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Abstract. We present a modular approach to realizing fine-grained
adaptation of program behavior in a parallel environment. Using a com-
positional framework based on function call interception and manipula-
tion, the adaptive logic to monitor internal program states and control
the behavior of program modules is written and managed as a separate
code, thus supporting centralized design of complex adaptation strategies
for adapting to dynamic changes within an application. By ‘catching’ the
functions that execute in synchronization across the parallel environment
and inserting the adaptive logic operations at the intercepted control
points, the proposed method provides a convenient way of synchronous
adaptation without disturbing the parallel execution and communica-
tion structure already established in the original program. Applying our
method to a CFD (computational fluid dynamics) simulation program to
implement example adaptation scenarios, we demonstrate how effectively
applications can change their behavior through fine-grained control.

1 Introduction

Implementing adaptive execution of an application in a distributed or parallel
environment has been of much interest in recent years. The approaches to sup-
port program adaptation include: languages and compilers for specifying adap-
tation strategies [1–3] and runtime platforms or middleware for adaptive execu-
tion [4–7]. These efforts are primarily centered around resource management to
achieve efficient utilization of the environment, such as adaptive load-balancing
and scheduling of application tasks, to match resource constraints or dynamic op-
erating conditions of the environment. Adaptation schemes are ‘coarse-grained’
in these approaches in that cooperating processes of a distributed application
are each abstracted as a task and adaptation strategies are designed to reassign
the tasks onto the resources or to reorganize the execution flow among them.
The metrics to initiate adaptation are usually based on measured history or esti-
mates of the application execution time, which is a function of the environment’s
operating conditions such as available resources (e.g., number of processors) or
physical characteristics of the resources (e.g., network bandwidth).

Even with such support, however, adaptation schemes where functional be-
havior needs to be adjusted in response to internal changes to program state



can be hard to design. Key challenges include the need for specifying adap-
tive parallel control points and monitoring state changes within the program,
the need for executing parallel adaptation without disturbing the original exe-
cution flow, and the lack of support for centralizing adaptive logic operations
in a separate module, thereby providing a compositional approach to dealing
with the increased complexity of parallel adaptive applications. More generally,
coarse-grained approaches such as supported by runtime systems do not provide
mechanisms to access fine-grained aspects of program state or to manipulate
fine-grained behavior of the processes of a parallel application.

To address the issues, this paper presents a modular method for implement-
ing fine-grained adaptive behavior with parallel programs using a function call
interception (FCI) framework called Invoke [8]. Our work makes the following
contributions:

– Factoring out the adaptation logic: A new code that implements the intended
adaptive logic is written in a separate module and inserted by intercepting
the functions of interest in a running application. This enables adaptation
without code modification. We specifically target MPI programs written in
the SPMD (Single Program, Multiple Data) style.

– Fine-grained control: Adaptation of program behavior such as simulation
parameter adjustment or algorithm switching can be initiated in response to
changes in internal computation states.

– Synchronous adaptation: By ‘catching’ global computation functions in the
original program and plugging in new codes at the intercepted places, adap-
tive operations can be safely carried out without disturbing the parallel
execution structure already established in the original program.

2 Compositional Approach for Parallel Adaptation

Invoke is a composition framework with a set of FCI APIs, through which every
call to a function of interest is intercepted and program control is diverted to an
associated handler, a piece of newly inserted code responsible for monitoring and
modifying the target function’s behavior. By specifying a target function to be
manipulated by Invoke, we essentially define an adaptive control point over the
original program, where newly developed modules can be introduced to maneu-
ver the program toward the intended adaptive behavior. Thus, as Fig. 1 shows,
composition through Invoke enables one to separately reason about application-
specific adaptive strategies, factor them out in a centralized code, and plug in
the adaptation code at control points to build an adaptive application.

2.1 Fine-grained Program Adaptation

By defining adaptive control points at the interfaces of subprogram modules, the
compositional approach conveniently achieves effective, fine-grained control over
application behavior, where adaptation strategies can be designed to monitor



global_f();

global_g();

main() {

}

original program

interceptparallel environment

Invoke

dispatch

adaptation code

− global_g()

 ....

 : global_g_hndl()

− global_f()
 : global_f_hndl()

check & adjust
global_f()

global_f_hndl():

global_g()
check & adjust

global_g_hndl():

Symbol Table

Fig. 1: Composition of an adaptive parallel application using Invoke.

and react to changes in internal program states. Global state variables can be
accessed from the adaptivity code by declaring these variables as external. The
Invoke framework also provides function parameter control APIs, which enables
an extra level of flexibility in fine-grained adaptation. Function arguments are
usually not exposed as globals in a program but still can hold important runtime
program state for certain adaptation purposes. Through the parameter control
APIs, dynamic program states that are communicated between modules can not
only be accessed to check the computational progress, but also be manipulated to
adjust the program’s runtime behavior. We had previously presented such adap-
tation for sequential environments in [9] but here we focus on parallel execution
environments.

2.2 Synchronous Parallel Adaptation

Implementing parallel adaptive behavior through the existing Invoke composi-
tional framework requires adaptive logic operations to take place synchronously
at clearly defined program control points that are shared across all the participat-
ing processes. This is important for implementing fine-grained adaptation strate-
gies with SPMD programs where program behavior needs to change dynamically
in response to changes in program state, because asynchronous adaptation in a
parallel program can cause race conditions among the processes and make the en-
tire computation invalid. For example, if one process changes a global simulation
parameter or algorithm, and continues the computation, before another process
makes the corresponding adaptation, the result may be inconsistent. Therefore,
a synchronous adaptation mechanism is essential for implementing fine-grained
adaptation in a parallel environment, where program behavior (typically in re-
sponse to changes in internal program states) needs to adapt dynamically.

Synchronous adaptation can degrade performance if the adaptivity code in-
volves extra global communication and synchronization. To mitigate the poten-
tial performance slowdown caused by adaptive global operations, we plug in the
adaptivity code at global synchronization points that are already established
in the original program, thus placing separate barriers (one from the original
code and the other from the new adaptivity code) close together and making the



combined overhead smaller. By having the adaptivity operations “piggyback”
onto the existing communications that are executed synchronously across the
parallel environment, monitoring and adjusting the program states can also be
performed synchronously without explicitly using extra global operations.

3 Adaptive CFD Simulations

In this section, we apply our framework to the GenIDLEST CFD simulation
code [10] to automatically adjust the simulation time step value and dynami-
cally change the flow model. Written in Fortran 90 with MPI to simulate CFD
problems, GenIDLEST solves the time-dependent incompressible Navier-Stokes
and energy or temperature equations.

The simulated problem is a pin fin array geometry as shown in Fig. 2. Ex-
tended surfaces or fins have been used extensively to augment the heat/mass
transfer from or to a surface primarily by increasing the transfer area and/or
increasing the heat/mass transfer coefficient. Reducing the size and weight re-
quirements of equipment necessitates the need for optimal designs of these sys-
tems, which in turn requires a detailed understanding of flow and heat transfer
characteristics. The schematic and the geometric parameters of the pin fin array
under consideration, along with the dimensions of interest, are listed in Fig. 2.
The slenderness ratio is set to 1. For the GenIDLEST simulation, we divided the
geometry into 16 block structures so that the maximum degree of parallelism is
16, where each block is assigned to one MPI process.
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Fig. 2: Schematic and Geometric Param-
eters of Pin Fin Array under Con-
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Fig. 3: GenIDLEST Execution Flow

3.1 Automatic Adjustment of Simulation Time Step

The stability of the simulation depends on the time step size used. Based on ob-
served Courant-Friedrich-Levi (CFL) numbers one could discern if the simulation
is proceeding towards convergence or is becoming unstable. Current practice of



running GenIDLEST simulations records intermediate results at the end of a
preset number of iterations onto the disk, thereby allowing the user to stop the
execution and restart from the last known stable state when the user determines
the running simulation is diverging. By plugging in a simple adaptivity module,
the enhanced GenIDLEST simulation (requiring no modifications to the origi-
nal GenIDLEST code) will incrementally adjust the time step value at runtime,
allowing the computation to proceed in a stable manner.

Implementation: Fig. 3 shows the execution flow of the GenIDLEST simu-
lation. At the end of every preset number of iterations, a local CFL number is
calculated by each MPI process, and then the global CFL value is computed us-
ing a reduction operation (mpi allreduce) across all the processes. This point is
a good candidate for adaptivity code insertion, since by catching and imposing
operations at this synchronization point, the newly inserted code can also be
executed in synchronization, thereby avoiding dangerous race conditions among
the processes. Furthermore, catching the global reduction call also makes it easy
to monitor the global CFL number because its value is passed as the second
parameter of the function. Invoke’s parameter accessing APIs can be utilized
to access this value. In the adaptive logic, we employed a simple multiplica-
tive increase, multiplicative decrease algorithm with upper (CFL U THRESHOLD)
and lower (CFL L THRESHOLD) threshold values for the CFL number, such that
the time step is increased or decreased by a preset factor if the current CFL
number becomes out of the bounds defined by the thresholds. Importantly, the
entire adaptive logic operations are performed synchronously at the call sites of
mpi allreduce without involving any extra global operations, thereby achieving
efficient parallel program adaptation. The implementation aspects of this and
the following adaptation scenarios are summarized in Table 1.

Change of Time Step Change of Flow Models

Purpose improve stability enhance accuracy

Type of Scheme automatic adjustment user’s dynamic decision

States to Monitor
CFL number communicated by
mpi allreduce

stream-wise velocity written to a log

Control Point mpi allreduce in calc cfl calc cfl in time integration loop

Adaptive Logic
adjust time step to confine CFL
number within certain bounds

switch flow model (i les) and acti-
vate turbulent data structures

Communication not necessary broadcast of user’s decision

Table 1: Implementation Aspects of GenIDLEST Adaptation

Experimental Results: Fig. 4 shows the results of GenIDLEST enhanced with
the constructed adaptivity module for the pin fin array simulation, with different
initial values of time step ranging from 10−3 to 10−5. CFL U THRESHOLD and
CFL L THRESHOLD were set to 0.5 and 0.25, respectively. The graphs show how
the CFL value changes as the time step parameter is controlled by the new
module, thereby maintaining the stability of the simulation. Interestingly, it also
shows that the time step in all cases converge to somewhere around 1.7× 10−4,
which might be the optimal value for the model, regardless of different starting
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Fig. 4: Automatic Adjustment of the Time Step Parameter

values. Therefore, an adaptive logic based on a sophisticated CFD theory might
be devised to find the optimal time step for more generalized problems through
our composition method.

3.2 Runtime Change of Flow Models

The predicted heat transfer and flow characteristics depend on the selection of
the appropriate flow model. A fundamental distinction is between laminar and
turbulent flow models, and simulations of interest often require a switch from
one to the other. This problem becomes acute when the Reynolds number is
in the transition region between laminar and turbulent flows. Thus it becomes
important to change the flow model from laminar to turbulent once instabilities
arise in the flow field, for a simulation that is started assuming the flow is laminar.

Two Large Eddy Simulation (LES) turbulent models are considered in this
study – Smagorinsky model (SM) and dynamic Smagorinsky model (DSM) [11].
The most commonly used model is the Smagorinsky model, where the eddy vis-
cosity of the subgrid scales is obtained by assuming that the energy production
and destruction are in equilibrium. The drawback of this model is that the model
coefficient is kept constant, while in reality it should vary within the flow field
depending on the local state of turbulence. The dynamic Smagorinsky model
computes the model coefficient dynamically, which overcomes the deficiencies of
the Smagorinsky model by locally calculating the eddy viscosity coefficient to
reflect closely the state of the flow [11]. The advantage of the DSM model is that
the need to specify the model coefficient is eliminated, making the model more
self-contained, but with an additional computational expense of 10-15%.

Implementation: The simulated flow model in GenIDLEST is set initially by
the user through an input specification parameter, namely i les: 0 for laminar,
1 for Smagorinsky, and 2 for Dynamic Smagorinsky model. Hence, the program
state needs to be accessed and changed at runtime via this variable. Importantly,
the change should be made synchronously across all processes to maintain the
consistency of the parallel computation. To this end, we plug in the adaptivity
module at the call site of the CFL reduction function as shown in Fig. 3, because



it is executed in synchronization across all the MPI processes, providing a safe
place for carrying out adaptation operations without modifying the original code
and disturbing the parallel execution flow already established in the original
GenIDLEST. Specifically, the adaptivity code checks if the user wants to change
the flow model, for which we make use of Unix signals (e.g., SIGUSR1) that can
handle immediate, unanticipated user decisions to switch the flow model. These
user-sent signals set a flag in the root process, which will pause accordingly
with a simple user interface in the next iteration to accept the user’s adaptation
decisions, which in turn are broadcast to the other processes.
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Fig. 5: Variation of Stream-Wise Velocity with Flow Model Change.

Experimental Results: The variation of the velocity in the direction of flow
(stream-wise) is plotted in Fig. 5, showing the points in time when the flow mod-
els are switched from laminar to SM and then to DSM. The stream-wise velocity
initially decreases, as the simulation proceeds towards the solution, which occurs
till about 0.6 time units. After this simulation time, we see that the stream-wise
velocity tends to vary with time, indicating the development of flow instabilities,
and implying that the initial assumption of laminar flow is no longer valid. Thus
the model is switched to SM at time 1.0. The drawback with the SM model, as
mentioned earlier, is that the model coefficient is set to a constant value, but in
reality the coefficient varies with the local state of turbulence, thus it becomes
imperative to change the model from SM to DSM. This switch is done after a
few hundred iterations (at time 1.4) to make sure that the switch from lami-
nar to turbulent model does not introduce instabilities in the computation. The
switch from laminar to turbulent flow model has a significant effect on the heat
transfer. This is shown in Fig. 6(a) and 6(b), which show the variation of the
Nusselt number at the channel walls, which is a measure of heat transfer at that
location. The dotted line shows the region of interest, which is at the front of
the pin in the line of fluid flow. The laminar flow model does not capture the
heat transfer effects at the front of the pin, predicting lower heat transfer rates
at the pin front than the turbulent model, thus justifying the model switch from
laminar to DSM. This switch shows the capabilities of the adaptive scheme, since
to effect the switch without it would have meant stopping the current execution
and then restarting the simulation after effecting the required change.
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Fig. 6: Dynamic Flow Model Change from Laminar to Turbulent in a CFD Simulation

4 Adaptation Overhead

The runtime overhead of our adaptation method comes from catching the func-
tion calls at adaptive control points, which in itself does not involve any global
operations that cause communication overhead. The catching overhead is mea-
sured at 0.10µs per call on average on an AMD Opteron 240 1.4GHz dual-core
processor with 1GB memory cluster, which translates to 140 CPU cycles. Since
the catching cost is fixed, the relative overhead depends on the number of inter-
ceptions and the entire execution profile of an application. That is, the overhead
increases as the number of adaptive control points increases. Still, the catch-
ing cost is relatively insignificant if the application spends most of its time on
executing other parts of the computation than at control points.

In the adaptive GenIDLEST simulations, control points are intercepted only
once at the end of every preset number of iterations of the time integration
loop, while most of the computing time is spent inside the loop. As a result, the
catching overhead is negligible compared to the whole simulation profile. For
example, Fig. 7 shows execution time of the GenIDLEST simulations where the
Invoke framework is imposed at control points in the time step change and in
the flow model change scenario, respectively, but with no adaptation operations.
Across the 3 configurations with varying number of processors, the costs for
catching 500 calls of mpi allreduce during 500 time steps in the time step
change example were measured to be less than 0.7% in all cases compared to
the original GenIDLEST simulations (Fig. 7(a)). Similarly, the overhead is less
than 0.95% for catching 1000 calls of calc cfl during 1000 time steps in the
flow model change example (Fig. 7(b)).

5 Related Work

In the language and compiler approaches for implementing program adaptation,
our work is similar to Program Control Language (PCL) [2] in that centralized
design of adaptation strategies can be specified at a high level for distributed
programs. The expressive power of PCL comes from its underlying framework
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Fig. 7: Invoke Overhead with GenIDLEST Simulations.

which offers a global representation of the distributed program as a graph of task
nodes, the static task graph (STG), connected by edges indicating precedence
relationships. Each adaptation primitive of PCL maps to a sequence of graph-
changing operations on the STG of the target program. The Invoke framework
provides more fine-grained control than PCL STGs by supporting monitoring
and manipulating of state variables internal to a program.

In Grid and cluster computing, there is a large body of research work on run-
time platforms for supporting program adaptation at the level of middleware or
runtime platforms [4–7]. However, as their objective is to implement middleware
support for adaptation between the application and the underlying execution
layer, these efforts focus on resource management towards efficient utilization
of the environment, such as load-balancing and scheduling of application tasks,
where coarse-grained strategies based on resource constraints or external op-
erating parameters are employed. In contrast, our work implements a parallel
adaptation framework that can adjust fine-grained aspects of program state and
behavior by monitoring dynamic progress of the computation itself.

Dynamic binary instrumentation tools such as DynInst [12] offer a modular,
language-independent way of code modification, so that new code modules can be
transparently combined with existing software. Since the accompanying overhead
is significant while they perform code instrumentation at program runtime, they
are usually developed for sophisticated programs analysis purposes [13] rather
than as a tool to realize program behavior adaptation.

6 Conclusions

The proposed compositional framework offers a modular way of implementing
fine-grained program adaptation in a parallel environment. By defining adaptive
control points at the functions that execute in synchronization across the parallel
environment, adaptive logic operations can safely be executed without interfering
with the parallel execution structure of the original program. In future work,
we intend to define ‘adaptivity schemas’ that abstract our recurring templates



of adaptivity and that can be ‘weaved’ over an unmodified program, akin to
aspect oriented programming. We also intend to explore more dynamic and less
synchronous scenarios of parallel program adaptation.
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