(c) Naren Ramakrishnan, Fall 2007. Permission to use ideas about the organization of topics, slides, and discussion notes is granted, provided suitable acknowledgements and citations are made.

CS 6604 Lectures


References

Itemsets and Rules

  1. R. Agrawal, T. Imielinksi, and A. Swami, Mining Association Rules between Sets of Items in Large Databases, in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'93) , pages 207-216, 1993.

  2. R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules, in Proceedings of the 20th International Conference on Very Large Data Bases (VLDB'94), pages 487-499, 1994.

  3. R. Bayardo Jr., Efficiently Mining Long Patterns from Databases, in Proc. of the 1998 ACM-SIGMOD Int'l Conf. on Management of Data, pages 85-93, 1998.

  4. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, ExAnte: Anticipated Data Reduction in Constrained Pattern Mining, in Proceedings of PKDD'03, 2003.

  5. F. Bonchi, C. Lucchese, and R. Trasarti, Pushing Tougher Constraints in Frequent Pattern Mining, in Proceedings of PAKDD'05, pages 114-124, 2005.

  6. S. Brin, R. Motwani, and C. Silverstein, Beyond Market Baskets: Generalizing Association Rules to Correlations, in Proc. ACM SIGMOD'97, pages 265-276, 1997.

  7. D. Burdick, M. Calimlim, and J. Gehrke, MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases, In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, April 2001.

  8. T. Calders and B. Goethals, Mining all Non-Derivable Itemsets, Data Mining and Knowledge Discovery, 2006.

  9. [Review] A. Ceglar and J.F. Roddick, Association Mining, ACM Computing Surveys, Vol. 38, No. 2, Article No. 5, July 2006.

  10. J. Han, J. Pei, Y. Yin, and R. Mao, Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach, Data Mining and Knowledge Discovery, Volume 8, Issue 1, pages 53-87, January 2004,

  11. D.-I. Lin and Z.M. Kedem, Pincer Search: A New Algorithm for Discovering the Maximal Frequent Set, in Advances in Database Technology: 6th International Conference on Extending Database Technology (EDBT'98), pages 105-119, 1998.

  12. H. Mannila and H. Toivonen, Multiple Uses of Frequent Sets and Condensed Representations, in Proc. KDD'96, 1996.

  13. H. Mannila, H. Toivonen, and A.I. Verkamo, Efficient Algorithms for Discovering Association Rules, in Proceedings of the AAAI Workshop on Knowledge Discovery in Databases (KDD), pages 181-192, 1994.

  14. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering Frequent Closed Itemsets for Association Rules, in Proceedings of ICDT'99, pages 398-416, 1999.

  15. J. Pei and J. Han, Can we push more Constraints into Frequent Pattern Mining? in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 350-354, 2000.

  16. M. Zaki, Generating Non-Redundant Association Rules, in Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 34-43, 2000.

  17. M. Zaki and K. Gouda, Fast Vertical Mining using Diffsets, in Proceedings of KDD'03, 2003.

  18. M. Zaki and C.-J. Hsiao, CHARM: An Efficient Algorithm for Closed Itemset Mining, in Proceedings of the Second SIAM International Conference on Data Mining, 2002.

  19. M. Zaki and M. Ogihara, Theoretical Foundations of Association Rules, in Proceedings of the SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD'98), 1998.

  20. M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New Algorithms for Fast Discovery of Association Rules, in Proceedings 3rd International Conference on Knowledge Discovery and Data Mining (KDD'97), pages 283-286, Aug 1997.

  21. M. Zaki and N. Ramakrishnan, Reasoning about Sets using Redescription Mining, in Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'2005), Chicago, IL, pages 364-373, Aug 2005.

Classification

  1. J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh, BOAT: Optimistic Decision Tree Construction, in Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'99), 1999.

  2. Decision Tree Tutorial by Andrew Moore

  3. Information Gain Tutorial by Andrew Moore

Relational Data Mining

  1. L. Dehaspe and H. Toivonen, Discovery of Relational Association Rules, in N. Lavrac and S. Dzeroski, Relational Data Mining, Springer-Verlag, 2000.

  2. S. Muggleton and J. Firth, CProgol 4.4: A Tutorial Introduction, in N. Lavrac and S. Dzeroski, Relational Data Mining, Springer-Verlag, 2000. Available at: http://citeseer.ist.psu.edu/309049.html.

Probabilistic Methods

  1. Probability for Data Miners Tutorial by Andrew Moore

  2. Probability Density Functions Tutorial by Andrew Moore

  3. Naive Bayes Tutorial by Andrew Moore



Return Home