic assumption
that the electric field generated by the atomic point charge is unaffected by the
non-homogeneous dielectric environment created by the solute, practical routines
developed on the basis of CFA are still widely used. Fortuitous cancellation of er-
rors [34] and computational efficiency of the approximation have contributed to its
success. Empirical corrections to the CFA based on multiple integrals over solute
have lead to spectacular improvements in accuracy of the GB model relative to PB
treatment [30,31]. Several GB models based on these approximations have been
implemented in CHARMM. Recently, it was shown that the same, and possibly even
better level of accuracy can be achieved with a single integral [35]. It remains to be
seen whether potential advantages of this approximation [36]—termed R6—will
translate into practical gains once implemented in MD codes.

Computationally effective integration over physically realistic [37], but ge-
ometrically complex molecular volume (or surface) presents a set of its own
challenges: routines that match molecular volume closely, such as GBMV mod-
els [30,31] in CHARMM, typically come at a price of noticeably higher computa-
tional costs [38]. Alternative approaches include the use of physically less justified,
but computationally more suitable VDW volume, combined with pairwise de-
screening approach [27], and empirical corrections that bring in some elements
of molecular volume. Such compromise solutions [32,39], e.g. GB-OBC and GBn
models in AMBER, are significantly faster, but at a cost of making additional ap-
proximations to reality.

Currently, a large variety of flavors of the GB model are available in many
molecular simulation packages. The vast majority, if not all, of these models share
the same foundation—Eq. (3)—but may differ substantially in the way the effec-
tive radii are computed. The algorithmic simplicity and reasonable accuracy of
the GB approximation, combined with its availability in popular modeling pack-
ages, have made it the current “workhorse” in many practical applications of the
implicit solvent methodology.

2.3.2 GB-based MD simulations. Examples

Protein folding. Exploring large conformational transitions is one of several areas
where the advantages of implicit solvent framework, and the GB model in particu-
lar, become apparent. Several all-atom MD simulations of ab initio folding of small
proteins have been reported. Examples include 20-residue “trpcage” protein [40],
36-residue villin headpiece [41], and a 46-residue helix bundle [42]. In these sim-
ulations the folded state was predicted to within 2 A from experiment (C, rmsd),
and in some cases [40] within 1 A. Energy landscapes computed within the implicit
solvent framework were used to gain insights into the folding mechanisms [41,43].
Note that experimental folding times for even the fastest folding proteins is of the
order of microseconds, whereas in some of the above simulations [40] the native
state was reached on 10 ns time-scale. The comparison gives a very rough idea of
the magnitude of conformational search speed-ups that one can expect in these
types of simulations through the use of the GB approach.
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Large-scale motions in proteins. The conformational search speed-up allows
one to study large-scale motions in proteins and protein complexes. The use of the
methodology to understand large conformational changes of the active site flaps
in HIV protease [44] is a representative example: it is unlikely that a comparable
explicit solvent study would currently be computationally feasible.

Membrane environment. Membranes are large structures, translocation of
molecular structures through membranes may involve significant conformational
changes, and so these systems are natural candidates for implicit solvent model-
ing. One of the challenges here is accurate and computationally facile representa-
tion of the complex dielectric environment that, in the case of membranes, includes
solvent, solute, and the membrane, all with different dielectric properties. Correc-
tions to the GB model have been introduced [45-47] to account for the effects of
variable dielectric environment. Other implicit membrane models, not based on
the GB, have also been proposed [48].

The DNA. Compared to proteins, implicit solvent MD simulations of nucleic
acids are relatively new, and not as many. A number of methodological issues still
await resolution, in particular that of appropriate treatment of multi-valent ions
that are often critical for nucleic acid function. So far, the GB methodology has been
employed to model free DNA in solution [49,50], binding between proteins and
nucleic acids [51-53], as well as for energetic analysis of conformational changes
such as the A — B transition [21]. The potential of the methodology for modeling
large scale dynamics of the DNA has been demonstrated in a recent all-atom study
of the nucleosome and its 147-bp DNA free in solution [54].

Constant pH simulations. The charge states of all ionizable groups remain
fixed throughout the course of a typical MD simulation, regardless of the con-
formational changes that the structure may undergo. In reality, changes in proto-
nation state and conformational changes are strongly coupled; this coupling may
lead to non-trivial effects. To model these effects, several models have been devel-
oped. One of them employs a continuous protonation state model [55], in which
equations of motion are used to time-evolve the protonation coordinate; conver-
gence to physical protonation state of 1 or 0 is enforced by an adjustable potential
barrier. An alternative approach [56] operates directly in the physical protona-
tion space: protonation states are accepted or rejected on the fly, according to a
Metropolis criterion, during the course of the MD simulation. It is the instanta-
neous dielectric response of the implicit solvent model that makes these on-the-fly
estimates of relative energies possible.

2.3.3 Limitations of the GB model

The generalized Born model is separated from reality by several layers of ap-
proximations, Figure 7.1, each of them adding its own limitations to the method.
The fundamental “discrete — continuum” approximation obviously eliminates
a number of solvent effects that depend on the finite size of water molecule,
such as de-wetting. Likewise, the implicit solvent model cannot describe effects of
tightly bound water molecules, which may be a serious limitation when those are
important for function or stability of the structure of interest. One also wonders
how well the approximation works inside deep binding pockets, where solvent
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can hardly be considered as having properties of the bulk. Also, the additivity
of AGg and AGnonpolar in the decomposition of total solvation free energy holds
only approximately: if it were exact, absolute values of solvation energies of ions
of the same size and opposite charge (and the same magnitude) would be iden-
tical, which is not the case in reality [57]. The Poisson—-Boltzmann approximation
inherits generic limitations of mean-field theories and linear response approxi-
mations. In particular, the neglect of correlation between counterions, especially
multi-valent ones such as Mg?*, may be a serious problem in the modeling of
nucleic acids.

While all of these limitations are well known, their combined effect is hard,
if not impossible to quantify in realistic biomolecular simulations. Understanding
the effects of a single approximation, such as the PB — GB step, may be somewhat
easier. Note that the GB and PB models share the same physical basis, and so one
can, in principle, “derive” the GB from the PB. For example, it was recently shown
that, without the heuristic exponential term, the key formula of the GB model,
Eq. (3), is the limiting case (e;; — 00) of the exact solution of the Poisson equation
for an arbitrary charge distribution inside an ideal sphere [36,58]. It is also possible
to differentiate the effects of the PB — GB approximation from the more funda-
mental limitations of the PB model itself. For example, it was shown [59] that the
folding landscape of B-hairpin derived from GB-based simulations is substantially
different from that predicted by an explicit solvent model, which is generally more
consistent with experiment. A subsequent study [60] revealed that a significant
part of this discrepancy was already present at the PB level. Direct comparisons of
AGg between GB, PB, and explicit solvent are especially valuable in the context
of understanding the separate effects of the approximations made. For example, it
was found that even the use of “perfect” [34] effective radii in the GB Eq. (3) did not
match the accuracy of the PB in predicting relative energies of poly-alanine confor-
mational states [61]. The error of the PB itself, relative to explicit solvent treatment,
was found to be smaller, but not negligible. Overall, ensembles of poly-alanine
conformations generated in this study with the GB-based MD showed an over-
abundance of a-helical secondary structure relative to the explicit solvent results.

Raw computational speed has been considered one of the key advantages of
the GB model. However, note that the cost of a calculation based directly on Eq. (3)
is generally O(N?) for a system of N atoms, while the scaling is more favorable,
Nlog(N), for Ewald-based methods used in explicit solvent simulations. For large
systems, e.g. the nucleosome (25,000 atoms), the number of nanoseconds of MD
per CPU hour may actually be less in a GB-based simulation (without additional
approximations such as cut-offs) than in a comparable explicit solvent run [54],
although the conformational search is still much faster in the implicit solvent.

2.4 Other models based on implicit solvation

While at present the GB models are arguably the most often used practical ap-
proaches in MD simulations based on implicit solvation, they are by no means the
only ones. Some representative alternatives to the GB (and the PB) are listed be-
low, in an order that roughly corresponds to their place on the “approximations
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tree” of Figure 7.1. In an ideal world, models that employ fewer approximations
to reality may be expected to be more accurate, but this expectation may not apply
to practical implementations of the methods.

Historically, MD simulations often relied on the so-called distance-dependent
dielectric model [62] to account for solvation effects. In this approach, electrostatic
effects are modeled by Coulomb’s law with the dielectric being some fixed func-
tion of the charge—charge distance, e.g. €(r) = r in the most basic form of the
model. Even though the model is generally expected to be less accurate than the
GB [17], its utmost simplicity and computational efficiency keep it in active use
today [63,64].

Several methods for computing AGg can be placed at roughly the same level
of approximation as the GB. Examples include the generalized reaction field
method [65] and the ALPB [66] model. The latter has a simple functional form
similar to the GB, but contains an extra physical parameter (effective electrostatic
size of the solute) and a more realistic dependence on dielectric constants. Another
example of models in this group are approaches for estimation of AG based on
image-charge solutions [67,68]. Yet another approach, AGBNP [10], combines the
basic GB framework with a model for AGponpolar that goes beyond the surface area
approximation.

At the “PB level,” a model based on a very different paradigm has recently
been tested in a “proof-of-concept” simulation: Maxwell’s equations for the elec-
tric and magnetic field, coupled with the usual Newton’s equations of motion for
the charges were used to determine time-evolution of the system [69].

Going beyond the mean-field level, several “hybrid” approaches are now be-
ing explored in MD simulations. Examples include a recent model [70] in which
the immediate hydration of the solute is modeled explicitly by a layer of water
molecules, and the GB model is used to treat the bulk continuum solvent outside
the explicit simulation volume. A similar idea was recently found very effective
in the context of replica-exchange simulations [71]. An explicit ion/implicit water
(PB) solvation model for molecular dynamics of nucleic acids has recently been
tested [72].

Some approaches approximate the total solvation energy AGgo, without ex-
plicitly assuming additivity of the AGe] and AGponpolar cOmponents. One example
is a Gaussian solvent-exclusion model [73] based on an empirical decomposition of
AGs,ly into contributions from different chemical groups. Models based on “first-
principles” free energy functionals have also been proposed [74].

3. CONCLUSIONS AND OUTLOOK

An accurate description of the solvent environment is essential for realistic
biomolecular modeling, but often becomes prohibitively expensive computa-
tionally if water is treated explicitly. Implicit solvent framework is an attractive
alternative that offers several significant advantages over the explicit water repre-
sentation, including lower computational costs, faster conformational search, and
very effective ways to estimate relative free energies of conformational ensem-
bles. However, these advantages come at a price of making several fundamental,



134 A. Onufriev

hierarchical approximations to reality. Additional accuracy/speed trade-offs are
often made in the development of computationally facile models for practical MD
simulations.

Prominent among these models is the generalized Born (GB) model: although
separated from reality by several layers of approximation, it apparently captures
enough of the key physics of aqueous solvation to be practically useful. Compared
to other models based on implicit solvation, this algorithmically simple model
is arguably the one that is currently used most often in MD simulations. Many
successful applications of the model to challenging problems, such as the protein
folding, or the exploration of large-scale motions in proteins or DNA, have been
reported. For some types of simulations, e.g. constant pH molecular dynamics,
models based on implicit solvation such as the GB appear to be the only ones
currently available in practice.

At the same time, examples where the GB model breaks down are also well
known. Part of the overall error in these cases is attributable to the PB — GB ap-
proximation, while the remainder comes from the more fundamental limitations
of the general implicit solvent framework itself. These examples are extremely im-
portant for defining the current boundaries of applicability of the GB model; they
also suggest directions for future improvements.

A number of alternatives to the GB, both below and above it on the “approx-
imations tree” have been tested in molecular dynamics simulations. Approaches
that make fewer fundamental approximations to reality, such as those based di-
rectly on the Poisson-Boltzmann treatment of solvation or ones that even go be-
yond the mean-field level, are particularly attractive from the accuracy point of
view. More testing is needed to better characterize the overall performance of these
models in practical MD simulations.

In summary, the use of implicit solvation models in molecular simulations
offers considerable rewards, both at conceptual and practical levels. However,
compared to the more established explicit solvent approach, less is known about
the domain of applicability of these models, and so extra care must be taken
when using them in practice. Drawing on the analogy with the development of
the empirical explicit solvent force-fields over the past 30 years, it is likely that
improvements in the implicit solvent framework accompanied by accumulation
of practical experience will eventually make the framework a standard approach
within its reasonably well-defined domain.
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