(c) Naren Ramakrishnan, Fall 2007. Permission to use ideas about
the organization of topics, slides, and discussion notes is granted,
provided suitable acknowledgements and citations are made.
CS 6604 Lectures
- Introduction to CS 6604
- Itemsets and Rules
- Classification
- Relational Data Mining
- Probabilistic Methods
References
Itemsets and Rules
- R. Agrawal, T. Imielinksi, and A. Swami, Mining Association Rules between Sets of Items in Large Databases, in Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD'93)
, pages 207-216, 1993.
- R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules,
in Proceedings of the 20th International Conference on Very Large Data Bases (VLDB'94), pages 487-499, 1994.
- R. Bayardo Jr.,
Efficiently Mining Long Patterns from Databases, in
Proc. of the 1998 ACM-SIGMOD Int'l Conf. on Management of Data, pages
85-93, 1998.
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi,
ExAnte: Anticipated Data Reduction in Constrained Pattern Mining,
in Proceedings of PKDD'03, 2003.
- F. Bonchi, C. Lucchese, and R. Trasarti,
Pushing Tougher Constraints in Frequent Pattern Mining,
in Proceedings of PAKDD'05, pages 114-124, 2005.
- S. Brin, R. Motwani, and C. Silverstein,
Beyond Market Baskets: Generalizing Association Rules to Correlations,
in Proc. ACM SIGMOD'97, pages 265-276, 1997.
- D. Burdick, M. Calimlim, and J. Gehrke,
MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases,
In Proceedings of the 17th International Conference on Data Engineering,
Heidelberg, Germany, April 2001.
- T. Calders and B. Goethals, Mining all Non-Derivable Itemsets,
Data Mining and Knowledge Discovery, 2006.
- [Review] A. Ceglar and J.F. Roddick,
Association Mining,
ACM Computing Surveys,
Vol. 38, No. 2, Article No. 5, July 2006.
- J. Han, J. Pei, Y. Yin, and R. Mao,
Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach, Data Mining and Knowledge Discovery,
Volume 8, Issue 1, pages 53-87, January 2004,
- D.-I. Lin and Z.M. Kedem,
Pincer Search: A New Algorithm for Discovering the Maximal Frequent Set,
in Advances in Database Technology: 6th International Conference on Extending Database Technology (EDBT'98),
pages 105-119, 1998.
- H. Mannila and H. Toivonen,
Multiple Uses of Frequent Sets and Condensed Representations,
in Proc. KDD'96, 1996.
- H. Mannila, H. Toivonen, and A.I. Verkamo,
Efficient Algorithms for Discovering Association Rules,
in Proceedings of the AAAI Workshop on Knowledge Discovery in Databases
(KDD), pages 181-192,
1994.
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal,
Discovering Frequent Closed Itemsets for Association Rules,
in Proceedings of ICDT'99,
pages 398-416, 1999.
- J. Pei and J. Han,
Can we push more Constraints into Frequent Pattern Mining?
in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 350-354, 2000.
- M. Zaki,
Generating Non-Redundant Association Rules,
in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 34-43, 2000.
- M. Zaki and K. Gouda,
Fast Vertical Mining using Diffsets,
in Proceedings of KDD'03, 2003.
- M. Zaki and C.-J. Hsiao,
CHARM: An Efficient Algorithm for Closed Itemset Mining,
in Proceedings of the Second SIAM International Conference on Data Mining,
2002.
- M. Zaki and M. Ogihara,
Theoretical Foundations of Association Rules,
in Proceedings of the SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery (DMKD'98), 1998.
- M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li,
New Algorithms for Fast Discovery of Association Rules,
in Proceedings
3rd International Conference on Knowledge Discovery and Data Mining (KDD'97),
pages 283-286, Aug 1997.
- M. Zaki and N. Ramakrishnan,
Reasoning about Sets using Redescription Mining,
in Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'2005), Chicago, IL, pages 364-373, Aug 2005.
Classification
- J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh,
BOAT: Optimistic Decision Tree Construction,
in Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD'99), 1999.
- Decision Tree Tutorial by Andrew Moore
- Information Gain Tutorial by Andrew Moore
Relational Data Mining
- L. Dehaspe and H. Toivonen, Discovery of Relational Association Rules,
in N. Lavrac and S. Dzeroski, Relational Data Mining, Springer-Verlag,
2000.
- S. Muggleton and J. Firth, CProgol 4.4: A Tutorial Introduction,
in N. Lavrac and S. Dzeroski, Relational Data Mining, Springer-Verlag,
2000. Available at:
http://citeseer.ist.psu.edu/309049.html.
Probabilistic Methods
- Probability for Data Miners Tutorial by Andrew Moore
- Probability Density Functions Tutorial by Andrew Moore
- Naive Bayes Tutorial by Andrew Moore
|