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Abstract

With the rapid rise in social media, alternative news sources, and blogs, ordinary citizens have
become information producers as much as information consumers. Highly charged prose, im-
ages, and videos spread virally, and stoke the embers of social unrest by alerting fellow citizens
to relevant happenings and spurring them into action. We are interested in using Big Data ap-
proaches to generate forecasts of civil unrest from open source indicators. The heterogeneous
nature of data coupled with the rich and diverse origins of civil unrest call for a multi-model
approach to such forecasting. We present a modular approach wherein a collection of mod-
els use overlapping sources of data to independently forecast protests. Fusion of alerts into
one single alert stream becomes a key system informatics problem and we present a statisti-
cal framework to accomplish such fusion. Given an alert from one of the numerous models,
the decision space for fusion has two possibilities: i) release the alert or ii) suppress the alert.
Using a Bayesian decision theoretic framework, we present a fusion approach for releasing
or suppressing alerts. The resulting system enables real-time decisions and more importantly
tuning of precision and recall.

Keywords:Ensemble Methods, Correlated Models, Integrating Heterogenous Data, Event Model-
ing, Big Data
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ACCEPTED MANUSCRIPT

1 INTRODUCTION

Social unrest (protests, strikes, and occupy events) is endemic in many societies, e.g., recent news

happenings in the Middle East, Southeast Asia, Latin America. It is of great interest to social sci-

entists, policy makers, governments (both local and foreign) to forecast social unrest, including the

who, why, what, and when of the protest. However, modeling human behavior can be notoriously

difficult (Garson 2009; Carley 2006), and civil unrest is particularly challenging (Anderson Jr.

2006; Thron et al. 2012; Stark et al. 2010). The factors that give rise to civil unrest are multi-

faceted and vary depending on the type of protest. Some, such as inflation, increased taxes, and

drought can be easily monitored but others such as dissatisfaction with government are harder to

quantify. It is also known that many of these are but necessary conditions for a protest and typically

we need a tipping point to ignite the passion necessary for mass unrest. Braha (2012) provides a

parsimonious description of this phenomena, “widespread unrest arises from internal processes of

positive feedback and cascading effects in the form of contagion and social diffusion over spatially

interdependent regions connected through social and mass communication networks.” It is thus an

interesting research problem to recognize such conditions from modern media and use them for

forecasting civil unrest.

In recent years, new forms of social media and communication (e.g., Twitter, blogs) have ush-

ered in new ways for citizens to express themselves, even in countries with authoritarian govern-

ments. Sometimes these new media are simply a reflection of happenings in more traditional media

(e.g., news). Other times these new media afford participants entirely new ways to organize them-

selves, and thus provide a conduit for expression of sentiments as well as recruitment of volunteers.

For instance, during the recent June 2013 Confederations Cup in Brazil, a series of protests broke

out, stemming from the lack of government spending on public infrastructure in light of the costs

associated with hosting the games. Pertinent information traveled quickly through social media

channels (e.g., bus fare increases) and led to both spontaneous and organized protests. Thus social

media provides a rich source of information for forecasting that captures the transmission of social

unrest (Hua et al. 2013).

We approach forecasting civil unrest as asystem informatics(SI) problem wherein numerous

‘big data’ sources are continuously monitored 24x7 using multiple models, to generate real-time
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ACCEPTED MANUSCRIPT

forecasts (alerts) of civil unrest happenings. Our focus is specifically on the countries of Argentina,

Brazil, and Mexico, all hotbeds of civil unrest in the recent past. Due to the multifaceted nature

of civil unrest in these places, it is infeasible to develop one universal model that captures all

types of protest events involving many forms of leading indicators. We have demonstrated that a

multi-model approach (Ramakrishnan et al. 2014, to appear) enables us to leverage the selective

superiorities of different approaches to forecasting civil unrest. This turns the spotlight on the

fusion problem, i.e., how to fuse the alert streams arising from multiple models into one single

alert stream, ensuring that no extra alerts are issued and at the same time suppressing poor quality

alerts.

Three important measures for evaluating the performance of predicting civil unrest events are

precision, recall, and quality score. Precision is the proportion of issued alerts that correspond to

actual events, while recall is the proportion of events that are predicted. Quality score is a measure

of similarity between alerts and events. An implicit fourth measure is lead time, i.e., the amount

of advance time by which a forecast ‘beats the news.’ We will not explicitly focus on model-

ing/optimizing lead time here, but our framework requires that alerts precede the corresponding

news events.

A visual depiction of the entire SI framework can be seen in Figure 1.

Each model processes source data independently to release alerts corresponding to future

protests. The source data varies across models and while there may be some overlapping data

sets (e.g., Twitter is used by four models), data is aggregated and used in a different manner. A

parameterη is invoked to control whether fused alerts favor precision or recall. Releasing more

alerts from the various models will cause drops in precision while recall will improve; thus, the

statistical research question in fusion is focused on balancing this tradeoff, specifically: Should a

given alert be issued or suppressed?

Given a set of alerts, the first step in the fusion framework is to cluster similar alerts from

different models. Then, a classifier is developed using a latent multivariate Gaussian representation

(Chib and Greenberg 1998; Albert and Chib 1993) of the model alerts in each cluster. The benefit

of the latent Gaussian specification is that the association structure between the models can be

modeled and accounted for. Finally through a decision theoretic framework, a loss function that
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ACCEPTED MANUSCRIPT

controls the precision-recall tradeoff determines whether to issue or suppress alerts.

The complexity of the system and the uniqueness of the problem is such that novel exten-

sions and combinations of existing methods are required. In particular, the proposed methods con-

tain similarities to meta-analysis, boosting, and Quadratic Discriminant Analysis (QDA); however,

these methods are not directly applicable to the research problem at hand.

Statistical meta-analysis (Hedges and Olkin 1985) encompasses a broad class of techniques

for combining multiple data sources. Originally such methods were developed for integrating

results from multiple studies in order to create more statistically powerful inferences, or contrast

discordance in differing results. Under similar experimental conditions, Bayesian meta-analyses

(Gelman and Hill 2006) are in spirit straightforward methods for fusing multiple data sources.

Another related class of techniques that are often applied to predictive fusion are boosting

methods (Schapire 1990), wherein an ensemble of weak classification models form a strong uni-

fied learner/predictor. In typical cases where boosting can be applied, several models from a com-

mon model class are fit, yielding a set of predictors. By weighting and averaging each of these

predictors, a single more accurate and reliable predictor is found. Such methods have been em-

ployed with great success throughout the disciplines of machine and statistical learning (Schapire

and Freund 2006).

Because each of the constituting models, which we are attempting to fuse, are not conceptually

similar, they do not share a common parameter space, straight-forward boosting algorithms and/or

meta-analysis techniques cannot be applied. In subsequent sections of the paper, we develop a pre-

dictive fusion framework, which is completely agnostic to the models that are used for prediction.

Specifically, these models need not share any parameters, or come from any common model class.

Only model predictions are required.

The classification component in our fusion framework also has the flavor of QDA (Hastie

et al. 2009), which we have extended for binary variables. Rather than creating a classifier on the

continuous space like QDA, we integrate out the latent variables to determine optimal rules for a

binary set of model inputs; this will be further illustrated in Section 4.4.

Our contributions include an explicit way to handle problems with massive and often unstruc-

tured data (Feldman and Sanger 2007). These rich, complicated data streams can be farmed out
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and analyzed separately providing a means for incorporating segmented domain knowledge or

expertise. Collectively, these models extract the sufficient information to capture the dynamics

driving the system. Then using our Bayesian model fusion framework, these separate models are

combined in principled manner allowing enhanced control of the system. We are able to increase

the precision and quality of our forecasts of civil unrest. This article is focused on predicting civil

unrest, however, the general framework can be applied to a variety of problems. The fusion process

is agnostic to the underlying models, learning dependencies and redundancies of such models to

issue predictions.

The remainder of this article is organized into five sections. Section 2 compares fusion with

a single super-model and details the underlying models that are inputs to the fusion mechanism.

Section 3 defines civil unrest for the purposes of this analysis and details the structure of the

data including the alert-event matching scheme. Section 4 describes the Bayesian model fusion

algorithm implemented to model civil unrest. Section 5 provides an overview of the case study for

predicting civil unrest in Argentina, Brazil, and Mexico. Section 6 concludes with a discussion.

2 MODULAR FUSION VS. SUPER-MODELS

There are two schools of thought in how to design an approach to generate alerts from massive

data sources. By a ‘super-model’ approach, we refer to an integrated algorithm for forecasting

unrest that considers all possible input data sources simultaneously. One benefit of a super-model

is that the joint structure between data sources can be captured, at least theoretically. For instance,

Facebook and Twitter could offer mutually reinforcing signals for a given country where they

both have penetration among the relevant population but can offer complementary evidence in

another country where they cater to different segments of the populace. Such dependencies can

be captured in a super-model approach. The obvious drawback of a super-model is the significant

computational cost involved in bundling all relevant data for processing.

In contrast, the modular fusion approach is targeted at distributed processing of heterogeneous

data sources, either singly or in distinct combinations. Such an approach allows segmented exper-

tise to be naturally captured, e.g., one model could use Facebook to detect organized protests, and
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another could use Twitter to hunt for signals about spontaneous events (and a third model could

use both). The modular fusion approach also permits easy addition (and removal) of models as

new data sources are considered. Our Bayesian model fusion strategy for SI adopts this approach.

2.1 Models considered in this paper

Adopting the modular fusion approach, we next detail how information is extracted from unstruc-

tured social media data sources to produce discrete predictions of upcoming protests. The un-

derlying models use open source information primarily from social media as inputs as well as a

GSR (gold standard report) of historical protests organized by a third party, to produce alerts cor-

responding to upcoming civil unrest events. The alert structure consists of four elements: i) date of

protest (day, month, year), ii) location of the protest (country, state, city), iii) event type (i.e., the

reason for protest, and whether it was violent/non-violent), and iv) population (that will protest).

Hence, for any particular alert, the structure isA = {date, location,event type, population}. Thus

on dayt the models generate a set of alertsAt = {At11, ...,At1n1
,At21...,At5n5

}, whereAt11 is the first

alert issued by model 1 on dayt andAt1n1
is thenth

1 alert issued by model 1 on dayt. The fusion

process takesAt as an input and determines which alerts to issue and suppress.

Our modular fusion approach is intended to be agnostic to the details of the specific models,

only requiring the alerts from the models and providing seamless integration of additional models.

In this article we consider five models: i) historical protests, ii) planned protest, iii) spatial scan, iv)

keyword volume, and v) dynamic query expansion. Next we detail how these five models extract

information from datasets to produce alerts.

The historical protest (HP) model uses newspaper information about past reported protests to

identify commonly recurring protests and forecasts that such protests will happen in the future

as well. From the GSR, the HP model identifies frequently occuring four-tuples: (day, location,

event type, population) using the last three months of protest data. Location, event type, and

population are all categorical variables whose values are determined by consulting the GSR. The

day is modeled as the day of the week and in issuing forecasts a fixed lead time (of 2 weeks) is used

in choosing the forecast protest date. Frequently recurring event types above a specified threshold

(e.g., twice per month) are issued. For instance, ‘farmers protesting government taxes in Rio de
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Janiero, Brazil on an upcoming Wednesday’, is the type of alert issued by the HP model.

The planned protest (PP) model extracts information from news, blogs, Twitter, mailing lists,

and Facebook in an attempt to capture organized protests, i.e., by organizations that use social

media as a way to recruit volunteers and galvanize support. This model works by extracting key

phrases from text signaling intent to protest, detecting dates and locations when such protests

are intended to happen. Phrases are drawn from English, Spanish, and Portugese. Examples of

phrases arepreparación huelgaand llamó a acudir a dicha movilización. If an article or posting

containing such a phrase is detected, the algorithm aims to identify a mention of a future date and

a location, both proximal to the detected phrase. If a future date cannot be found (e.g., only past

dates are identified) then the article is discarded. If a date mention is relative (e.g., the use of the

phrase ‘next Saturday’) the TIMEN (Llorens et al. 1995) enrichment engine is used to convert the

mention into an absolute date. As an example, an alert generated by the PP model could be the

result of scraping information from a Facebook event page on an upcoming labor strike.

Like the PP model, the keyword volume (KV) model also uses a variety of news sources but

tracks the daily aggregated volume of protest-related keywords, and uses such volumes in a logistic

- LASSO regression model to forecast protests. Additional economic variables and Internet access

statistics are also used in the model. As outlined in Ramakrishnan et al. (2014, to appear) using

subject matter experts in political science and Latin American studies, we organized a dictionary

of nearly 800 words and phrases that are useful indicators to track in social media. Examples of

words and phrases are ‘protest’ and ‘right to work’. The KV model uses features, i.e., volumes of

these keywords, from one day to forecast if a protest will occur on the next day. Once an affirmative

prediction is made, the tweets are analyzed in greater detail to determine the location, event type,

and population. Location is determined using geocoding algorithms; event type and population

are predicted using a naive Bayes classifier. For more details, see Ramakrishnan et al. (2014, to

appear).

The spatial scan (SS) algorithm uses Twitter to track clusters of geotagged tweets enriched

with protest-related words, and organizes chains of such clusters in space and time. Clusters that

grow over overlapping time windows are used as indicators of upcoming protests. A fast subset

scan algorithm (Neill 2012) is applied over a grid of geolocated cells to identify a relevant cluster
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that is enriched with the usage of words from our protest dictionary. The cluster is then tracked

over multiple time slices to determine if it persists in size (or grows or decays). A growing cluster

over three consecutive slices is used as an affirmative determination of a protest. The location,

event type, and population are predicted by analyzing and/or classifying the tweets constituting the

cluster. The date is forecast using a simple linear regression model trained against the GSR.

The dynamic query expansion (DQE) model uses Tweets as well but is intended to be an un-

supervised learning system that can detect new forms of protests hitherto not encountered (e.g.,

recently there were protests in Venezuela reg. toilet paper shortage and keywords used in KV

and PP do not involve any relevant phrases). This model begins with a seed set of keywords and

expands it to learn a dynamic set of terms that reflect ongoing chatter on social media. The ex-

panded set is then used to construct a network of tweet nodes from which anomalous subgraphs

are mined to forecast specific events. For additional details on the DQE model, readers are referred

to Ramakrishnan et al. (2014, to appear).

Note that some models use just one source of data (e.g., DQE) but others (e.g., PP) use multiple

sources of data. Further, note that the sources of data overlap across the models. While there may

be overlap in the data sources, the models individually have selective superiorities that collectively

provide a means for capturing a variety of civil unrest situations. As the models described here

are a necessary component in predicting civil unrest, details and references are given so the reader

can understand the underlying mechanism and implement similar models. The remainder of the

article focuses primarily on the fusion process, which was designed to be modular, giving ample

opportunity for segmented groups to predict civil unrest using their expertise. Hence, it is necessary

for the fusion component to be flexible in integrating models by identifying dependencies and

redundancies across models to issue a streamlined set of alerts.

3 PRELIMINARIES

3.1 Defining Protests

An obvious question is: what constitutes an actual protest? Many events with a large number of

people gathering to support a common case (e.g., a farmer’s market or a victory parade) are not civil
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ACCEPTED MANUSCRIPT

unrest events. The origin of the event definition lies with the Integrated Data for Events Analysis

(IDEA) framework outlined in Bond et al. (2003), but is modified for our purposes. Rather than

exactly identifying what constitutes a protest, it is easier to define exclusion criteria. Entertainment

performances and sporting events, natural disasters, terrorists or criminal activities, general insta-

bility, and scandals are not considered civil unrest events. However, strikes by soccer players or

mass protests following a natural disaster would be valid instances of protest. Another component

of identifying civil unrest revolves around whether the event reaches a relevance threshold. Rather

than identifying specific criteria, the determination is made as to whether the event warrants a men-

tion in major newspapers in the country of interest. The event need not be the feature of the article,

but can be discussed in the context of another story (e.g. a story about traffic mentions a protest

inhibiting traffic flows). For this application, the occurrence of civil unrest events are identified

by subject matter experts (disjoint from the authors) reading newspapers of record in each country

and recording protests.

Once an instance of civil unrest has been identified, the event needs to categorized. For each

case, five components are recorded: i) date of the protest (day, month, year), ii) date of reporting of

the protest (day, month, year), iii) location of the protest (country, state, city), iv) event type (reason

for protest, whether it was violent/non-violent), and v) population (that protested). The protest

type includes the following categories: employment and wages, housing, energy and resources,

other economic policies, other government policies, and other. The population protesting can be

one of the following groups: business, ethnic, legal, education, religious, medical, media, labor,

refugees/displaced, agricultural, or general population (if they do not fall into any of the other

groups). The set of protests recorded by subject matter experts is referred to as the GSR. The GSR

format matches that of alerts issued by our models, with the exception that the GSR contains two

dates, one pertaining to the protest date and another to when the protest is reported. Similar to the

alert structure, the events are characterized asEt = {Et1, ...,Etnt
}, where the first event on dayt is

Et1 ={date(protest),date(reported), location,event type, population}.

The distinction between date of the protest and date of reporting is crucial. Ideally we need a

forecast before the date of reporting and with a forecasted date as close to the date of the protest.

Furthermore, alerts are generated daily and decisions regarding issuance or suppression also need
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to be made daily. However, the GSR, and thus the record of events, is only updated monthly.

Therefore, an evaluation of the alerts for the previous month is made once that month’s GSR is

finalized. The next section describes this process, in which the date of the protest, location, event

type, and population, together help define the quality in accurately forecasting events.

3.2 Alert-Event Matching

Because models (even a single one) issue multiple alerts and because there are multiple protest

events, a necessary component of evaluating performance is a strategy for matching alert-event

pairs. The first required component is a similarity measure between individual alerts and events

which is known as the Quality Score (QS) and defined by a piecewise formula comparing every

element of the event against the corresponding element of the alert. QS is defined to be zero under

certain obvious conditions: (i) if the alert country and event country do not match, (ii) if the lead

time is< 0 (i.e., the alert is issued after the event is reported), and (iii) if the forecasted date of

event and actual date of event are more than seven days apart. If these exclusion conditions are not

triggered, QS is defined as:

QS(A,E) = date.score+ location.score+ type.score+ population.score, where

date.score = 1−
|dateA − dateE|

7
,

location.score =
1
3
δ(countryA = countryE) +

1
3
δ(stateA = stateE) +

1
3
δ(cityA = cityE),

type.score =
2
3
δ(reasonA = reasonE) +

1
3
δ(violentA = violentE)

population.score = δ(populationA = populationE).

Theδ() is an indicator function. Examples of issued alerts and the corresponding matched events

with the resultant QS are shown in Figure 2.

For instance, in the second alert-event pair the resultant QS is 3.67 as the only difference

between alert and event is the city. Note that QS is scaled to be in [0,4].

We can think of the QS formula as helping define the space of possible matchings between

alerts and events. We annotate every matchable edge (QS> 0) between alerts and events with their

QS, and compute a maximum bipartite matching to evaluate the overall performance of the set of

alerts issued. We enforce the added constraint that an alert can be matched to at most one event
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(and vice versa). The overall quality score is then assessed based on the maximum quality score

achievable in a bipartite matching between alerts and events as defined in Munkres (1957).

3.2.1 Alert-Event Matching Illustration

Consider the visual depiction of the process as shown in Figure 3.

As seen in Panel (a), each model issues multiple alerts, some of which can correspond to

realized events. In particular, note that an event can potentially be forecast by multiple models,

but perfect identification of the event will be rare. So as Panel (b) shows, the QS that each alert

achieves can be different. Additionally, alerts are also generated for events that do not occur (e.g.,

A33). At this point two distinct scenarios are depicted in Panels (c) and (d), a case where all

alerts from the models are released and another with alerts suppressed by fusion. Whereas Panel

(a) depicted potential for models to forecast events, Panel (c) presents a concrete assignment of

alerts to events when all alerts are released. Dashed lines in Panel (c) are used to denote either

alerts that did not match to events, or that matched fortuitously to events other than the target.

This panel illustrates the two possible negative effects of issuing extraneous alerts: either alerts go

unmatched, lowering precision or fortuitously match to ‘incorrect’ events, diminishing the mean

QS. Such rogue alerts can be a result of near duplicate alerts or alerts not corresponding to an event,

but the net effect is the same. Finally in Panel (d) consider a case where fusion clusters similar

alerts (shown as dotted lines), while also suppressing poor alerts (no arrows). This results in lower

recall, but higher precision, and higher quality scores.

In general without fusion, issuing more alerts (accomplished by incorporating more models)

is not uniformly beneficial, even if the alerts accurately predict civil unrest. In fact, too many

alerts is detrimental. There are two negative effects of issuing excess alerts: alerts are unmatched

causing precision to diminish or alerts are matched with an event with low quality score reducing

the average quality score. Next we detail the implementation of our fusion process.
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4 BAYESIAN MODEL FUSION

On a given day, a set of alerts,At, are generated from the collection of underlying models. Each

individual alert contains information pertaining to location, date of protest, population protesting,

and the type of protest. GivenAt, our fusion model consists of two stages. First, a scheme for

clustering similar alerts from different models is invoked that reducesAt into a set of clustersMt.

Each cluster contains up to five alerts with no more than a single alert from each model defined

as m = (m1,m2, ...,m5), wheremi ∈ {0,1} denotes whether an alert from modeli is included in

the cluster. This results in (25 − 1) = 31 unique cluster types. Second, for each cluster type we

estimate the probability of an event occurring using data from the previous month. Based on a

loss function, an alert from each instance of cluster type is emitted if the probability of a match

is sufficiently high, otherwise alerts in the cluster type are suppressed. The following subsections

detail our clustering procedure, decision rule, and implementation of Bayesian Model Fusion.

4.1 Alert-Alert Clustering

The first step is to reduce extraneous alerts by clustering similar alerts. Specifically, clusters of

similar alerts are formed so that a given cluster contains either zero or one alert from each model.

This is done by combining alerts such thatQS(Ati j ,At′i′ j′) > 3.0, whereQS() is the previously

defined similarity score now applied to two alerts andAti j denotes thejth alert issued from theith

model on dayt. A QS of three is used in this analysis, but the actual QS can be viewed as a tuning

parameter. The clustering effectively removes redundant alerts as the complete set of alertsAt is

mapped to a set of clustersMt,. Now rather than considering the complete set of alerts a smaller

subset is evaluated as only a single alert in each cluster can be released. The meta information

of each alert is retained and given the similarity of the alerts, a single alert from each cluster is

randomly selected to be considered for release.

4.2 Fusion Concepts

In this problem, multiple users are viewing alerts with varying utilities corresponding to individu-

als. To create a flexible procedure to account for individual utilities, a loss function is introduced
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that associates a cost with each type of decision. Given that this analysis is confined to predicting

the presence or absence of events, loss functions can be expressed via Table 1, whereL(E, F(m))

denotes the loss for decisionF(m) and event outcomeE, whereE = 1 denotes that an event

occurred.

The framework for tuning precision and recall is established by settingc11 = c00 = 0 and

allowingc10 andc01 to vary. Then the parameterη is defined as:

η =
c01

c10 + c01
. (1)

Values ofη near one heavily penalize alerts that do not correspond to an event (or false alarms).

The result is only the predictions with the highest probability of matching an event are issued; thus,

precision is emphasized. Similarly withη near zero, failing to predict events would be more costly

than issuing alerts not corresponding to an event. Hence, small values ofη favor recall.

For a given cluster type, there are two possible decisions: issue an alert,F(m) = 1, or suppress

the alert,F(m) = 0. The following is a standard result in Bayesian decision theory (Berger, 1985).

Proposition 1 The set of decisions satisfying: F(m) = 1 if P[E = 1|m] > η and F(m) = 0 if

P[E = 1|m] ≤ η is optimal.

Unfortunately, practical constraints make an optimal solution untenable. In particular, the real-time

nature of this prediction exercise requires an algorithm capable of executing in a short manner of

time. The computational bottleneck is the alert-event matching process described in Section 3.2.

ComputingP[E = 1|m] depends upon which cluster types are issuing alerts. For instance, if a

single cluster type,m∗ = (1,0,0,0,0), is suppressed becauseP[E = 1|m∗] < η then the matching

algorithm needs to be re-run on the training data asP[E = 1|m] changes form , m∗. This is

because events that previously matched alerts fromm∗ in the training data are now free to match

with alerts issued from other cluster types. Hence, computed probabilities change for the other

cluster types. An optimal solution would require require a massive model selection set to calculate

P[E = 1|m] for all m that considers the 231 possibilities in which alerts from cluster types are issued

or suppressed. The time alone required to run the 231 sets of alert-event matching procedures (let

alone any statistical machinery) is considerably longer than 24 hours. Hence we adopt a practical

solution, estimatingP[E = 1|m] when all clusters types issue alerts. This enables users to treatη

as a tuning parameter, viewing results from past months to calibrateη to their respective utilities.
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4.3 Data Generation Mechanism

In order to suppress lower quality alerts, it is necessary to learnP[E = 1|m]. A Bayesian classifier

is developed using the underlying data generation mechanism forP[m|E]. That is, the process by

which models issue alerts in the presence or absence of an event is modeled and flipped into a

classifier via Bayes’ rule. To capture model dependencies, latent multivariate Gaussian variables

{ Z1, Z0} are introduced as:

E = 1 : Z1 ∼ N(μ1,R1) (2)

E = 0 : Z0 ∼ N(μ0,R0) (3)

where the latent variablesZ′1 = (z11z12, ..., z1i), Z′0 = (z01, z02, ..., z0i) are truncated such thatzi j > 0

if mj = 1 andzi j < 0 if mj = 0. The covariance matrices are constrained to correlation matrices

due to identifiability issues as in Albert and Chib (1993). Givenp[Z|E = i,μi ,Ri] we can obtain,

P[m|E = i,μi ,Ri] by integrating out the latent variables,

P[m|E = i,μi ,Ri] =

∫

Z∗
(2π)−mn/2|Ri |

− 1
2 exp(−

1
2

(Z − μi)
′
R−1

i (Z − μi))dZ, (4)

whereZ∗ denotes the orthants such thatz∗ j > 0 if mj = 1 andz∗ j < 0 if mj = 0. The integration

of (4) can be computed using a simple accept-reject sampling method (Robert and Casella 2005).

This integration is similar to QDA, but with binary data rather than continuous. QDA establishes

a decision boundary between the two distributions, whereas our procedure computes a probability

for each orthant corresponding to the discrete model inputs.

4.4 Fusion Decision

The goal is to learnP[E = 1|m], which enables tuning of precision and recall by issuing or sup-

pressing alerts according to the loss defined by the parameterη in (1). This posterior distribution

can be computed as

P[E = 1|m] =
∫

P[m|E = 1,μ1,R1]P[E = 1]
P[m|E = 1,μ1,R1]P[E = 1] + P[m|E = 0,μ0,R0]P[E = 0]

p(Θ)dΘ, (5)
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whereΘ = {R1,μ1,R0,μ0}. Priors forΘ are drawn from Talhouk et al. (2012) in order to use the

Parameter eXpansion and Data Augmentation (PXDA) approach detailed therein:

P(μ|R) ∼ N(0,R) andp(R) ∝ |R|
M(M−1)

2 −1(
M∏

i=1

|Rii |)
−(M+1)/2,

whereRii is the principal submatrix ofR. We use a naive Bayes type prior in whichP[E = 1] =
∑n

j=1 δ(Ej = 1)/n, wheren is the number of points in the training data set andδ(Ej = 1) in an

indicator function that thejth data point was a realized event.

For general details on PXDA readers are referred to Liu and Wu (1999) and van Dyk and Meng

(2001). As conjugate priors do not exist on correlation matrices, PXDA allows an augmentation

converting the correlation matrixR into a valid covariance matrix. This allows Gibbs sampling

of both a covariance matrix from an inverse Wishart distribution and a transformed mean from a

normal distribution. Finally, these are converted back to the original mean and correlation scale.

Tuning proposal densities for sampling matrices can be a cumbersome procedure, so circumvent-

ing that via a Gibbs sampler improves the efficiency of the algorithm. The MCMC procedure

implemented for inference can be found in the Appendix.

5 BAYESIAN MODEL FUSION FOR CIVIL UNREST

5.1 Overview

Using data from May 2013 to train the Bayesian model fusion framework, alerts are issued and

evaluated for June 2013. Predictions are made for the countries of Argentina, Brazil, and Mexico.

As mentioned previously, June 2013 was a month in which numerous protests broke out in Brazil.

Historical trends alone would not be sufficient to predict the sheer number of protests, so the

performance during this month shows the efficacy of mining social media data to predict protests.

For reference, in Brazil alone 74 events took place during May 2013. This increased in June to 425

events. Data and R code for the algorithms in this article can be found in the supplementary files.
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5.2 Model Estimation

Convergence occurs very rapidly with a burn in period of less than 50 iterations. This implemen-

tation uses 5000 iterations for the MCMC and 100,000 Monte Carlo samples for the accept/reject

sampler built into each iteration. The algorithm runs on a MacBook Pro (2GHz Intel Core i7 pro-

cessor, 8 GB SDRAM) in about 300 minutes. The algorithm only need be recalibrated when a new

event history is added to the GSR (monthly) or when an underlying model is changed. However,

should model changes be made, the fusion implementation needs to be retrained and capable of

producing updated predictions in a single day.

Marginal posterior means and credible intervals for the mean parameters of the latent represen-

tation, (2) and (3), can be seen in Table 2. As there are twenty correlation parameters, these are

omitted for brevity’s sake.

Collectively the probability of matching an alert for a given cluster type,P[m|E = i,μ,R],

is computed via (4). The output of the MCMC procedure necessary for fusion decisions are the

posterior probabilitiesP[E = 1|m]. Table 3 shows the posterior mean of these distributions for

select model combinations, which is used to determine which alerts to issue.

For instance, the cluster type only containing a PP alert,m= (1,0,0,0,0), and the cluster only

containing a SS alert,m = (0,1,0,0,0), models both have relatively weak evidence of an event

without agreement of other models, withP[E = 1|(m = (1,0,0,0,1))] = 0.21 andP[E = 1|(m =

(0,1,0,1,0))] = 0.24. However, in cases where both models jointly issue an alert the evidence of

an event increases toP[E = 1|(m = (1,1,0,0,0))] = 0.51. Dependent on theη value specified by

the loss function, a likely scenario is the alert in the PP cluster would initially be suppressed, but

once the SS model issued a similar alert that was clustered with the PP alert, then the probability

would be upgraded and an alert would be issued.

5.3 Results

Realistically, evaluating prediction requires considering precision, recall, and quality score jointly.

The alert-event matching algorithm is a necessary evil of the process, in which poor, uncalibrated

alerts are often "matched" albeit with low quality scores. This phenomenon is shown in Panel (c)
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of Figure 3, where a duplicate alert from model 2,A22, matches event 4 and a rogue alert from

model 3,A33, matches event 6. Similarly, the first alert-event pair in Figure 2 represents a poor

match with QS= 1.52. In both cases the alerts should have been suppressed.

To further illustrate the value of this tuning approach, six differentη values are selected that

span the range of computed probabilities. These levels, as well as the unconstrained instance in

which all alerts are issued, are compared. A description of these levels can be seen in Table 4.

Using the seven levels, different numbers of alerts are issued for each level. Plots displaying

the precision and recall for each of the seven tuning levels can be seen in Figure 4.

With a largeη, fusion increases precision; moreover, loss functions favoring precision will also

tend to have higher QS. Intuitively by suppressing alerts with a lower probability of matching an

event, alerts that result in low quality matches are also suppressed. As we have shown extra alerts

either match with low QS or are not matched at all. While this isn’t explicitly a component of the

loss function, it is an important feature of our fusion algorithm. The mean quality score of matched

alerts for each of the tuning levels can be seen in Figure 5.

By suppressing the lowest quality alerts at each tuning level, the overall mean QS increases

well above the target value of 3.0 for each country.

Another way to consider quality score is to look at the distribution of the quality scores amongst

the matched alert-event pairs rather then the overall mean QS. Kernel density estimates (KDE) for

the mean QS combined across the three countries can be seen in Figure 6.

In this figure, notice the distribution shifts considerably toward higher quality alerts at higher

tuning levels. The fusion mechanism effectively suppresses the lower quality alerts, particularly

those with a QS less than 2.

6 Discussion

In this article, we have presented a modular fusion approach to predicting civil unrest. The frame-

work allows separate models to be constructed with differing selective superiorities, which is ex-

tremely beneficial when dealing with big unstructured data sets, such as the set of publicly available

social media information in a country for a given month. This also allows data to be aggregated in
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different ways, such that the signal of civil unrest can be captured from social media. However, this

modular approach also presents some challenges. Creating additional models or more specifically

releasing extra alerts, even strong performing ones, results in degraded precision and quality score.

Our fusion framework presents a solution to combining model alerts and issuing predictions such

that precision and recall tradeoffs are handled in an optimal way. While not explicitly optimizing

QS, our fusion framework has been shown to retain the strongest alerts resulting in elevated overall

QS.

A key feature of our approach is the tunability aspect, i.e., wherein an analyst can choose to

focus on precision or recall. Recall is more appropriate (and precision less important) if an analyst

uses our framework as a step in ananalytic triage, i.e., to determine potential hotspots of civil

unrest and then use domain knowledge to narrow them down to areas of interest. Precision is

more appropriate (and conversely, recall is less important) if the analyst is focused on exploring a

specific social science hypothesis, and thus obtaining accurate (but fewer) forecasts is desirable.

One reason that fusion is necessary is that models release similar alerts. It may be the case

that the models pick up on the same signal from the same or a different data set. Irregardless of

how the process arises, the net result of the similar alerts is degraded QS and lower precision.

The problem can be understood though the idea of correlated models. This is expressed through

the correlation matrices in (2) and (3). An alternative to sampling the correlation matrices would

be to use Gaussian graphical models to explicitly capture the association structure between the

models. Graphs could be sampled during each iteration of the MCMC sampler, providing a means

to visualize and estimate model dependencies. However, the association structure of the models is

only tangentially related to our research question. The graph structures would be integrated out,

to obtain the probabilities of identifying an event. Therefore, we sample unconstrained correlation

matrices rather than the graphs.

Moving forward, a direct approach to consider the joint structure of precision, recall, and QS

is being developed. Specifically, a loss function can be invoked that not only penalizes unmatched

alerts and events, but also penalizes matches with QS less than some specified value. A related

approach is to solve a constrained optimization for QS (e.g. maximize QS subject to precision

and recall greater than some threshold). To achieve these aims, a few modifications are made
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to the work presented here: i) a more sophisticated model based approach for matching alerts

via a Dirichlet process introducing clusters of alerts, ii) ensemble methods are used to combine

information between alerts in a cluster- that is alerts that are matched are combined rather than

suppressing the extra alerts, iii) given the flexibility in matching alerts, multiple alerts are allowed

to be emitted from a cluster of alerts.

APPENDIX

Estimation is conducted using an MCMC procedure as follows:

1. Sample (Z1|E = 1,μ1,R1) and (Z0|E = 0,μ0,R0) ∼ N(μi ,Ri). For computational efficiency

the multivariate densities can be decomposed into univariate normal densities, then sampling

proceeds using importance sampling as in Robert (1995). The use of standard accept-reject

samplers or importance sampling with a multivariate (or univariate) normal distribution is

unfeasibly slow, due to truncated regions having extremely low probabilities.

2. Sample (μ1,R1|Z1) and (μ0,R0|Z0) using PXDA as in Talhouk et al. (2012).

(a) Sample (dii |R) ∼ IG((M + 1)/2, r ii/2), whereM is the number of models andr ii are

the diagonal elements ofR−1. Then letD be a matrix with diagonal elementsdii and

computeW = Z D. ThenΣ = DRD andγ = μD.

(b) Sample (Σ|W) from IW
(
2+ n,W

′
W + I −W

′
JnW/(n+ 1))

)
, where

Σ ∼ IW(ν,Ω) ∝ |
Ω

2
|(
ν+M−1

2 )|Σ|(
−ν+2M

2 ) exp(−
1
2

tr[Σ−1Ω]),

andJn is an× n matrix of 1s.

(c) Sample (γ|W,Σ) ∼ N
(
1
′

nW/(n+ 1),Σ/(n+ 1))
)
.

(d) ComputeR = QΣQ andμ = γQ, whereQ is a diagonal matrix with diagonal elements

qii = σ
−1/2
ii , whereσ−1/2

ii are the diagonal elements of the precision matrixΣ−1.

3. ComputeP[m|E = 1,μ1,R1] andP[m|E = 0, (μ0,R0] as in (4) for each of the cluster types

m.
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4. P[E = 1|m,μ1,R1,μ0,R0] is computed via (5), where each iteration of the MCMC sampler

integrates over{μ1,R1,μ0,R0} to obtainP[E = 1|m] for m ∈ M.
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Table 1: Loss Function Matrix:L(E, F(m))

Predicted
F(m) = 1 F(m) = 0

E = 1 c11 c10

A
ct

ua
l

E = 0 c01 c00
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Table 2: Posterior Means and 95 percent credible intervals

Model μ1 95%CI μ0 95%CI
Planned Protest -0.05 (-0.20,0.09) -1.82 (-1.91,-1.74)
Spatial Scan -1.34 (-1.55,-1.13) -2.46 (-2.61,-2.31)
Historical Protest 0.22 (0.02,0.43) -2.23 (-2.48,-2.02)
Dynamic Query Extraction -0.03 (-0.23,0.21) -2.14 (-2.29,-1.97)
Keyword Volume -0.98 (-1.24,-0.68) -2.14(-2.36,-1.94)
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Table 3: Posterior Mean forP[E = 1|m]

PP SS H DQE KV P[E = 1|m]
1 0 0 0 0 0.21
0 1 0 0 0 0.24
0 0 1 0 0 0.75
0 0 0 1 0 0.53
0 0 0 0 1 0.06
1 1 0 0 0 0.51
0 0 0 1 1 0.59
1 1 0 1 0 0.74
1 0 1 1 0 0.90
1 0 1 0 1 0.70
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Table 4: Precision Recall Tuning Levels

Level Criteria
1 Issue all alerts
2 η = 0: cluster similar alerts
3 η = 0.21
4 η = 0.51
5 η = 0.65
6 η = 0.74
7 η = 0.80

27
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

98
.2

44
.1

01
.6

2]
 a

t 1
1:

32
 0

2 
M

ay
 2

01
5 



ACCEPTED MANUSCRIPT

Face-
book

Mailing 
List

Twitter

Blogs

News

DQE

PP

KV

FUSE

Model Alerts Fused Alerts

.

.

.

.

.

.

η near 0
favors Recall

η near 1
favors Precision

.

.

.

.

.

.

.

.

.

.

.

.

date

al
er

t

date

date

date

date

date

al
er

t
al

er
t

al
er

tal
er

t
al

er
t

Figure 1:System Informaticsframework for Bayesian model fusion, where DQE, PP, and KV are
underlying models detailed in Sec 2.1 .
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ACCEPTED MANUSCRIPT

Alert 1: {(06/17/2013),(Argentina, Corrientes, Corrientes),(Other - not violent), (General Pop)}
Event 1: {(06/18/2013),(Argentina, Rio Negro, Villa Regina),(Other Econ. - not violent), (Agriculture)}
QS= date.score (0.86)+location.score (0.33)+ type.score (0.33)+ population.score (0)= 1.52

Alert 2: {(06/27/2013),(Mexico,Veracruz,Isla),(Other Gov Policy- not violent), (General Pop)}
Event 2:{(6/27/2013),(Mexico,Veracruz,Córdoba),(Other Gov Policy - not violent), (General Pop)}
QS= date.score (1)+location.score (0.67)+ type.score (1)+ population.score (1)= 3.67

Figure 2: Matched alert-event pairs
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(a) Alert Generation
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E1 E2 E3 E4 E5

A11 A12 A21 A22 A23 A31 A32 A33
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(b) Quality Scores

M1 M2 M3

E1 E2 E3 E4 E5

A11 A12 A21 A22 A23 A31 A32 A33

3.8 1.73.7 3.5 1.3

Precision=5/8
Recall = 1
QS = 2.6

(c) Matching without Fusion

M1 M2 M3

E1 E2 E3 E4 E5

A11 A12 A21 A22 A23 A31 A32 A33

3.8 3.7 3.5

Precision=1
Recall = 3/5
QS = 3.67

(d) Matching with Fusion

Figure 3: Overview of alert-event matching.
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Figure 4: Precision Recall tradeoff by the tuning levels defined in Table 4
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Figure 5: Mean QS in solid line, dashed line represents target QS of 3.0.
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Figure 6: KDE of mean QS combined for all three countries for three specified tuning levels.
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