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Abstract—This paper leverages open source “big data” intel-
ligence to develop predictive models that can provide timely,
relevant and accurate indications, warning, and tracking of
migration flows / movements of large groups (> 100 persons)
through South and Central America to the southwest border of
the United States. We describe experiments with a live forecasting
setup, development and refinement of predictive models, and
how machine learning models can yield insight into the factors
underlying mass migration.

Index Terms—Anticipatory intelligence, forecasting, machine
learning, mass migration.

I. INTRODUCTION

Much of Latin America is at risk of natural disasters as
well as political and social turmoil [1]. Governments are not
equipped to handle these emergencies and are often incapable
of being effective in safe conditions [2]. Political upheaval
increases the potential for social unrest causing many citizens
to consider migrating to other safer countries, often north and
eventually to the southwest border of the United States of
America (USA) [3]. As a result forecasting such surges in
migration and land border encounters is a timely research
problem [4].

This paper proposes a migration forecasting system from
open source migration data, utilizing the Customs and Border
Protection’s (CBP’s) southwest land border encounters data
[5]. In this paper, we formalize and solve the forecasting
algorithm in terms of the unique limitations of the migration
scenario and develop predictive models to forecast land border
encounters. Migration data from CBP are available only as
a monthly aggregate with an approximately two months lag.
Thus we must exploit surrogate indicators from textual and
digital media resources, i.e., news (both English and Latin
American sources in countries of origin). These surrogate indi-
cators enable the creation of algorithms to provide anticipatory
intelligence in a different granularity than the ground truth
time series data, i.e., the daily encounter values.

Our models are intended to predict sudden changes in the
anticipated encounters at the border, thus allowing the rapid
and efficient deployment of available resources. We test our
models for forecasting up to three months into the future
from the available data timestamps but can predict further
into the future. We also model spatial dependencies across
different components and captured area-specific patterns in a

multi-task multi-level learning framework. Additionally, we
adapted a multi-faceted evaluation methodology to perform
both retrospective and prospective assessments of forecasts us-
ing measures such as lead time, accuracy, and self-consistency.

II. BACKGROUND & LITERATURE REVIEW

A. Migration Triggers

Migrations responds to push and pull factors [6]; the push
factors force people to seek safety or a better life elsewhere,
while the pull factors make certain places attractive for relo-
cation. In certain places and at certain times either push or
pull factors may be relatively more important but they always
work in tandem. Push and pull factors operate on both legal
and undocumented migration. Most migration is undertaken by
individuals or small groups of people and readily absorbed by
receiving countries in need of labor because of rapid economic
growth or decreasing demographic trends. Mass migrations,
however, can number into the millions and occur over a brief
period of time, thereby overwhelming the capacity of countries
to which they flow either in transit or as a final destination.

Mass migrations are not new phenomena, but they may
be increasing because of three factors. Climate change is
now producing a plethora of natural disasters (drought, flood-
ing, wildfires, rising sea levels, etc.) more often and with
greater intensity, thereby making some geographic spaces
either uninhabitable or significantly difficult for people to
have an acceptable standard of living [7]. The increasing shift
to authoritarian governments (including geographic spaces
effectively governed by organized crime) around the world is
another push factor with increasing impact, often operating in
combination with natural disasters. Some of these governments
take advantage of the weakening of global norms against
gross violations of human rights, ideological justifications for
violence, and ethnic cleansing to create situations of extreme
insecurity for large segments of the national population [2].
There is also a third factor of increasing importance and it
operates on the pull side: demographic decline in wealthy
nations. Their economies as well as their aging populations
need a significant influx of labor and offer higher wages
as well as social support than elsewhere, thereby becoming
attractive destinations for desperate migrants.

Latin America is among the regions of the world that is
most vulnerable to natural disasters increasingly stimulated by



climate change [8]–[10]. Caribbean islands and Central Amer-
ica have been devastated by recent hurricanes, drought afflicts
South America, and rising sea levels impact all of its coastal
communities. Most governments have neither the infrastruc-
ture, technical capacities nor funds to adequately respond to
these vulnerabilities and the crises that develop when disaster
hits. In addition, the return of authoritarian government has
produced massive out-migration from Venezuelans seeking to
escape economic collapse and political retribution. Geographic
proximity, a growing economy and demographic decline make
the U.S. an attractive destination for migrants.

B. Forecasting using open source data

Time series forecasting has been extensively researched due
to its widespread applicability in a variety of fields, such as
finance [11], weather [12], traffic [13], and others. In the past
decade, deep learning has been thoroughly researched and has
led to the advancement of new technical modeling approaches.
These approaches have moved away from purely traditional
statistical methods, such as AutoRegressive Integrated Mov-
ing Average (ARIMA) [14] and generalized additive models
(GAM) [15]. Such traditional methods often face difficulties
in capturing complex patterns and non-linearities that exist in
real-world data. Recent progress in deep learning, exemplified
by Long Short-Term Memory (LSTM) networks [16], [17] and
Transformers [18], has greatly enhanced the accuracy of fore-
casting by adeptly capturing long-term dependencies and non-
linear patterns in time series data. There also exist composite
approaches such as Prophet [19] and timeGPT [20] which aim
to provide a richer vocabulary for modeling and forecasting.
However, merely optimizing the time series prediction algo-
rithm is invariably insufficient in practical applications due to
hierarchical and bursty patterns of behavior. The classic paper
of Kleinberg [21] detects bursts in a stream of events. The
EMBERS series of methods [22]–[27] implements event-level
modeling and forecasting by utilizing numerous information
sources across granularities as real time input factors.

III. METHODOLOGY

A. Data Collection

1) Data Sources: The ground truth data was collected from
the CBP Data Portal [28]. Monthly encounters (including Title
8 and Title 42) from CBP and Office of Field Operations
(OFO), e.g., ports of entry, dating back to October 2020 were
collected and updated each month through March of 2023.
Additional information is provided with the encounter data
such as demographic information (categories indicating age,
admissibility, and familial relationship), location of encounter,
citizenship, title of authority (the authority under which the
non-citizen was processed), and encounter type (the category
of encounter based on Title of Authority and component, i.e.,
CBP or OFO). This information was collected to enhance
predictions and provide more specific predictions, e.g., by
location or citizenship.

We investigated several data sources to improve our un-
derstanding of various aspects of migration and specifically

identified innovative surrogate data sources. Specifically, geo-
located social media data support early event detection and
event prediction as well as serve as indicators for ongoing
conflict on the ground. Online media content, such as news
media and blog posts, indicate events that already took place
and may act as early warning indicators for predicting future
events. It should be noted that “Big (Crisis) Data” does have
its problems. The data is noisy, sometimes inaccurate, and
can contain bias. It can also be difficult to combine with
traditional data sources e.g., different frequencies, unstructured
data sources, or different units of measurement.

Our data ingest for training and running models was derived
from two primary sources, NewsAPI, and webz.io, using
keyword data queries. These sources include news articles, i.e.,
long form text. We collected English and Spanish data using
both English and Spanish keywords. Some queries required
a Central/South American country name to be listed in the
article/tweet to limit and narrow the results on the topics
and events of interest. Approximately 5.6 GB of data was
originally downloaded from the 2 sources dating back to
October 1, 2020: i) 2.8M+ articles from NewsAPI, and ii)
3.4M+ articles from webz.io.

2) Data Queries: The keyword list used to query the data
was developed using guidance from social and political science
subject matter experts. The keyword list focused on “triggers”
to migration. As stated earlier, increases and decreases in
migration are driven by push (domestic violence, economic
collapse, natural resource issues) and pull (jobs, benefits,
community) factors. These push and pull factors could either
encourage (policy, domestic violence, environmental stressors)
or discourage (policy, transit issues, blockages) migration. The
triggers also assume that migration flows are well organized
because they are high-risk movements. Triggers also match
the forced displacement system that the United Nations High
Commissioner for Refugees recommends as the theoretical
basis to evaluate possible contributions of “Big (Crisis) Data”
to predictive models of forced displacement [29].

Additionally, combinations of words, words in certain con-
texts, or words from certain sources may have meaning but a
holistic count of those words might not, e.g., a count of the
words “Cubans,” “Venezuelans,” “Nicaraguans,” or “Haitians”
versus those words in a Costa Rican newspaper. We addressed
these issues and generated a list consisting of 481 keywords.

B. Data Enrichment

Data is ingested via multiple APIs and undergoes several
enrichment steps. Entities (people, locations, organizations,
dates) are extracted and labeled. Keyword and country name
occurrences are tracked for each article. Additionally, detailed
distributed word vector modeling is applied.

Geocoding ensures an accurate understanding of data origin
and identifies the most impacted locations. The article’s loca-
tion is predicted using document metadata and content, with
the enrichment process determining where it was published,
the reporting source, and topical content. Conflicts between
these locations are resolved using models inspired by the



EMBERS system [22]–[27]. We also extract South/Central
American country names from the articles. After enrichment,
the data size grew to 650GB, a 100-fold increase from the
original ingested data.

C. Analysis and Prediction Models

1) Keyword Analysis: From the aforementioned 481 key-
words, we used regression models for feature selection, iden-
tifying the top 60 most positively and 60 most negatively corre-
lated keywords with total encounters and specific demographic
segments (sectors and citizenship).

Our prediction models handle keyword counts differently:
some use individual keyword counts as features, while others
use aggregated counts. Individualized counts help models
detect specific changes (e.g., “Title 42”), whereas aggregated
counts pool variance to capture broader trends. When pre-
dicting by citizenship, keywords must be mentioned with the
country of interest, ensuring relevance. A sampling of the top
100 correlated keywords for specific demographics are shown
in Figure 1.

Fig. 1: Sampling of keyword sets that appear in every update of
the Top 100 correlated keywords with a specific demographic
of encounters.

2) Burst Analysis: This analysis uses the Bursty and Hier-
archical Structure algorithm described in [21] to determine a
baseline level of keyword counts and uses this to determine
when bursts of certain keywords or aggregations of keyword
groups (e.g., Top 60 correlated keywords) occur.

When there is a sustained burst in an aggregation of
keywords on a daily level we then predict a burst in encounters
(in the proceeding month) for the applicable demographic.
Additionally, when there is a sustained burst in a specific
keyword on a daily level, the keyword is added to a daily
list of important keywords. These provide context for an
analyst to better understand the trends that are occurring in the
ingested data and the predicted encounters. These keywords
can be sorted or filtered into categories, such as geo-political
locations, people, nationalities, etc.

3) Prediction Models: We begin by formalizing a problem
definition, which guides the development of several predictive

models and algorithms described in the following subsections
and compared in the results section. As mentioned, the ground
truth data is available on a two-month delay yet all models are
making predictions several months into the future.

Problem Definition: A migration encounter sequence, de-
noted as E = {e1, e2, . . . , em}, is provided at the monthly
level, where each em represents the ground truth label as
a numerical value. It is important to note that the ground
truth label has a two-month delay. This means that when
making model predictions, the available historical sequence E
only includes {e1, e2, . . . , em−2}. A news keyword sequence,
K = {k1, k2, . . . , kd}, is generated from a mix of news sources
and provided daily. The goal is to forecast the migration
encounter sequence for the next month at a daily level, denoted
as E ′ = {e′d, e′d+1, . . . , e

′
d+30}, given the historical sequences

E and latest K. When forecasting e′d, the input feature K will
include {k1, k2, . . . , kd−1}.

M1: Bursty Regression: This model uses correlations
between the aggregated counts of the top 60 keywords and en-
counters and applies that to the daily keyword usage to predict
daily encounters. It then aggregates daily counts to monthly
counts for comparison to the ground truth. Unfortunately, this
model was not as accurate as other models because news
cycles decay more rapidly than actual encounters. Therefore
the model predicts large drops in encounters before the drops
actually are realized resulting in a higher error despite a similar
trend/pattern in the keyword counts. This model was used as
a starting point for further tuning.

Burst Detection and Enumeration: To detect the bursty
nature of the target encounter sequence E of m− 2 labels, we
adopted a bursty and hierarchical-structure-in-streams design
and automaton-based bursty detection [21]. A simple example
of this bursty automaton is a two-state model, corresponding to
“low” and “high” activity levels. In practice, the infinite-state
version A∗

s,γ can be defined as:

f(x) = αie
−αix

αi = ĝ−1si

τ(i, j) = relu[(j − i)γ lnn]

(1)

Eq. 1 describes the infinite automaton within a bursty detection
model. The hyperparameters γ and s represent the cost of
moving to a higher state and a scale parameter, respectively.

Fig. 2: M2 pipeline.

M2: Bursty Regression with Multi-Armed Bandits: The
goal of this model is to predict ed+1 (which is daily) and
burstd+1, i.e., burst prediction for the next day, with two input
streams:



1) em−2: Encounters for month m with a 2-month lag.
2) kd: Daily keyword count for day d.

The main challenge is that the two inputs em−2 and kd have
asynchronous updates and different granularity. The model was
therefore designed to find the direct relationship between the
daily keyword and the daily encounters that can be mimicked.
Given each state (burst or no burst), we have 3 possible
actions:

1) Decrease the predicted encounter with decay.
2) Increase the predicted encounter as normal.
3) Increase the predicted encounter under a burst.

The model’s input data consists of burst detections based on
news keywords. Although daily ground truth encounters are
not available, the model retains the memory of the most recent
predicted daily encounters, which helps carry forward trends
into the next day, denoted as e′d+1. The forecasting model is a
regression function g(·), trained using historical data from the
labeled period, which includes available monthly encounter
trends and daily ground truth data for the keywords. The
decision model f(·), shown in Figure 2, includes parameters
β, which are learned to capture the effects of decay and
the magnitude of bursts. To achieve daily-level predictions,
the values in the set E ′ = e′m−2, e

′
m−2+1d, . . . , e

′
d−1, e

′
d are

predicted auto-regressively.

e′d+1 = f [kd, g(e1,...,m−2, k1,...m−2), e
′
d]

=


e′d ∗ β1, if decay
g(kd) ∗ β2, if rise, and burst(e′d) is True
g(kd) ∗ β3, if rise, and burst(e′d) is False

(2)

Eq. 2 represents a value function designed to predict future
encounters, e′d+1, which is predicted by incorporating inputs
with varying levels of granularity. This process involves using
ground truth encounter labels e′m with a two-month delay
and combining e′m−2, on a monthly basis, and daily news
keywords, kd. Although the ground truth label, e′m, is based on
coarser, monthly data, the prediction method can still achieve
detailed daily forecasts, represented as e′d+1.

To determine the parameters in the equation above, we
employ the Multi-Armed Bandits (MAB) framework. Let
the action chosen at time t be denoted by At, and let the
corresponding payoff be Rt. The expected payoff for any given
action a is denoted by q(a), as defined in Eq. 3. Our goal is to
estimate the value of action a at time t, represented by Qt(a),
and we aim for this estimate to closely approximate q∗(a).

q∗(a) = E[Rt|At = a] (3)

Fig. 3: M3 and M4 pipeline.

M3 and M4: Keyword Infused Forecasting: M3 forecasts
future daily encounters for the rest of the month in a sequen-
tial manner using regressor-infused time series forecasting.
M4 is the same as M3 but it uses the individual keyword
counts mentioned in the keyword analysis as multiple separate
features. All past observed keywords are modeled to act as
regressors for the final forecasting model which outputs the
daily encounter values. There are two steps.

1) The first step is data generation. A challenge of time-
series forecasting in this scenario is the granularity of the
observed data. All of our encounter data are aggregated
monthly but we build a daily encounter prediction model.
So, to forecast the number of daily encounters we employ a
mathematical model to simulate daily encounter data from his-
torical monthly totals. The model assumes that the growth of
cumulative daily encounters follows the growth of cumulative
daily keyword counts. Curve fitting parameters are initialized
from keyword data using this equation.

N (τ) = N0 · (1 + γξ)
τ

We solve for the growth rate γ:((
N (τ)

N0

) 1
τ

− 1

)
· ξ−1 ≡

(
e

1
τ ln

(
N(τ)
N0

)
− 1

)
· ξ−1

≡

(
e

1
τ ln

(∑τ
d=1 n(d)

n(1)

)
− 1

)
· ξ−1

(4)

where N (τ)represents the value of the cumulative encounter
at time τ , i.e., N (τ) =

∑τ
d=1 n(d). N0 is the initial value of

the cumulative encounter count for first day of the month, i.e.,
N0 =

∑1
d=1 n(d) = n(1). γ represents the growth rate of the

cumulative sum and N per time unit τ . ξ is a constant that
modifies the growth rate γ with τ as the time variable.

2) The second step is sequential forecasting. We use past
encounters and present keyword counts to first forecast key-
words for the rest of the month, and then, encounters for the
rest of the month, using forecasted keywords as a regressor.
We adapted the additive forecasting model from [19] to model
our forecasting as the following:

e(θ) = ψ(θ) +

n∑
i=1

βiki(θ) + ϵθ (5)

where e(θ) represents the number of encounters at time θ. ψ(θ)
is the combined trend, seasonality, and holiday component,
i.e., ψ(θ) = g(θ) + s(θ) + h(θ). ϵθ is the error term.∑n

i=1 βiki(θ) encapsulates multiple keywords as a separate
regressor to model the forecast, i.e., βi is the ith coefficient
quantifying the influence of ith keyword on encounters; ki(θ)
is the ith keyword frequency at time θ. The trend component
g(θ) can be modeled as either a piece-wise linear function or a
logistic growth curve. s(θ) is captured using a Fourier series,
which allows the model to flexibly fit recurring patterns over
different periods. h(θ) are modeled as indicator variables for
known events that can cause spikes or drops in encounters.



Figure 3 shows the pipeline for these two models. Table I
shows the difference between the four analytical models in
regards to horizon (forecast, condition), granularity and core
technique.

TABLE I: Comparison between different models. Each model
has the same conditioning horizon of monthly encounters with
two months of lag and daily keywords with one day lag.

Models Forecasting Forecast
Granularity Horizon

M1: Bursty Regression Daily Next day
M2: Bursty Regression with Daily Next day
Multi-Armed Bandits
M3: Keyword Infused Daily Rest of
Forecasting month
M4: Multiple Keyword Daily Rest of
Infused Forecasting month

IV. RESULTS

A. Burst prediction

To evaluate burst prediction we subjectively defined bursts
as increases in encounters from one month to the next of 10%
or more. This analysis is correct in predicting a burst 91% of
the time (precision) and predicts 82% of bursts that actually
occurred (recall). Sector and country specific bursts had a
precision of around 80% and recall of around 60%. Therefore
an analyst can expect to be forewarned that a significant
increase will occur and in what specific demographic. Unfor-
tunately, this analysis does not predict how large the bursts in
encounters will be. Figure 4 shows the burst prediction for total
encounters overlaid on the actual count of total encounters.

Fig. 4: Burst predictions compared to actual encounters.

B. Encounter Prediction Metrics

Before discussing the results, we describe the metric used to
measure the forecasting model. Models are evaluated on three
key factors, i) lead time (how far in advance are the forecasts
provided in days), ii) mean absolute percentage error (MAPE),
and iii) self-consistency (if the forecasting model is stable

against changes due to real-time data). MAPE is calculated
using the formula:

MAPE =
1

n

n∑
t=1

∣∣∣∣et − e′t
et

∣∣∣∣× 100 (6)

where n is the number of predictions, et is the actual value
of encounters at time t, and e′t is the forecasted value of
encounters at time t.

C. Daily prediction

Our four models have different lead times. These are listed
in the Forecast Horizon column of Table I. The MAPE for
each of the model’s ability to predict total encounters over
multiple time periods is shown in Table II. The actual and
forecasted values for total encounters of each model are plotted
in Figure 5.

TABLE II: Evaluation results of models

Model Evaluation Time Period MAPE
M2 Jan 21 - Sep 22 26.3%
M2 Dec 21 - Sep 22 10.5%
M3 Mar 22 - Oct 22 11.3%
M4 Feb 21 - Dec 22 20.2%
M4 Feb 22 - Dec 22 09.3%

Fig. 5: Actual and forecasted values for total encounters from
each model.

D. Self-consistency analysis

This evaluation assesses the change of the monthly pre-
diction as we progress throughout the month. Optimally the
predictive models would be fairly stable with changes due to
the real-time data (news and corresponding keywords) we are
seeing each day. Figure 6 shows the measure for a sample
month which indicates that the models are fairly consistent.

E. User interface

We also developed a user interface where we stitch together
all the relevant results from all analyses and models to present



Fig. 6: Self-consistency evaluation for encounter prediction
(blue) through the days of the month

to relevant authorities. Users can select and filter the results.
We also show the bursting keywords which can be filtered
and sorted into categories, e.g., geo-political locations, people,
nationalities, etc. An example output of bursting keywords in
the user interface is shown in Figure 7.

V. FUTURE WORK AND CONCLUSION

Fig. 7: Keywords contributing
to bursts.

Migration on the
southwest border of the
USA has been fluctuating
for many different reasons
which raises the necessity
of robust and real-time
prediction models of
migration encounters. In
this research, we presented
the development and
deployment of a predictive
system built with the help
of open-source data. We
also identify key challenges
to predicting migration . As
future work for this research, we aim to enhance the accuracy
of the granular (i.e., sector, country, demographic) models.
We also plan to use Dynamic Query Expansion to expand our
keyword selection process [22]. Moreover, we aim to develop
nested multi-instance learning models (nMIL) [30] which can
show the causal and interventional analysis for an important
migration event through the temporal sequence of precursors.
Migration remains an important challenge for the USA and
novel research is important to address this challenge.
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