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Abstract—Infectious disease epidemics such as influenza and
Ebola pose a serious threat to global public health. It is
crucial to characterize the disease and the evolution of the
ongoing epidemic efficiently and accurately. Computational
epidemiology can model the disease progress and underlying
contact network, but suffers from the lack of real-time and
fine-grained surveillance data. Social media, on the other
hand, provides timely and detailed disease surveillance, but is
insensible to the underlying contact network and disease model.
This paper proposes a novel semi-supervised deep learning
framework that integrates the strengths of computational
epidemiology and social media mining techniques. Specifically,
this framework learns the social media users’ health states
and intervention actions in real time, which are regularized by
the underlying disease model and contact network. Conversely,
the learned knowledge from social media can be fed into
computational epidemic model to improve the efficiency and
accuracy of disease diffusion modeling. We propose an online
optimization algorithm to substantialize the above interactive
learning process iteratively to achieve a consistent stage of the
integration. The extensive experimental results demonstrated
that our approach can effectively characterize the spatiotem-
poral disease diffusion, outperforming competing methods by
a substantial margin on multiple metrics.
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I. INTRODUCTION

Infectious disease epidemics such as influenza and Ebola
pose a serious threat to global public health. According to
a recent World Health Organization (WHO) report [26],
seasonal influenza alone is estimated to result in about 3
to 5 million cases of severe illness and about 250,000 to
500,000 deaths each year. In the recent Ebola outbreak in
West Africa, there have been 27,055 cases and 11,142 death-
s [25]. These diseases share two important characteristics:
(1) They spread through close contacts between people; With
increased local and global travel, the epidemic is often of
large spatial scale. (2) They spread rapidly; for example,
during the 2009 H1N1 pandemic, the initial case occurred
in Mexico in March 2009; but by the beginning of November
2009, more than 6,000 people had died from H1N1 influen-
za [23]. In order to take effective public health measures
to mitigate such fast-developing epidemics, it is crucial to
characterize the disease and the evolution of the ongoing
epidemic efficiently and accurately. To handle this problem,

recent research in both computational epidemiology and
social media mining have achieved important progress and
demonstrated their respective usefulness in different aspects.

In the field of computational epidemiology, individual-
based network epidemiology has been developed to study the
spatio-temporal dynamics of the spread of epidemics. It sim-
ulates disease transmission at individual level, and interven-
tions such as vaccinations, school closures, and quarantine.
High-performance simulation systems have been developed
that are capable of simulating epidemics using network-
based models. Such simulations compute the evolution of
an epidemic evolution, enabling planners to: (i) forecast the
spatio-temporal spread of the disease; (ii) estimate important
epidemic measures such as the peak time; and (iii) evaluate
the effectiveness of intervention strategies.

Currently, computational epidemiology suffers from the
following challenges. 1) Lack of spatially fine-grained
surveillance data for model tuning. Existing work mostly
relies on surveillance data provided by the Centers for
Disease Control and Prevention (CDC) [10] to estimate the
model parameters. However, CDC surveillance data only
provides state-level spatial information, which is insufficient
for accurate diffusion modeling within a state. 2) Difficulties
in tracking the dynamics of contact networks in real time. In-
tervention, such as school closures and vaccinations play an
important role in mitigating epidemics by changing people’s
infectivity and vulnerability and altering the contact network
structure. Current approaches lack effective mechanisms to
monitor the impact of ongoing interventions during the
current season in real time. 3) High cost and low timeliness
of retraining. Existing approaches generally rely on batch
training based on the CDC surveillance data. However, CDC
surveillance data is updated weekly, with a delay of at least
one week, and thus cannot catch up with the real time disease
spread.

Social media, on the other hand, can capture timely and
ubiquitous disease information from social sensors (i.e.,
social media users) [11]. Social media-based approaches can
be classified into two categories: (i) aggregate-level disease
surveillance and (ii) detailed health-informatics analysis. The
first category assumes that self-reported symptoms from so-
cial media users are reliable signals reflecting the aggregate-



level trend of a particular outbreak. Among these, some
focus on detecting or tracking current influenza outbreaks
while others aim to forecast the severity of the outbreak.
The second category focuses on detailed modeling of the
social media contents as well as their relevance to health
informatics, disease geoinformatics, and health behaviors.
However, social media mining approaches suffer from three
major drawbacks. First, as a crucial determinant of the
disease diffusion pattern, real contact networks are basically
unobservable. Estimating social contact networks merely
based on the location of social media users is neither
accurate nor sufficient. Second, they generally can only
characterize the health information of social media users, but
not the whole demographic population. Third, they typically
only employ the disease information retrieved from social
media without utilizing disease model knowledge.

Although computational epidemiology can model the
progress of a disease and the underlying disease contact net-
work among individuals, it suffers from a lack of timely and
fine-grained surveillance data. Social media mining, on the
other hand, provides spatiotemporal surveillance with good
timeliness and geographical details, but is unable to observe
the underlying contact network and disease progress mod-
el. In order to overcome the above-mentioned challenges,
we propose a novel online semi-supervised deep learn-
ing framework that integrates the strengths of individual-
based epidemic simulation and social media mining tech-
niques, named SocIal Media Nested Epidemic SimulaTion
(SimNest). SimNest is a novel bispace framework that com-
bines computational epidemiology and social media data by
an interactive mapping, as shown in Figure 1. Specifically,
on one hand, the health states and interventions actions of
social media users are not only identified via their posts by
deep learning, but also are regularized unsupervisedly by
the disease model in computational epidemiology. On the
other hand, the user health states and parametrized disease
model learned from social media can provide the compu-
tational epidemic model with individual-level surveillance
and the optimized disease model parameters. This interactive
learning process between social media and computational
epidemiolgoy iteratively performs, leading to a consistent
stage between these two spaces. The main contributions of
our study are summarized as:

• Proposing a novel integrated framework for compu-
tational epidemiology and social media mining: The
existing approaches from computational epidemiology and
social media mining focus on different but complementary
aspects. The former focuses on modeling the underlying
mechanisms of disease diffusion while the latter provides
timely and detailed disease surveillance. SimNest frame-
work utilizes both type of information by integrating the
strengths of them.

• Developing a semi-supervised multilayer perceptron
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Figure 1: In SimNest, the simulated world mirrors social media
space. The posts of social media users reflect their statuses

information of health, vaccination, or isolation. This information
is mapped to the corresponding spatial subregions in the

demographics-based contact network in the simulated world.

(MLP) for mining epidemic features: To achieve deep
integration, we enforce unsupervised pattern constraints
derived from epidemic disease progress model onto the
supervised classification. Using this semi-supervised strat-
egy, the sparsity of labeled data can be solved.

• Designing an online training algorithm: To minimize
the inconsistencies between Twitter space and the sim-
ulated world, we propose to iteratively optimize model
parameters via an online algorithm. This algorithm ingests
the social media data streams and updates the model
parameters in real time, which not only reduces the cost
of retraining but also ensures the timeliness of the model.

• Conducting extensive experiments for performance
evaluations: The proposed SimNest model was evaluated
using Twitter data collected from Jan 2011 to Apr 2015
in 4 states and the District of Columbia in the United
States. The proposed methods consistently outperformed
competing methods in multiple metrics. The advantage of
integrating the complementary strengths of computational
epidemiology and social media mining is demonstrated.

II. RELATED WORK

Computational models for epidemiology are important for
a number of reasons. Traditionally computational epidemiol-
ogy focused on compartmental models, where a population
is divided into subgroups (compartments) based on people’s
health state and demographics, and the epidemic dynamics
are modeled by ordinary differential equations [20], [24].

Recently, individual-based computational models have
been developed to support network epidemiology, where an
epidemic is modeled as a stochastic propagation over an
explicit interaction network between people. One common
approach taken by network epidemiology is to model the in-
teractions between people using random graph models [13],



[16]. Here, the closed form analytical results obtained can
be applied to study epidemic dynamics, but this relies on
the inherent symmetries in random graphs. With no explicit
location modeling, it cannot be applied to compute the
geographical spread of an epidemic.

Another direction taken by network epidemiology is to
develop a realistic representation of a population by con-
sidering members’ social contact network, and then using
individual-based simulations to study the spread of epi-
demics in the network [5], [8]. This approach first constructs
a synthetic population, where each individual is assigned
demographic, geographic, social, and behavioral attributes
so that at various aggregate levels the synthetic population
is statistically indistiguishable from the real population. The
synthetic individuals are also assigned daily activities and
their physical locations at any moment, so by connecting
all persons located within close proximity to each other
one can construct the corresponding synthetic social contact
network for the population [4]. Individual-based simulations
model epidemics as diffusion processes across this network,
and compute who infects whom at what time at which
location [8]. In addition to the synthetic network and disease
model, another key component of individual-based epidemic
simulations is the associated public health and individual
interventions, which can be either pharmaceutical such as
vaccination, or non-pharmaceutical such as social distanc-
ing. These interventions affect the epidemic evolution by
changing the node or edge properties of the network.

Recently, there have been a number of proposals for
influenza epidemic knowledge mining techniques based on
social media, which can be categorized into two threads.
The first thread focuses on aggregate level disease surveil-
lance. For example, Krieck et al. [18] suggested that self-
reported symptoms are the most reliable signal in detecting
whether a tweet is relevant to an outbreak or not and then
went on to demonstrate that this is because even though
people generally do not identify their specific problem until
diagnosed by an expert, they readily write about how they
feel. Using a similar approach to identify flu-related tweets,
researchers generally concentrated on tracking the overall
trend of a particular disease outbreak, typically influenza,
by monitoring social media [2], [14], [17], [28].

The second thread focuses on detailed health-informatics
semantic analysis. These approaches typically model the
language of the social media messages and their relevance to
public health [22] influenza surveillance [12], disease geoin-
formatics [15], user interactions [9], and health behavior
[11]. Paul et al. [22] proposed a topic model that captures
the symptoms and possible treatments for ailments, and
then went on to propose a way to identify the geographical
patterns in the prevalence of such ailments. Specific to self-
reporting on influenza, Collier et al. [12] categorized five
sub-classes of tweets that serve as user behaviour response
surveys for influenza outbreaks, Dredze et al. [15] focused

on achieving accurate geographical location identification
for influenza outbreak detection, Brennan et al. [9] utilized
Twitter user interactions to uncover the health condition
of Twitter users. Tackling the problem from a different
direction, Chen et al. [11] concentrated on modelling the
disease progression in individuals.

III. PROBLEM SETUP

This paper aims to characterize the spatiotemporal dif-
fusion of epidemics across the underlying social contact
network. Specifically, assume the discrete time increases
by interval, and there are T such time intervals T =
{0, · · · , t, · · · , T}. We aim to know for each time interval
t ∈ T the health states Z of the people in the population.
Regarding health state transition in a time interval t, we
do not distinguish between different moments during the
interval when it occurs exactly. To address this problem,
approaches based on computational epidemiology and social
media mining are formulated in turn below.

A. Individual-based epidemic simulation

A disease transmits through people to people contacts.
These people-people contacts form a network called a social
contact network G = (V, E ,W), which is a directed, edge-
weighted network. Nodes V correspond to individuals in the
population. An edge (v1, v2) ∈ E with weight W(v1, v2)
denotes the nodes v1 and v2 ∈ V has a contact of duration
W(v1, v2). During the contact the disease may transmit
from node v1 to v2 with probability p(W(v1, v2), τ), where
τ , called transmissibility, is probability of transmission per
unit of contact time and is a parameter associated with
the disease. We first assume that the contact network G is
constant. In Section VI, we will consider the situation when
G changes with interventions.

Each person is assumed to be in one of the following
four health states at any time: susceptible (S), exposed (E),
infectious (I), and recovered (R), which is known as the
SEIR disease model. It is widely used in the mathemati-
cal epidemiology literature [3], [20]. Associated with each
person v are an incubation period pE(v) and an infectious
period pI(v), each from a distribution. We assume that
both are normally distributed, i.e., pE(v) ∼ N (µE , σE)
and pI(v) ∼ N (µI , σI). A person is in the susceptible
state until he becomes exposed. If a person v becomes
exposed, he remains so for pE(v) days, during which he
is not infectious. Then he becomes infectious and remains
so for pI(v) days. Finally he recovers and remains so.
The transition S 7→ E is probabilistic. But we assume
that once person v becomes exposed, pE(v) and pI(v) are
sampled from the two normal distributions respectively so
their values are determined. In sum, given the parameters,
let Zv,t(pE(v), pI(v)) ∈ {S,E, I,R} denote the health
state of person v ∈ V on time t ∈ T . Therefore, we
have Z = {Zv,t(pE(v), pI(v))}v∈V,t∈T , where Z stands



for peoples’ inferred health states based on individual-based
epidemic simulations.

B. Social media based user health state inference
Social media is a popular way for people to post about

their everyday feelings, and is commonly treated as a surro-
gate for the physical world [2]. Taking Twitter as an instance,
suppose the set of Twitter users who have ever mentioned
their flu infectiousness is denoted as U ⊆ V , which can in-
crease with Twitter data streams. Each user posts nu,t tweets
in each time interval t (e.g., hour, day), t = 1, 2, · · · , T .
Define Twitter streams as D = {Du,t}u∈U,t∈T , where the
matrix Du,t ∈ Z|V |×nu,t denotes the posts from user u in
time t. The (i, j)-th entry, denoted as Du,t,i,j , refers to the
frequency of the i-th term in the j-th tweet. V refers to
the vocabulary. Suppose we have a predefined subset of
keywords K related to flu, and denote A as the corresponding
incidence matrix, A ∈ [0, 1]|K|×|V |. Define a matrix Xu,t as
follows: Xu,t = A ·Du,t · 1, where 1 denotes a vector of all
ones. It is clear that Xu,t ∈ Z|K|×1 is the vector of keywords
frequencies from user u at time t. Hence, Xu = {Xu,t}Tt
denotes the keyword vectors of user u, while X = {Xu}u∈U
denotes the set of all the keyword vectors. We are interested
in learning a classifier fW , which maps the social media user
textual content Xu,t to their corresponding health states Yu,t:

fW (Xu,t) : Xu,t → Yu,t (1)

where Yu,t = 1[Zu,t = I], I stands for “Infectious”, and
1[·] stands for the indicator function. Therefore, Yu,t = 1
signifies that user u’s health state Zu,t at time t is infectious
(I); and Yu,t = 0 that it is not. Yu = {Yu,t}Tt denotes all
the health states of user u. W denotes the parameter set of
the classifier.

There are three main challenges when using either
individual-based epidemic simulation or social media mining
techniques individually: (1) There is as yet no surveillance
data that is sufficiently real-time and fine-grained to permit
the detailed progress of the epidemic simulation to be linked
consistently with the physical world. (2) The people-people
disease contact network and disease model is hidden to
social media data. (3) The fast-streaming and time-evolving
nature of huge social media data requires efficient updating
of the trained model. Traditional batch-based training suffer
from high expense and poor timeliness.

In order to overcome the above-mentioned challenges
in either of the above threads individually, we propose
using both types of information by deeply integrating the
strengths of individual-based epidemic simulation and social
media mining techniques in our new framework, SocIal
Media Nested Epidemic SimulaTion (SimNest), which is
elaborated in the following section.

IV. SIMNEST MODEL

As shown in Figure 2(A), SimNest learns the users’ health
states from social media posts based on a multilayer feature

representation. Other than considering each time point indi-
vidually, SimNest utilizes disease progress model in com-
putational epidemiology to constrain the temporal pattern of
health states in two aspects: (1) constraining the infectious
period to follow a probability distribution in Figure 2(C)
and (2) resisting a temporally discontinuous health states
like in Figure 2(D). As shown in Figure 2(B), by mapping
social media users’ health states into demographics-based
synthetic contact network, an interactive learning between
these two spaces is achieved. Specifically, simulation model
parameters are adjusted by the social media surveillance data
while the weights of the multilayer-based health state model
are regularized by the underlying synthetic disease contact
network.
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Figure 2: The illustration of the SimNest model.
To make the underlying health states in the contac-

t network G consistent with those gathered from social
media data D, SimNest simultaneously optimizes contact
network, disease progress model parameters pI and pE ,
and social media-based health state inference fW (·). A-
mong all the keyword vectors X , we are given a set of
labeled samples X1 = {Xu,t}u∈U1,t∈T with corresponding
class label Y1 = {Yu,t}u∈U1,T , and unlabeled samples
X2 = {Xu,t}u∈U2,t∈T , where U2 = U − U1 is the set
of all the unlabeled users. Mathematically, SimNest model
is formulated as jointly minimizing the following four loss
functions: (A) Supervised loss, (B) Bispace consistency loss,
(C) Infectious duration loss, and (D) Temporal proximity
loss, as illustrated as below.

L = L1(Y1,X1,W ) + L2(X2,G, pE , pI ,W )

+ L3(X2, pI ,W ) + L4(X2,W ) (2)

The different loss functions are illustrated in Figure 2. In
the following subsections, we will elaborate each of these.



A. Supervised Loss

To effectively build the mapping fW (·) between tweet
texts and user health states, which is an abstract concept,
we substantialize it by applying deep data representation,
namely multilayer perception:

fW (x) = s(h(1)) = s(
∑m

j=1
W

(2)
j s(h

(2)
j ) +W

(2)
0 ),

h
(2)
j =

∑|K|

i=1
W

(1)
j,i xi +W

(1)
j,0

(3)

apart from the input layer that is the tweet text and the
output layer that is the user health state, another hidden layer
represents the abstract semantics, where m is the number of
hidden layer features. W = W (1) ∪W (2), where W (1) ∈
R|K|×m is the weight matrix for the mapping from text layer
to abstract semantics layer, W (2) ∈ Rm×1 is the weight
vector for the mapping from abstract semantics layer to the
user health status layer and s (·) is the sigmoid function.
h(1) =

∑m
j=1W

(2)
j s(h

(2)
j ) +W

(2)
0 .

A common way to learn W is to define a loss function
over the training data, and then obtain the best W by
minimizing the loss of misclassification towards labels:

L1 = min
W

U1∑
u

T∑
t

‖fW (Xu,t)− Yu,t‖2 (4)

B. Bispace consistency loss

To sufficiently benefit from the complementary advan-
tages of individual-based epidemic simulation and social
media data, the inner inconsistency of the integrated model
need to be minimized. Specifically, the hidden health states
in the individual-based epidemic simulation need to be con-
sistent with the observations from social media. On the other
hand, the intelligence gleaned from the social media data
also needs to correspond to the hidden disease progression
across the hidden contact network. More formally, our goal
is formulated as the following loss function:

L2 = min
Θ,W

V∑
v

T∑
t

‖Qv,t(G, pE , pI)− fW (Xv,t)‖2 (5)

where Qv,t(G, pE , pI) = 1[Zv,t(pE(v), pI(v)) = I], and I
stands for the state of “infectious”, as introduced in Section
III. Θ = {G, pE , pI} are the parameters of individual-
based epidemic simulaiton and pE(v) ∼ N (µE , σE) and
pI(v) ∼ N (µI , σI) are the incubation and infectious dura-
tion distributions of person v, respectively.

But it is impossible to link the corresponding person to a
specific user in Twitter, and not all the people post tweets.
Fortunately, however, the specific spatial subregion (e.g.,
blocks, counties, etc.) of Twitter user u ∈ U and simulated
individual v ∈ V can be known. Hence, the above loss

function can be resorted to a fine-grained spatial subregion:

L2 = min
Θ,W,λ1

L,T∑
l,t

∥∥∥∥∥∥λ1

Vl∑
v

Qv,t(G, pE , pI)−
U2,l∑
u

fW (Xu, t)

∥∥∥∥∥∥
2

(6)
where U2,l denotes the Twitter users in location l, Vl denotes
the people in location l, and λ1 is the parameter scaling the
person count in the individual-based epidemic simulation
down to the count of social media users .

C. Infectious Period Loss
Existing social media mining techniques typically do not

assume a specific disease progression model and hence
cannot take advantage of its important knowledge pattern.
Unlike them, SimNest borrows the disease progression mod-
el from the epidemic simulation to regularize the patterns
in the huge unlabeled social media data. This not only
greatly mitigates the problem of label data sparsity, but also
improves the timeliness and generalization of the modeling.
Specifically, the infectious duration of a Twitter user is
dependent on the flu outbreak’s characteristics as well as
his or her general state of physical health, denoted as the
following normal distribution:

[
∑T

t
fW (Xu,t)] = du ∼ pI(u) = N (u|µI , σI) (7)

By maximizing the likelihood function for the observa-
tions, we can obtain the following objective function:

max

U2∏
u

N(du|µI , σI) = max

U2∑
u

logN(

T∑
t

fW (Xu,t)|µI , σI)

which can be transformed to the following formulation by
considering Equation 1:

L3 = min
W,pI

1

2σ2
I

U2∑
u

∥∥∥∥∥
T∑
t

fW (Xu,t)− µI

∥∥∥∥∥
2

+
|U2|

(2πσ2
I )

1/2

(8)

D. Temporal Proximity Loss
Another important intrinsic pattern in the health state

modeling is that the states in the neighboring time points
should be similar. Moreover, a person recovering from the
flu typically cannot get the flu again in the same flu season,
as illustrated in Figure 2(D). Thus, the infectious dates are
temporally consecutive. This fact motivates the loss function
for the proximity of the neighbor states:

L4 = min
W

U2∑
u

T∑
t

‖fW (Xu,t)− fW (Xu,t+1)‖2 (9)

V. ONLINE TRAINING ALGORITHM

To efficiently solve the optimization problem presented
in Equation 2, we propose an online parameter optimization
framework. It adopts an alternating minimization approach,
where all variables are fixed except for the one being
updated.



A. Solving for W

The process of solving W is based on stochastic gradient
descent (SGD) [7]. Training with SGD makes it possible to
handle very large databases since every update involves one
(or a pair) of examples, and grows linearly in time with the
size of the dataset. The convergence of the algorithm is also
ensured for low enough values of threshold error.

The derivatives of L1,L3,L3, and L4 can be deduced
using backpropagation algorithms and its variants1.

B. Solving for Θ

Solving for Θ = {G, pE , pI} with respect to the loss
function L2 is a nonconvex and non-differentiable problem,
so a numerical optimization algorithm such as the Nelder-
Mead method [7] can be adopted to solve it.

C. Solving for pI , λ1

The sufficient statistics µI and σI of the infectious period
distribution pI have the following analytical solution:

µI =
1

|U2|

U2∑
u

T∑
t

fW (Xu,t) (10)

σI = (
∑U2

u

∑T

t
fW (Xu,t − µI)/|U2|)1/2 (11)

Solving for λ1 according to the loss function L2 in
Equation 6 yields the following analytical solution:

λ1 =

L,T∑
l,t

U2,l∑
u

fW (Xu, t)/

L,T∑
l,t

Vl∑
v

Qv,t(G, pE , pI) (12)

Utilizing the above alternating optimization process,
SimNest is trained and utilized to forecast the spatiotemporal
epidemic diffusion progress in the online fashion illustrated
in Algorithm 1. Specifically, the unlabeled data set X is
continually updated by the social media data streams, with
the most out-dated data (such as three months old) being
replaced by the newly-arriving data. Then, the weight matrix
W is optimized via a SGD fashion until convergence.
Utilizing the optimized infectious period distribution as the
input for the simulation process, the epidemic simulation
parameter pE is optimized by minimizing the inconsistencies
with social media data. Finally, the population’s health status
Z is predicted. The optimized parameter pE is then utilized
for the next-step’s optimization of weight matrix W with the
updated unlabeled data. Therefore, as the data is streaming,
the parameters is being optimized with the newest data and
the predicted health states Z streams out.

1For the detailed deductions, see our supplementary material here:
http://people.cs.vt.edu/liangz8/materials/papers/SimNestAddon.pdf

Algorithm 1: Online Algorithm for SimNest
Input: Data matrix X = X1 ∪ X2, Twitter data stream C,

contact network G.
Output: the population’s predicted health states Z .

1 Set the learning rate η = 0.5. Initialize weight matrix W as
matrix of random values between -1 and 1;

2 repeat
3 Update unlabeled data set X2 by Twitter data stream;
4 repeat
5 Randomly select a labeled sample (Xu,t, Yu,t);
6 W ←W − η · ∂L1(Xu,t,Yu,t,W )

∂W
;

7 Randomly select an unlabeled sample Xu;
8 W ←W − η · ∂L3(Xu,pI ,W )

∂W
;

9 Randomly select an unlabeled sample Xv;
10 for i← 1 to T do
11 W ←W − η · ∂L4(Xv,i,Xv,i+1,W )

∂W
12 end
13 Randomly select a user u from a location l ∈ L;
14 W ←W − η · ∂L2(Xu,t,G,pE ,pI ,W )

∂W
;

15 µI ← 1
|U2|

U2∑
u

T∑
t

fW (Xu,t);

16 σI ← (
∑U2
u

∑T
t fW (Xu,t − µI)/|U2|)1/2;

17 until converge;

18 pE ,Z ← min
T∑
t

L∑
l

∥∥∥∥∥∥λ1

Vl∑
v
Qv,t(G,pE ,pI )−

U2,l∑
u

fW (Xu,t)

∥∥∥∥∥∥
2

;

19 λ1 ←
L,T∑
l,t

U2,l∑
u

fW (Xu, t)/
L,T∑
l,t

Vs∑
v

Qv,t(G, pE , pI)

20 until the end of data stream;

VI. EXTENSIONS

A. Dynamics of contact network

In the epidemic diffusion progression, interventions are
among the most common and effective ways for the govern-
ment and individuals to reduce the potential impact from dis-
ease outbreaks. Interventions influence the epidemic diffu-
sion largely by changing the people-people contact network.
They can be categorized into two types: (1) Pharmaceutical
(PI) versus (2) Non-pharmaceutical (NPI). PI interventions,
such as administering antivirals and vaccines, can change the
characteristics (e.g., disease transmissibility) of the person
nodes in the social contact network, while NPI interventions
are those actions that effectively change the contact network
structure, including school closures, quarantine and seques-
tration. Therefore, both types of interventions can result in
changes in the social contact network.

The SimNest framework accommodates these heteroge-
neous dynamics of contact network effectively via two
aspects: (1) Timely intervention actions monitoring based
on social media data; and (2) Intervention substantialization
through the epidemic simulation process. Take vaccination
as an example. First, tweets like “I just got flu shot, it still
hurts.” that mention their user Ul’s vaccinations from each
subregion l ∈ L are identified by the text classifiers. In
our experiments, we achieved a 78% identification accuracy



Figure 3: Counts of Twitter users in Virginia who got flu shot

based on the cross-validation results. For example, Figure
3 shows the users who got the flu shots as identified by
their Twitter postings during Jan 2011 and Jan 2013 in
Virginia. It clearly demonstrates both yearly and weekly
periodicity and a peak time around November of each year.
The relative vaccination ratio in different subregions can
then be estimated as rl = |Ul|/λ1|Vl|, where |Vl| is the size
of the population in subregion l and λ1 is the population size
scaling factor from the physical world to the Twittersphere,
as calculated by Equation 12. Next, in the epidemic simu-
lation SimNest substantializes the vaccinations by reducing
the transmissibility p(W(v1, v2)), (v1 ∈ Vl or v2 ∈ Vl) of
rl · |Vl| random individuals in region l by a ratio, which can
either be set by domain knowledge or literature.

B. Heterogeneous surveillance data

The SimNest framework is also flexible to involve mul-
tiple surveillance data sources. In our basic problem defi-
nition, we only utilize social media data as a fine-grained
surveillance data. Other than that, SimNest allows the
addition of heterogeneous surveillance data sources such
as CDC [10] surveillance data for the United States, and
Paho [21] surveillance data for Latin America. Take CDC
surveillance data as an instance, because it is state-level
weekly aggregate data, to be comparable to it, SimNest
aggregates the predicted user health states into state-level
weekly data and involves the following loss function into
Equation 2, and get the following equation2:

Lc = min
W,λ2

T ′∑
i

‖λ2(ae−as+1)

L,ae∑
l,t=as

U2,l,t∑
u

fW (Xu,t)−C(i)‖2

where C(i) denotes the additional surveillance data on ith
time interval. Assume τ ′ denotes the time interval between
two consecutive data points of C, and τ is the interval of
time step of the discrete simulation system. T ′ is defined as
the number of timepoints of the surveillance data such that
T ′ = bT · τ ′/τc, as = bi · τ ′/τc, ae = b(i+ 1) · τ ′/τc − 1.
λ2 is the scaling parameter.

VII. EXPERIMENTS

In this section, the performance of the proposed SimNest
model is evaluated. First, the experiment setup is elaborated.

2The solution of this equation is in our supplementary material

Then, the effectiveness of the SimNest model on state-
level influenza epidemic forecasting is demonstrated on real
data by comparing with 8 comparison methods. In addition,
the performance for forecasting fine-grained geographical
subregion is evaluated.

A. Experiment Setup

This subsection presents the data preparation, label set
and performance metrics.

1) Dataset: The Twitter data in this paper was retrieved
by the following process. First, we query the Twitter API
with flu-related keywords and retrieve the data during Jan
1, 2011 and Apr 15, 2015 in the United States. The flu-
related keywords include terms such as “flu”, “influenza”,
and “h1n1”, among others. The retrieved tweets are then
classified according to whether or not they indicate the
infection of their authors. The positive tweets are extracted
and formed our influenza Twitter set, denoted as D(+).
For the classifier, we adopt LibShortText [27], a logistic
regression model specially designed for classifying short text
like tweets. The classifier is trained on the existing labeled
training set provided by Lamb et al. [19]. This training set
forms our labeled tweets set, namely the tweets X1 and their
labels Y1 in Section IV. The input features K of this model
are the disease keywords provided by Paul and Dredze [22].

Table I: Twitter data set and demographics

Demographics Twitter

state population size #connections #tweets #users
CT 3,518,288 175,866,264 9,513,741 10,257
DC 599,657 19,984,180 12,148,925 7,015
MA 6,593,587 332,194,314 19,785,147 15,005
MD 5,699,478 285,159,648 20,754,218 19,758
VA 7,882,590 407,976,012 15,899,713 14,302

The authors U2 of the positive tweets set D(+) are
extracted and their tweets posted during two weeks before
and after their tweets in D(+) are retrieved via Twitter API.
After removing retweets, this Twitter data set is geocoded
and only those tweets with location of interest are retained
to form the unlabeled Twitter data set X2 defined in Section
IV. Four states, including Connecticut (CT), Massachusetts
(MA), Maryland (MD), and Virginia (VA), and the District
of Columbia (DC) are utilized for this performance evalu-
ation. The Carmen geocoder [15] is utilized to resolve the
location of each tweet into a tuple containing information
at the country, state, county, and city level. About 70% of
the tweets in our dataset are assigned with a location by
Carmen. To generate the contact network, we utilize the real
demographics for each region. Substantial information about
Twitter data and the demographics for the five regions are
shown in Table I.
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Figure 4: ILI visits percentage forecasting performance on the Pearson correlation and p-value for VA and CT in 3 seasons

2) Labels and Metrics: For the proposed model and all
the competing methods, the data between Aug 1, 2011
and Jul 31, 2012 is utilized as the training season, while
the data between Aug 1 2012 and Jul 31 2014 is used
for predicting. The forecasting results for the flu outbreaks
are validated against the corresponding influenza statistics
reported by the Centers for Disease Control and Prevention
(CDC). The CDC weekly publishes the percentage of the
number of physician visits related to influenza-like illness
(ILI) within each major region in the United States. In the
experiment, four metrics are adopted, namely mean squared
error (MSE), Pearson correlation, p-value, and peak time
error. MSE stands for the mean value of the squared errors
between all the predicted data points and corresponding label
points. Pearson correlation is the covariance of the predicted

and label data points divided by the product of their standard
deviations. It varies from -1 to 1 and the larger the value,
the stronger the positive correlation between them. The p-
value denotes how likely the hypothesis of no correlation
between the predicted and label data points is true. Thus,
the smaller the p-value, the Pearson correlation is more
statistically significant. Lastly, peak time error is the time
interval between the predicted peak time (i.e., the week
with the highest infectious number) and the actual peak time
reflected by the CDC label data.

B. State-level influenza epidemic forecasting performance

The performance for forecasting the percentage of ILI
visits for each state with different lead times is evaluated.
Specifically, the lead time vary from 1 week to 20 weeks,
which means every method forecasts the data point from 1
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Figure 5: ILI visit percentage forecasting performance for Spatial subregions in CT for three flu seasons

week until 20 weeks in the future. Due to space limitations,
we only show the results for Virginia and Connecticut; the
results for the other states exhibits the similar patterns to
these two. In the experiment, our SimNest model involves
the extensions elaborated in Section VI.

1) Comparison methods: Our SimNest model is com-
pared with 6 other methods. Among them, 4 methods
are from social media mining: Linear Autoregressive Ex-
ogenous model (LinARX) [1], Logistic Autoregressive Ex-
ogenous model (LogARX) [2], Simple Linear Regression
model (simpleLinReg) [17], Multi-variable linear regression
model (multiLinReg) [14]. Another 2 methods are from
computational epidemiology: SEIR [20] and EpiFast [6].
Their detailed settings are elaborated in our supplementary
materials.

2) Performance on the Pearson correlation and p-value:
Figure 4(a), 4(b), 4(c), and 4(d) show the forecasting perfor-
mance in terms of the Pearson correlation and p-value in two
states, VA and CT, and for three seasons, 2011-2012, 2012-
2013, and 2013-2014. Note that every season starts from Au-
gust 1st and ends at July 31 each year. Also remember that
the training period is 2011-2012 while the rest two seasons
are both for testing. Overall, social media-based methods
(i.e., LinARX, LogARX, MultiLinReg, and SimpleLinReg)
typically achieves high Pearson correlation (i.e., between
0.6-0.95) with small lead time less than 2 weeks, but the
Pearson correlation decreases all the way below 0 while lead
time increases to 20. The p-value confirms the statistically
significance of the high Pearson correlation when the lead
time is less than 2 weeks. Computational epidemiology-
based methods (i.e., SEIR and EpiFast), on the other hand,
performs not as well as social media-based methods with
small lead time, but the Pearson correlation does not drop
significantly when lead time increases. For example, SEIR
still can achieve a Pearson correlation around 0.6 while
the lead time is 20 weeks. The reasons are two-folded.
First, social media-based methods benefit from the real-time
surveillance data while computational epidemiology-based
methods use CDC data with a 1-2 week time lag. This
difference makes the former one advantageous in predicting
data points in the nearest future. Second, social media-
based methods are purely data-driven, while computational
epidemiology methods make use of the long-term disease

progression mechanism. This makes computational epidemi-
ology not too sensitive to current data and more robust in the
performance. Among all the methods, our SimNest model
performs the best in overall performance by achieving the
highest Pearson correlations in Figure 4(a), 4(c), and among
the top 3 in Figure 4(b), and 4(d). In addition, the consistent
low p-value indicates the robustness of our SimNest model.
This result demonstrates that SimNest successfully takes
the advantages of the strengths of both social media-based
methods and computational epidemiology-based methods.

3) Performance on MSE and peak time error: Figure
4(e), 4(f), 4(g), and 4(h) illustrate the performance on MSE
and peak time error of all the methods in VA and CT for
three seasons. Similar to the facts reflected by the Pearson
correlation in Figure 4, the social media-based methods
outperform computational epidemiology-based methods like
SEIR and EpiFast in small lead time by achieving low MSE
and peak time error. However, while the lead time increases,
both the two errors of increase by 5-10 times. Compu-
tational epidemiology-based methods consistently achieves
a reasonably well MSE and peak time error as low as
2-5 weeks. Our SimNest, again outperforms all the other
methods in overall performance. Specifically, It achieves an
MSE less than 5 × 10−4 consistently in both training and
testing periods, and achieves the peak time error around 0-4
weeks, which is generally 5-15 weeks less than that of social
media-based methods, and at least 3-5 weeks less than that
of computational epidemiology-based methods.

C. Spatial subregion outbreaks forecasting performance

Individual-based network epidemiology methods such as
EpiFast can model the geographically detailed epidemic
outbreaks. To demonstrate the advantage of embedding
social media as an individual-level surveillance data, Figure
5 illustrates the comparison between the forecasting of
ILI visit percentage for different subregions (i.e., counties)
within the Connecticut state. According to Figure 5(a) and
5(b), our SimNest model outperforms EpiFast in the Pearson
correlation for Season 2011-2012, Season 2013-2014, and
half of Season 2012-2013. The p-values of both methods are
less than 0.01 for all the three seasons, showing a statistically
significance on the Pearson correlation comparison of them.
Finally, our SimNest model again outperforms EpiFast in



MSE for Season 2011-2012, Season 2013-2014, and half of
Season 2012-2013.

VIII. CONCLUSIONS

To achieve timely and accurate epidemic diffusion mod-
eling, computational epidemiology and social media min-
ing communities recently have achieved important progress
but still suffer from their different drawbacks. This paper
proposes SimNest, a novel bispace co-evolving framework
to integrate the complementary strengths of computational
epidemiology and social media mining. Extensive experi-
ments based on multiple states and flu seasons demonstrated
the advantages of integrating the respective strengths of
computational epidemiology and social media mining. The
detailed geographical subregion outbreaks forecasting is also
improved by using social media that provides individual-
level surveillance data.
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