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Abstract

Synthetic data generation is integral to ML pipelines, e.g., to aug-

ment training data, replace sensitive information, and even to power

advanced platforms like DeepSeek. While LLMs fine-tuned for syn-

thetic data generation are gaining traction, synthetic table genera-

tion—a critical data type in business and science—remains under-

explored compared to text and image synthesis. This paper shows

that LLMs, whether used as-is or after traditional fine-tuning, are

inadequate for generating synthetic tables. Their autoregressive na-

ture, combined with random order permutation during fine-tuning,

hampers the modeling of functional dependencies and prevents cap-

turing conditional mixtures of distributions essential for real-world

constraints. We demonstrate that making LLMs permutation-aware

can mitigate these issues. Our code and data are publicly hosted
1
.

1 Introduction

Large language models (LLMs) have found applicability in a rich

diversity of domains, well beyond their original roots [1, 4, 29, 32,

40, 42, 48]. As so-called foundation models [22] they have been

shown to be re-targetable to a variety of downstream tasks. Our

focus here is to view LLMs as raw synthetic tabular data generators

rather than as supporting an analysis or discovery task. Arguably,

LLMs are adept at synthetic generation of text, images, videos, code,

documentation, and many other modalities. The use of LLMs to

generate tabular data is quite understudied.

Such synthetic tabular data generation is integral toML pipelines,

e.g., too augment training data, replace sensitive information, and

even to power advanced platforms like DeepSeek [17, 24]. However,

the unique characteristics of tabular data manifest as challenges in

an LLM-based generative context. The most popular incarnations

of language models are auto-regressive models, e.g., LLama [48],

GPT-x [32], DeepSeek [17, 24], wherein each word or token is gen-

erated conditional on past tokens in a sequential manner using

attention models. In a synthetic data context, each ‘sentence’ typi-

cally represents a row of tabular data, and each ‘word’ corresponds

to an attribute in that row. The previous state-of-the-art models

(GReaT [3]), has advocated the use of random feature orders but as

we show in Table 1, when fine-tuning is done with random feature
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orders, key relationships are often not captured or, worse, violated.

In particular, with tabular data, there are numerous functional de-

pendencies at play and as a result, generating tokens in random

orders is bound to cause violations. There is thus an ‘impedance

mismatch’ between autogressive LLMs and synthetic data

generation.

The main contributions of this paper are:

• We highlight an important deficiency with using LLMs for

synthetic tabular data generation and explore the perfor-

mance of many state-of-the-art generation models in the

context of composite and multi-category tabular schema.

• We inject knowledge of pre-existing functional relation-

ships among columns into the autoregressive generation

process, so that the generated synthetic data respects more

real constraints. In particular, we present a taxonomy of

functional dependencies (FDs) whose discovery and orga-

nization into a column dependence graph supports their in-

corporation into the LLM fine-tuning process via a permuta-

tion function, leading to our approach dubbed Permutation-

aided Fine-tuning.(PAFT ).

• We evaluate the performance of PAFT on a range of datasets

featuring a diverse mix of attribute types, functional de-

pendencies, and complex relationships. Our results demon-

strate that PAFT is the state-of-the-art in reproducing un-

derlying relationships in generated synthetic data.

• Finally, we demonstrate through rigorous experiments that

relying just on standard univariate distribution, bivariate

correlation, and even the evaluation of downstream ma-

chine learning models (which primarily focuses on predict-

ing a single column in a dataset) is grossly insufficient for

assessing the quality of synthetic data and propose sys-

tematic remedies like measuring violation rates of known

domain rules.

2 Related Work

Tabular data synthesis and representation learning for tables have

been extensively studied [12, 13, 15, 27, 28, 35, 36, 50, 51, 55]. One

key theme has been the discovery of functional dependencies (FDs)

which has been studied by the data mining community from both

https://github.com/ShengzheXu/Permutation-aided-Fine-tuning
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Table 1: Comparison of multiple synthetic data generation approaches. The second row showcases the state of West Virginia

(WV), which is a subset of the whole data. In the figures, the solid line represents the official border of West Virginia and the

Blue and Orange colors indicate the legal and illegal samples in the synthetic data respectively.
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theoretical and application points of view [5, 26, 30, 37, 57, 60]. We

carve out related work into two sections, for our purposes: pre-

LLM (or non-LLM) approaches for synthetic table generation which

continue to hold the mainstay, and LLM approaches.

Lei et al. [52] proposed CTGAN where rows are independent

of each other; a conditional GAN architecture ensures that the

dependency between columns is learned. Tabsyn [55] showcased

remarkable advancements in joint-distribution learning via a VAE

plus diffusion approach, surpassing previous models of similar lin-

eage, in terms of distributional correlation measures and machine

learning efficiency. DoppelGanger [23] uses a combination of an

RNN and a GAN to incorporate temporal dependencies across rows

but this method has been tested in traditional, low-volume settings

such as Wikipedia daily visit counts. For high-volume applications,

STAN [54] utilizes a combination of a CNN and Gaussian mix-

ture neural networks to generate synthetic network traffic data.

GraphDF [6] conducts multi-dimensional time series forecasting.

GOGGLE [25] employs a generative modeling method for tabular

data by learning relational structures.

The use of language models (LLMs) for tabular data generation

is still underexplored. Most modern LLMs are based on the trans-

former architecture [49] with parameters ranging from fewmillions

to billions [18], and researchers have developed creative ways to

harness LLMs in traditional machine learning and data contexts.

LIFT [10] initially transforms a table row into a sentence, such

as ‘An Iris plant with sepal length 5.1cm, sepal width 3.5cm’, and

employs an LLM as a learning model for table classification, re-

gression, and generation tasks. GReaT [3] utilizes a GPT-2 model

that has been fine-tuned using a specific corpus for synthetic data

generation. They also show that even small-scale models such as

Distill-GPT [39] have the potential for synthetic data generation [3].

These models are specially viable for tabular generation given the

lower compute costs of aligning smaller models to large and varied

tabular datasets. A general benefit of utilizing LLMs is the promise

of eliminating customized preprocessing pipelines.

A theme that will be pertinent to our work is the idea of feature

ordering (FO) for tabular data generation which has been investi-

gated from multiple angles [11, 41, 45, 61]. There are also several

approaches (e.g., [9, 20]) that synthesize, discover, or aggregate fea-

tures from relational databases, leveraging order information when

possible, for use in machine learning pipelines. It worth noting

that even in the LLM community, the task of context sorting for

LLM prompting is not trivial and has gained significant attention

lately [8].

3 Challenges to Synthetic Table Generation in

the Current LLM Paradigm

Admittedly, the sure-fireway to check if a dataset has been faithfully

modeled is to see if the joint distribution of its features is captured

accurately. Most current tests of synthetic data generation quality

focus on fidelity to single-column distributions, or to multi-column

distributions. For multiple variables, measures such as machine

learning efficiency (MLE) [3, 10, 52, 55] are frequently used to

construct classifiers or regressors.

A key lesson from probabilistic graphical model research [21]

is that factorizing joint distributions into products of conditionals

(e.g., Bayesian networks) dramatically helps reduce the number of

parameters necessary to capture the underlying data characteris-

tics. A similar lesson from database research [16] is that modeling

functional dependencies (FDs) in data helps reduce redundancy

in modeling and storage. These lessons, i.e., that order matters,

continue to apply in the LLM era but are not internalized in our

prompt ordering, fine-tuning, or evaluation methodologies. Other

researchers have noted the importance of ordering in LLMs [8, 38]

but this lesson has not been leveraged to improve synthetic table

generation by LLMs. In the absence of leveraging good feature

orders, existing approaches either focus on ‘one order’, ‘no order’,
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Figure 1: Overview of the proposed Permutation-Aided Fine-tuning (PAFT ) approach.

or ‘all orders’. All of these approaches severely limit the quality of

generated synthetic data.

As an example, Table 1 presents a case study on using models to

generate synthetic data of locations in various states of the USA. The

data is of the form (state, latitude, longitude) where the attributes

adhere to the FD: {latitude, longitude} → state. Existing methods

can generate satisfactory univariate distributions (as shown in the

border of the top row plots) but fail to capture the joint distribution

(center of the top row plots) and conditional distributions across

subcategories (bottom row plots).

In summary, feature ordering can be both a nuisance and a gift.

It is a nuisance because it demands additional constraints to be

modeled. It can be a gift because it suggests ways to sequentially

generate data even by autoregressive LLMs. Our proposed approach

(PAFT ) aims to achieve an optimal permutation order for fine-

tuning LLMs.

Figure 1 shows an overview of the proposed permutation aided

fine-tuning approach (PAFT ). A typical workflow is 1) Textual

Encoding (Section 4.1) 2) Functional Dependency (FD) discovery

(Section 4.2) 3) FD Distillation ( Section 4.2) and 4) Feature Or-

der Permutation Optimization ( Section 4.3). Our fine-tuning and

sampling strategy is explained in Section 4.4.

4 PAFT : Permutation-Aided Fine-Tuning

Problem Setup. Let D represent a table with 𝑛 rows (i.e., records)

and𝑚 columns (i.e., attributes a.k.a schema). Let each record be rep-

resented by vector x𝑖 and further let 𝑥𝑖 𝑗 represent the element value

of the 𝑗𝑡ℎ attribute of record x𝑖 . Hence each row x𝑖 ∈ D represents

an individual record and each column x(:, 𝑗 ) ∼ X𝑗 can be considered

sampled from a random variable X𝑗 that governs the distribution

of attribute 𝑗 . Finally, let 𝑖 ∈ [1..𝑛] and 𝑗 ∈ [1..𝑚]. Realistically,
tabular data D is frequently a mixture of categorical and continu-

ous attributes, hence each X𝑗 can be a categorical or continuous

random variable. IfA = {X1,X2, . . . ,X𝑚} represents the collection
of random variables, then the table generation process aims to sam-

ple from a joint distribution P(A) = P(X1,X2, . . . ,X𝑚). This joint
distribution is usually a complex, high-dimensional distribution

and, most importantly, unknown. The goal of learning an effective

tabular data generator 𝑝𝜃 (·) is to enable 𝑝𝜃 (·) to learn a faithful
approximation P(A|D) of the data generation process distribu-

tion P(A) using the data sample D such that P(A|D) ≈ P(A).
Once such an effective model 𝑝𝜃 (D) is trained, it can be employed

to generate large volumes of seemingly realistic synthetic data

ˆD ∼ P(A|D).

4.1 Tabular Data Generation with LLMs

While training 𝑝𝜃 (·), it is usually assumed that all records x𝑖 ∈ D
are independent. Generating new data samples x̂𝑖 ∈ ˆD can be done

in various ways (e.g., see [52, 53, 59]) which aim to directly estimate

the joint distribution P(A) or, as is done here in PAFT , where P(A)
is estimated by an autoregressive LLM based generative process, as

a product of multiple conditional densities governed by the input

ordering.

Autoregressive LLMmodels are pre-trained to maximize the like-

lihood of target token 𝑥𝑖 𝑗 ∈ D, conditioned upon the autoregressive

context x(𝑖,1:𝑗−1) ∈ D where D is the training corpus comprising

a large amount of textual data (in the pre-training context). Eq. 1

defines the general training criterion of LLM training using the

self-supervised next-token prediction task with ‘w’ denoting the

context length.
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L(𝜃 ;D) = −
∑︁
x𝑖 ∈D

𝑤∑︁
𝑗=1

logP(𝑥𝑖 |x(𝑖,1:𝑗−1) ) . (1)

The generation of a single instance (i.e., database record) x𝑖 ∈ D
is given by Eq. 2:

P(x𝑖 ) = P(𝑥𝑖,1, ..., 𝑥𝑖,𝑚) ≃
𝑚∏
𝑗=1

P(𝑥𝑖, 𝑗 |𝑥𝑖,1, .., 𝑥𝑖, 𝑗−1). (2)

Specifically, each database record is generated as a product of

conditional distributions.

Input Encoding. To support the processing of our records x𝑖 ∈
D by a pre-trained LLM, we adopt the following encoding:

𝑡𝑖, 𝑗 = [𝑐 𝑗 , ‘𝑖𝑠’, 𝑥𝑖, 𝑗 , ‘, ’],𝑖 ∈ {1, .., 𝑛}, 𝑗 ∈ {1, ..,𝑚},
t𝑖 = [𝑡𝑖,1, 𝑡𝑖,2, .., 𝑡𝑖,𝑚],𝑖 ∈ {1, .., 𝑛}.

(3)

In Eq. 3, 𝑐 𝑗 represents the attribute name of the 𝑗𝑡ℎ database column

while 𝑥𝑖, 𝑗 represents the actual value of the 𝑗𝑡ℎ column for the 𝑖𝑡ℎ

record. Further, we can assume we have a mechanism to obtain a

feature order permutation k to govern the order of the attributes

in t𝑖 , such that t𝑖 (k) = [𝑡𝑖,𝑘1 , 𝑡𝑖,𝑘2 , .., 𝑡𝑖,𝑘𝑚 ] (where 𝑖 ∈ {1, .., 𝑛}, 𝑘 𝑗 ∈
{1, ..,𝑚}.), represents the same record but with the attribute order

governed by the permutation k, This definition admits the random

feature order as a special case in which k is a random permutation.

Since we consider autoregressive LLM-based generative models,

employing the chain rule to sequentially produce each column of a

table record t𝑖 , we can view each generation step as approximating
the joint distribution of the table columns as a product of conditional

distributions (i.e., P(𝑡𝑖,1, ..., 𝑡𝑖,𝑚) ≃
∏𝑚

𝑗=1 P(𝑡𝑖, 𝑗 |𝑡𝑖,1, .., 𝑡𝑖, 𝑗−1)). How-
ever, as the number of columns increases and the relationships be-

tween columns get more conditional, the likelihood of encountering

training and sampling bias due to class imbalance also rises [52]. To

minimize such adverse effects, we can consider injecting knowledge

of the pre-existing functional relationships among columns, to gov-

ern the autoregressive generation process. To infer such functional

relationships, we leverage a learned dependency graph derived from

functional dependency (FD) relations which enables us to effectively

determine the appropriate training and sampling sequence. This,

in turn, allows us to alleviate potential biases during training by

establishing a generation curriculum leading to improved estimation

accuracy of the joint distribution P(t𝑖 ) in auto-regressive prediction
P(𝑡𝑖,𝑘1 , ..., 𝑡𝑖,𝑘𝑚 ) ≃

∏𝑚
𝑗=1 P(𝑡𝑖,𝑘 𝑗

|𝑡𝑖,𝑘1 , .., 𝑡𝑖,𝑘 𝑗−1 ), where the ordering
𝑡𝑖,𝑘1 . . . , 𝑡𝑖,𝑘𝑚 is obtained by a feature order permutation function

k = 𝜙 (D,S). We detail the requisite background and design of

𝜙 (D,S) in sections 4.2 and 4.3.

4.2 Discovery and Distillation of Functional

Dependencies (FD)

A functional dependency (FD) is a relationship 𝑅 in schema 𝑆 that

exists when a subset of attributes 𝐴 ⊂ 𝑆 uniquely determines

another subset 𝐵 ⊂ 𝑆 of attributes. We succinctly represent an FD

as 𝑅 : 𝐴→ 𝐵 which specifies that 𝐵 is functionally dependent on

𝐴.

Definition 1 (Schema-Level FD). With𝐴, 𝐵 being two disjoint
subsets of the schema (columns) of table D, a schema-level FD 𝐹

associated with D has the form: 𝐹 : 𝐴→ 𝐵.

We leverage FD discovery techniques to govern the order of the

autoregressive data generation process in PAFT . A large body of

research from the database literature on FD discovery [33, 34, 57]

can be leveraged in PAFT , including methods that account for noisy

FDs [57]. In this work, we focus on leveraging schema-level FDs

discovered using a state-of-the-art FD discovery algorithm [34] to

govern the autoregressive data generation process.

FD Distillation. The result of traditional FD discovery, yields com-

plex (i.e., multi-attribute) functional dependencies between columns

which are ambiguous to resolve in an autoregressive generation

setting. Hence we undertake an intermediate FD distillation step

to simplify multi-attribute functional dependencies into multiple

single attribute FDs as detailed below.

(a) There are two types of column dependency edges for

three types of functional dependencies (FDs), which

are distinguished by the left-hand side (LHS) and right-

hand side (RHS) in the FD.

(b) DAG for column functional dependency derived

by expanding SCC super nodes and retrieving a fully

flattened, ordered structure.

Figure 2: FD-Distillation and Dependency Graph Sorting for

automatically extracting order permutations from tables.

We first construct a dependency graph model 𝐺 (V, E) where
V represents the set of vertices with each 𝑣 ∈ V representing

an attribute in S and 𝑒𝑖 𝑗 ∈ E representing an edge relation from

attribute 𝑣𝑖 to attribute 𝑣 𝑗 . Further, we consider two types of edges in

E, specifically each 𝑒𝑖 𝑗 may be a type-1 edge or a type-2 edge (defined
next). The two edge types (i.e., type-1, type-2) in E are derived from

three classes of FDs, as shown in Fig. 2a. Subsequently, we proceed

to examine each individual case: 1) Single attribute left-hand side
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(LHS) and single attribute right-hand side (RHS) 2) Multi-attribute

LHS and single-attribute RHS. 3) single or multi-attribute LHS and

multi-attribute RHS. We shall use the example table in Fig. 1 to

define each FD case.

[Type-1 Edge]. Let us consider an example of FDCase 1, wherein

the column State functionally determines column Bird. In such a

case, we enforce that the value for the attribute State be generated
prior to the value for the attribute Bird. Accordingly, a forward

directed edge from State to Bird is created in the column dependency

graph G. We term such forward directed edges as type-1 edges in

G. [Type-2 Edge]. The other type of edge in G, arises when we

encounter an FD with a multi-attribute LHS and a single attribute

RHS (i.e., FD Case 2). As per FD Case 2, the values of multiple

columns in the LHS would collectively decide the value of the

column on the RHS. As an example in Fig. 2a, the tuple of columns

Latitude, Longitude functionally determines State. For such FDs,

two backward edges are added in the column dependency graph

G, connecting State to both Latitude and Longitude. We term such

backward directed edges as type-2 edges in G.
FD Case 3 relationships are ones where the RHS has multiple at-

tributes and the LHS could have single or multiple-attributes. Such

relationships do not directly result in an edge in our dependency

graph G. Instead, as classically done in FD literature [34], we sub-

ject such FD relationships to an intermediate decomposition step.

Specifically, the multi-attribute RHS of FD Case 3 relationships is

decomposed into multiple single-attribute RHS dependencies each

comprising the original LHS. Further, in each of these new decom-

posed relationships, if the LHS is single-attribute, it is treated as a FD

Case 1 relationship (i.e., a directed edge from 𝐿𝐻𝑆 to 𝑅𝐻𝑆 is added

to G), else it is handled as an FD Case 2 relationship, wherein for

each attribute in the multi-attribute LHS, a backward dependency

edge from the single-attribute RHS is added to the dependency

graph G. Therefore, for every column in the right-hand side (RHS),

we employ either type-1 or type-2 edge construction, depending

on the value of its left-hand side (LHS). Full procedure detailed in

Appendix B.1 Algorithm 1.

4.3 Putting It All Together

Until this point, our construction of the graph G has only been

limited to considering pair-wise relationships between columns in

D. Graph properties like functional dependency transitivity, require

us to obtain a total ordering on the nodes 𝑣 ∈ V of G(V, E) that is
deterministic in nature for effective auto-regressive LLM training.

This implies that in order to obtain a feature order permutation (k)
from the derived functional dependency relationships (Sec. 4.2), a

computation must be performed on the entire dependency graph

𝐺 (V, E).
We define this task of obtaining a total feature order k from

G(V, E) as an optimization step which seeks to produce k while

minimizing the number of violated relationships in G(V, E). Ap-
pendix B.1 Algorithm 2 outlines this procedure.

Consider the trivial case of having an empty FD graph G i.e.,

|E | = ∅. If the columns of a table are not functionally dependent

on each other, then the order of generation is not important and

k can be some arbitrary permutation of the columns in S. For
all other cases, our total feature ordering algorithm operates in

three phases, as shown in Fig. 2b. [Phase 1: Condensation]. It

is apparent that if a graph is not a directed acyclic graph (DAG),

there is no optimal solution to the total feature ordering problem.

In other words, there must be FDs that cannot be satisfied in the

resulting total order permutation k. In such cases, we compute

the strongly connected components (SCC), and condense them

into super nodes, thus transforming the original graph into a DAG.

[Phase 2: Ordering]. An application of a topological sort onto the

DAG from Phase 1 will result in a total feature ordering with all

SCCs in G compressed into super nodes. [Phase 3: Expansion

of SCC]. Once the topological sort is conducted in Phase 2, we

finally expand the SCC super nodes (via. arbitrary ordering) such

that although the intra-SCC ordering of the nodes within the SCC

is arbitrary, their ordering relative to non-SCC nodes is maintained.

4.4 Synthetic Data Generation using PAFT

After the optimized feature order permutation is obtained (via Ap-

pendix B.1 Algorithm 2), we fine-tune the LLM with the textu-

ally encoded table record t𝑖 such that the auto-regressive genera-

tion process is governed by the optimal feature order permutation

k = 𝜙 (D, 𝑆). Specifically, we generate the table governed by order

k as defined in Eq. 4.

P(t𝑖 ) = P(𝑡𝑖,𝑘1 , ..., 𝑡𝑖,𝑘 𝑗
) ≃

𝑚∏
𝑗=1

P(𝑡𝑖,𝑘 𝑗
|𝑡𝑖,𝑘1 , .., 𝑡𝑖,𝑘 𝑗−1 ). (4)

We employ the Low-Rank Adaptation (LoRA) fine-tuning strat-

egy [19]. To generate synthetic rows, we first sample the initial

token 𝑝 (𝑡𝑖,𝑘1 ) from the marginal distribution of variable 𝑘1 in actual

training data, and then use Eq. 4 to sequentially sample subsequent

tokens 𝑝 (𝑡𝑖,𝑘 𝑗
), where 𝑗 ∈ 2, ...,𝑚.

5 Experimental Evaluation

We conduct an exhaustive empirical evaluation of PAFT to assess

its ability to reproduce realistic data distributions, superiority over

other competing approaches, and most importantly substitutability

of data generated by PAFT in the context of a larger ML pipeline.

More specifically, the questions we seek to answer are:

(1) Does PAFT-generated synthetic data accurately capture

conditional distributions within categories? (Sec 5.1)

(2) Does PAFT generate data respect the consistency of intrin-

sic data characteristics? (Sec 5.2)

(3) Does the synthetic data generated by PAFT pass the sniff
test? (Sec 5.3)

(4) Can data generated by PAFT replace real data in down-

stream ML model training? (Sec 5.4)

(5) Do the data sets generated by PAFT adhere to real distribu-

tions and possess mode diversity? (Sec 5.5)

(6) Do newer generations of LLMs obviate the need for PAFT ?

(Sec 5.6)

Datasets.We evaluate the effectiveness of PAFT through experi-

ments on six real datasets commonly used in synthetic table gener-

ation studies such as GReaT [3] CTGAN [52]. These are Beijing [7],

US-locations [14], California Housing [31], Adult Income [2], Seat-

tle [43], and Travel [47]. Separately, we also generate a set of four

simulated datasets for class-mixture distributions (as described in
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Figure 3: For a composite dataset, US-locations, this com-

parison examines state-specific violation rates across differ-

ent synthetic data generation approaches. The error bars

represent standard deviation. The states on the x-axis are

ordered by decreasing violation rates. PAFT significantly re-

duces state-specific violations in the composite dataset.

Algorithm 3 Appendix C.1). Details of dataset statistics are in the

Appendix C.1.

Baselines. For benchmarking, we organize baselines that utilize

current deep learning approaches for synthetic data generation (CT-

GAN [52], CopulaGAN [52], TabSyn [55]) and the most advanced

synthetic table generator with LLM fine-tuning GReaT [3]. To guar-

antee an equitable comparison, we employ the Distill-GReaT model

for both LLM techniques in all tests.

Reproducibility. Each baseline (CTGAN, CopulaGAN, TabSyn,

GReaT) adheres to the recommended hyperparameters and uti-

lizes officially released API tools: Synthetic Data Vault [36] and

GReaT [3]. For a fair comparison of GReaT and PAFT, the LoRA

fine-tuning parameters are set the same as: Lora attention dimen-

sion 𝑟 = 16, alpha parameter for Lora scaling 𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 = 32, the

names of the modules to apply the adapter to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑚𝑜𝑑𝑢𝑙𝑒𝑠 =

𝑐_𝑎𝑡𝑡𝑛, the dropout probability for Lora layers 𝑙𝑜𝑟𝑎_𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05,

𝑏𝑖𝑎𝑠 = 𝑛𝑜𝑛𝑒 .

Parameters for MLE and Discriminator Models. We uti-

lize neural network, linear/logistic regression, and random forest

models from the Scikit-Learn package for the ML efficiency and

discriminator experiments. The exact hyperparameters for each

model are detailed in Appendix Table 8. Every result is evaluated

through the 5-fold cross-validation process.

Low-order statistics [55] of column-wise data distribution and

pair-column correlation are calculated with the SDV library
2
.

5.1 RQ1: Does PAFT-generated synthetic data

accurately capture conditional distributions

within categories?

Capturing and generating the diversity in a multi-class setting

(composite dataset) has been shown to be a challenging practical

problem [27]. In addition to Table 1, Fig. 3 and Table 2 further illus-

trate the widespread nature of this issue within the same composite

dataset, where the GAN-generated results exhibit an almost 100%

2
https://docs.sdv.dev/sdmetrics/reports/quality-report

Table 2: Violation rates across different categories in the same

dataset highlight the effectiveness of PAFT in addressing con-

ditional distribution challenges in mixed-category datasets.

Notably, even though baseline models may perform well in

the MLE task or distribution evaluation, they often fail in

practical boundary checks, such as functional dependencies

(FDs). We can see that states with the lowest violation rates

are the easiest to model, i.e. rectangular.

States with the Highest Violation Rates (↓)
(Sorted by LLM baseline: GReaT)

Category (State) MO AK KY FL WV

Real Data 0% 0% 0% 0% 0%

CTGAN 98.0% 99.3% 97.4% 99.9% 100%

CopulaGAN 99.3% 84.6% 99.3% 97.8% 100%

TabSyn 10.5% 17.2% 22.9% 25.1% 28.1%

GReaT 17.1% 18.4% 20.6% 21.9% 22.3%

PAFT 1.9% 5.1% 3.4% 3.4% 3.4%

States with the Lowest Violation Rates (↓)
(Sorted by LLM baseline: GReaT)

Category (State) CO KS NM SD UT

Real Data 0% 0% 0% 0% 0%

CTGAN 96.5% 97.0% 99.5% 97.5% 99.3%

CopulaGAN 98.3% 98.8% 98.4% 98.3% 98.4%

TabSyn 11.3% 18.4% 6.2% 17.3% 16.6%

GReaT 0.5% 0.9% 1.2% 1.5% 2.1%

PAFT 0.0% 0.3% 0.9% 0.9% 0.0%

violation rate. The term ‘composite dataset’ refers to a dataset in

which the distributions across different subcategories show signif-

icant variances. The LLM model GReaT, which employs random

order permutation, shows a significant improvement in maintaining

conditional distributions. Nevertheless, its performance remains

inconsistent due to unevenness within categories, resulting in viola-

tion rates ranging from 0.5% to 22.3%. In contrast, PAFT consistently

controls deviations from the real facts of conditional distributions,

maintaining them within a range of 0% to 5%. This reliability holds

even in challenging subcategory cases where baseline methods

underperform.

5.2 RQ2: Does PAFT generate data respecting

the consistency of intrinsic data

characteristics?

In addition to the dissimilar sub-category challenge, we also in-

vestigate whether unsatisfactory conditional distributions exist in

https://docs.sdv.dev/sdmetrics/reports/quality-report
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Table 3: Datasets have intrinsic characteristics like functional

dependencies, range restrictions, and other domain knowl-

edge. Results are averaged over five random runs, with vari-

ance detailed in Appx. Table 9.

Intrinsic Fact

(Dataset)

Fact Violation Rate (↓)
CTGANCop.GAN TabSyn GReaT PAFT

Lat-long→State

(US-locations)

99.2% 98.5% 21.5% 8.2% 2.9%

Lat-long→ CA

(California)

47.6% 99.9% 8.8% 5.4% 1.3%

Med. house price

→ [1.4𝑒5, 5𝑒5]

(California)

1.5% 0.01% 0.0% 0.0% 0.0%

education→
education-num

(Adult)

83.9% 19.1% 1.4% 1.2% 0.5%

Zipcode→Seattle

(Seattle)

0.0% 99.9% 0.0% 0.0% 0.0%

general across various datasets, and whether the PAFT method can

address these issues. In line with this, we conducted rule checks

that were derived from real-world scenarios and subsequently eval-

uated the generated data from all models. Table 3 displays the

violation rate in the generated data. From the table, we observe that

PAFT adheres to data’s characteristics more faithfully (i.e., signif-

icantly fewer rule violations) than baseline methods, by learning

together with functional dependencies.

5.3 RQ3: Does the synthetic data generated by

PAFT pass the sniff test?

Similarly to the analysis conducted in recent work [3] (GReaT), we

employ the random forest (RF) algorithm to train discriminators to

distinguish real data (labeled True) and synthetically generated data

(labeled False). Subsequently, we test performance on an unseen set

(consisting of 50% synthetically generated data and 50% real data).

In this experiment, scores represent the percentage of correctly

classified entities. In this case, an ideal accuracy scorewould be close

to 50%, which means the discrimniator fails to distinguish between

real and synthesized data. The scores are shown in Table 4 and

indicate that the data generated by PAFT are most indistinguishable

from real data, even by powerful discriminative models.

5.4 RQ4: Can data generated by PAFT replace

real data in downstream ML model training?

We next assess the effectiveness of the generated (synthetic) data

by comparing the performance of discriminative models trained on

synthetic data versus real data for their target tasks. Models tested

include random forests (RF), linear regression (LR), and multi-layer

perceptron (NN). As shown in Table 5, PAFT is best or second best

in over 80% of (dataset, method) combinations.

Table 4: PrivacyDiscriminator Performance. The scores stand

for the accuracy for detecting real or fake data, where the

ML models are trained using 50% real data and 50% random

data. An ideal accuracy score is 50, indicating the model

cannot distinguish between real and synthesized data. The

best results are marked in bold, the second-best results are

underlined. Results are averaged over five random runs, with

variance detailed in Appx. Table 13.

Data Sniff Test - ML Discriminator Accuracy

(Values closest to 50% are best.)

Method CTGAN Co.GAN TabSyn GReaT PAFT

Beijing 99.16% 98.69% 50.97% 51.1% 50.09%

US-locations 99.94% 97.74% 51.97% 50.47% 50.01%

California 98.35% 86.64% 50.64% 53.74% 49.89%

Adult 94.43% 59.82% 51.64% 51.12% 48.75%

Seattle 87.61% 85.7% 50.12% 68.27% 47.21%

Travel 77.96% 74.14% 50.66% 62.49% 48.18%

Table 5: MLE performance. MLE performance: For datasets

with regression tasks (marked *), performance is evaluated

usingMAPE (where lower scores are better). For datasets with

classification tasks, accuracy is used (where higher scores are

better). The best results are marked in bold and the second-

best results are underlined. Results are averaged over five

random runs, with variance in Appx. Table 10.

Regression MAPE (↓) Over Different Methods

Dataset(*) Orig. CTGANCo.GANTabSyn GReaT PAFT

Beijing

RF 0.41% 2.49% 2.15% 0.7% 0.57% 0.52%

LR 1.37% 2.23% 1.55% 1.25% 0.97% 1.34%

NN 0.99% 2.44% 2.83% 1.01% 1.16% 0.95%

Calif.

RF 0.18% 0.65% 0.39% 0.22% 0.25% 0.20%

LR 0.30% 0.54% 0.5% 0.30% 0.29% 0.31%

NN 0.34% 0.53% 0.47% 0.29% 0.3% 0.27%

Seattle

RF 0.33% 0.76% 0.38% 0.30% 0.35% 0.28%

LR 0.29% 0.74% 0.32% 0.23% 0.33% 0.29%

NN 0.28% 0.71% 0.38% 0.28% 0.33% 0.27%

Classif. Accuracy (↑) Over Different Methods

Dataset Orig. CTGANCo.GANTabSyn GReaT PAFT

US-loc.

RF 99.95% 7.17% 45.33% 99.99% 99.84% 99.91%

LR 46.1% 5.11% 31.08% 43.69% 45.65% 49.41%

NN 99.85% 7.56% 53.34% 99.64% 98.94% 99.44%

Adult

RF 84.97% 71.15% 81.33% 83.69% 83.89% 83.06%

LR 78.53% 75.68% 78.18% 78.38% 76.1% 77.24%

NN 76.9% 75.69% 76.6% 78.36% 78.23% 79.16%

Travel

RF 88.95% 56.35% 67.18% 84.09% 79.78% 85.19%

LR 82.87% 70.17% 79.56% 83.31% 78.34% 82.76%

NN 81.77% 71.05% 79.56% 81.88% 80.77% 83.20%
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5.5 RQ5: Do the data sets generated by

PAFTadhere to real distributions and

possess mode diversity?

We also evaluate how closely the density and diversity of the true

data distribution are matched by PAFT generated data using corre-

lation metrics and density-based distance metrics. Specifically, we

employ the Kolmogorov-Smirnov Test (KST) to evaluate the density

estimate of numerical columns, and the Total Variation Distance

(TVD) for categorical columns. When calculating the correlation

between columns, we employ Pearson correlation for numerical

columns and contingency similarity for categorical columns. The

results for both density estimate similarity and correlation based

analysis are detailed in Table 6. As shown, PAFT synthetic data

closely matches the real data in terms of univariate distribution

and bivariate correlation, outperforming the baseline.

Table 6: Low-order statistics [55] of column-wise data den-

sity and pair-wise column correlation
2
. Scores range from

0 to 1. Higher values indicate more accurate estimation.

PAFToutperforms the best generative baselinemodel inmost

case. The best results are marked in bold, the second-best re-

sults are underlined. Results are averaged over five random

runs, with variance in Appx. Table 11 and 12.

Single-Column Shape Score (↑)
Dataset CTGAN Co.GAN TabSyn GReaT PAFT

Adult 0.81 0.92 0.98 0.88 0.90

Beijing 0.89 0.79 0.98 0.93 0.97

California 0.87 0.77 0.98 0.89 0.83

US-locations 0.83 0.82 0.96 0.93 0.97

Seattle 0.83 0.73 0.93 0.90 0.93

Travel 0.84 0.90 0.93 0.93 0.93

Two-Column Pair Trends score (↑)
Dataset CTGAN Co.GAN TabSyn GReaT PAFT

Adult 0.81 0.86 0.93 0.80 0.78

Beijing 0.92 0.94 0.99 0.95 0.98

California 0.84 0.87 0.97 0.87 0.91

US-locations 0.50 0.55 0.93 0.89 0.94

Seattle 0.74 0.72 0.80 0.76 0.81

Travel 0.77 0.80 0.87 0.85 0.82

Visual examples are depicted in Figure 4. PAFT has the ability to

generate a wide range of diversity, encompassing both continuous

and discrete variables, which closely resembles real data.

5.6 RQ6: Do newer generations of LLMs obviate

the need for PAFT ?

The choice of foundation models for synthetic table generation in-

volves two key considerations: in-context learning and fine-tuning,

Figure 4: As a supplementary illustration of Table 6 we pro-

vide column distribution visualizations. Overall, PAFT (Blue)

most closely matches the real data distribution (Red) com-

pared to other synthesis methods, while also demonstrating

valid and diverse outputs. Extended visualizations are avail-

able in Appendix Figure 7.

especially with large-parameter models such as GPT-4 and LLaMA.

A recent survey [15] indicates that the in-context learning approach

of GPT-4 is well-suited for augmenting tabular data in low-data

regimes, as highlighted by CLLM [44]. However, GPT-4 suffers from

limitations such as the disappearance of column-wise tail distribu-

tions and a low success rate in accurately extracting output cell

values [15].

In contrast, the state-of-the-art GReaT [3] and other synthetic

data generation approaches [46, 56, 58] typically employ smaller

models like GPT-2 or DistilGPT2, which effectively address at-

tribute encoding while reducing feature engineering efforts. These

smaller models already outperform traditional GAN and traditional

statistics-based approaches. For example, DistilGPT2 can be trained

using LoRA on GPUs as modest as the Tesla P100.

Importantly, fine-tuning larger models such as GPT-4 entails

significant computational cost. For instance, fine-tuning a GPT-4

model for three epochs on a dataset with 50k rows and a five-column

table costs approximately $300 (OpenAI) or requires equivalent

high-end GPU resources. Therefore, while the same fine-tuning

schema can be applied to models like GPT-4 or LLaMA, it is not a

cost-effective solution compared to the solutions considered here.

In summary, newer generation LLMs do not obviate the

need for PAFT . Ourmethod directly addresses the impedance

mismatch between autoregressive LLMs and synthetic table

generation—particularly by preserving functional dependen-

cies through permutation-aware fine-tuning—a challenge

that persists even with advanced models.

6 Conclusion

This work has brought LLMs closer to the goal of generating re-

alistic synthetic datasets. By learning FDs and leveraging this in-

formation in the fine-tuning process, we are able to align the auto-

regressive nature of LLMs with the ordering of columns necessary

for generating quality synthetic data. While PAFT is quite broadly

applicable by itself, it can be extended in several directions. First,

what are other, perhaps more expressive, types of tabular con-

straints that can be utilized in the fine-tuning process? Second,
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what is the internal basis for regulating orders inside a transformer

architecture and can we more directly harness it? Third, can we

theoretically prove the (im)possibility of generating specific syn-

thetic datasets by LLM architectures? Fourth, despite the numerous

advantages of LLM in learning and generating tabular data, scalabil-

ity remains an acknowledged challenge [3, 10, 15], encompassing

concerns such as context window and training speed. And finally,

privacy-preserving methods have been implemented in table gener-

ators based on GANs but remains understudied in LLM fine-tuning.

These questions will be the focus of our future work.

Limitations. The row-wise generation cost of our method, par-

ticularly when employing fine-tuning, is affected by the dataset

sample size and computational resources (GPU). Moreover, the ca-

pacity of PAFT to generate columns is affected by context window

sizes. These limitations can be overcome by the newer generation

of LLMs or by exploring partial row generation, i.e., generating a

row in multiple steps using an LLM.
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A Related Work

Owing to the ubiquity of tabular data, the synthetic generation of

this type of data in traditional machine learning research. Various

approaches have been developed for tabular data generation.

TabularDataGenerationwithNeuralNetworks (i.i.d. rows).

Lei et al. [52] proposed CTGAN where rows are independent of

each other; a conditional GAN architecture ensures that the de-

pendency between columns is learned. Tabsyn [55] also generates

independent rows but with a diffusion approach.

Tabular Data Generation with Neural Networks (non i.i.d.

rows). DoppelGanger [23] uses a combination of an RNN and

a GAN to incorporate temporal dependencies across rows but

this method has been tested in traditional, low-volume settings

such as Wikipedia daily visit counts. For high-volume applications,

STAN [54] utilizes a combination of a CNN and Gaussian mix-

ture neural networks to generate synthetic network traffic data.

GraphDF [6] conducts multi-dimensional time series forecasting.

GOGGLE [25] employs a generative modeling method for tabular

data by learning relational structures.

Use of Language Models (LLMs) for tabular data genera-

tion.Most modern LLMs are based on the transformer architecture

[49] with parameters ranging from few millions to billions [18],

and researchers have developed creative ways to harness LLMs in

traditional machine learning and data contexts. LIFT [10] initially

transforms a table row into a sentence, such as ‘An Iris plant with

sepal length 5.1cm, sepal width 3.5cm’, and employs an LLM as a

learning model for table classification, regression, and generation

tasks. GReaT [3], introduced earlier, utilizes a GPT-2 model that

has been fine-tuned using a specific corpus for synthetic data gen-

eration. A general benefit of utilizing LLMs is the elimination of

customized preprocessing pipelines.

Feature Ordering. Although not well-studied in the context of

tabular data generation, the notion of feature ordering has been in-

vestigated in the context of graph-to-text translation [45] wherein

to learn effective graph encodings, vertices are linearized via com-

binations of different graph traversal mechanisms, e.g., topologi-

cal & breath-first strategies [11], and top-down & bottom-up ap-

proaches [41]. As a second example, ‘permutation-invariant tabular

data synthesis [61] examines the influence of the arrangement of

table columns on convolutional neural network (CNN) training

and organizes them according to the correlation among columns.

Nevertheless, it is important to acknowledge that relying on mere

correlation to establish column orders can be limiting. There are

also several approaches (e.g., [9, 20]) that synthesize, discover, or

aggregate features from relational databases, leveraging order in-

formation when possible, for use in machine learning pipelines. It

worth to note that even in the LLM community, the task of context

sorting for LLM prompting is not trivial and has gained significant

attention lately [8].

Mining and Modeling Functional Dependencies. Yunjia et

al. [57] relax the notion of strict functional dependencies to include

noisy functional relationships by utilizing probabilistic graphical

models. Chen et al. [5], in their FakeTables approach use the discov-

ery of functional dependencies in a GAN formulation; they first use

a generator to create a set of columns (set A) and an autoencoder

to cast another set (set B), which are then used by a discriminator

to calculate the gradient loss. Muralidhar et al. [30] proposed to

use Granger causality to incorporate functional invariants across
multiple time series. The area of FD discovery and of data mining

with tabular data have both been extensively studied [26, 37, 60].

B Extended Methodology

B.1 Extended Algorithm

Algorithm 1 details FD distillation procedures corresponding to

the text in Section 4.2 and Algorithm 2 details Feature Order Per-

mutation Optimization procedures corresponding to the text in

Section 4.3.

Algorithm 1 FD Distillation with Schema-Level FDs

Require: List of Schema-level FDs, S
Ensure: Column Dependency Graph, G(V, E)
1: G ← ∅
2: for 𝑓 𝑑 ∈ S do

3: 𝐿𝐻𝑆, 𝑅𝐻𝑆 ← 𝑓 𝑑

4: if 𝐿𝐻𝑆.𝑙𝑒𝑛𝑔𝑡ℎ = 1 and 𝑅𝐻𝑆.𝑙𝑒𝑛𝑔𝑡ℎ = 1 then

5: for 𝑢 ∈ 𝐿𝐻𝑆 do

6: for 𝑣 ∈ 𝑅𝐻𝑆 do

7: G.add_edge(𝑢, 𝑣) ⊲ Case 1

8: else if 𝐿𝐻𝑆.𝑙𝑒𝑛𝑔𝑡ℎ > 1 and 𝑅𝐻𝑆.𝑙𝑒𝑛𝑔𝑡ℎ = 1 then

9: for 𝑢 ∈ 𝐿𝐻𝑆 do

10: G.add_edge(𝑣,𝑢) ⊲ Case 2

11: else ⊲ 𝑅𝐻𝑆.𝑙𝑒𝑛𝑔𝑡ℎ > 1, Case 3

12: for 𝑣 ∈ 𝑅𝐻𝑆 do

13: if 𝐿𝐻𝑆.𝑙𝑒𝑛𝑔𝑡ℎ = 1 then

14: G.add_edge(𝑢, 𝑣) ⊲ Go to Case 1

15: else

16: for 𝑢 ∈ 𝐿𝐻𝑆 do

17: G.add_edge(𝑣,𝑢) ⊲ Go to Case 2

Algorithm 2 Feature Order Permutation Optimization

Require: Column Dependency Graphs G(V, E)
Ensure: Optimal Feature Order Permutation k
1: if |E | = ∅ then
2: Return k← 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦_𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(V)
3: if G is not a Directed Acyclic Graph (DAG) then ⊲ Phase 1

4: G ← 𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (G)
5: k← 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔(G) ⊲ Phase 2

6: k← 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦_𝑆𝐶𝐶_𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(G) ⊲ Phase 3

7: Return k

C Data and Experiment Description

C.1 Experimental Setup

Dataset.We evaluated the efficiency of PAFT through experiments

on six real datasets commonly used in synthetic table generation

studies (GReaT, CTGAN, etc.), as well as a set of four simulated

datasets: Beijing [7], US-locations [14], California Housing [31],

Adult Income [2], Seattle [43], and Travel [47], Simulated (Algo-

rithm 3). These real-world datasets come from diverse domains
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and vary in size. The range of the number of functional depen-

dencies spans from 0, indicating complete independence between
columns, to around 400, indicating a high level of interdependence.
These data also demonstrate the diverse combinations of categories

and numerical columns. The simulated data is customized to ad-

here to the given functional dependence schema, thus explicitly

emphasizing the degree to which a model can precisely represent

the functional relationship. The simulated data has four distinct

versions, denoted by the variable 𝑘 , which represents the unique

values in the 𝑑 column. As the value of 𝑘 increases, the data be-

comes more complex, which has been demonstrated to make train-

ing the generative model more challenging, as evidenced by all

the experimental results presented in this paper. In particular, the

functional dependency graph of the simulated data is [𝑎 → 𝑏,

𝑎 → 𝑐 ,𝑏 → 𝑐 ,𝑏 → 𝑑 ,𝑎 → 𝑑 ,𝑏 → 𝑑]. Table 7 provides the FD char-

acteristics of each dataset, while Table 7 provides an more detailed

overview.

Training and Testing. To prevent any data leakage, we par-

titioned the data sets into 80% training sets and 20% test sets. All

models are trained or fine-tuned on the same training data samples.

All models undergo cross-validation using 5 generated data sets to

validate their results. One advantage of using LLM for creating tab-

ular data is that there is no need for any complex data preparation.

This means that the feature names and values are used just as they

are supplied in the original data sets.

Dataset #Rows #Cat #Num #FD

Beijing 43,824 1 12 157

US-locations 20,400 3 2 7

California 20,640 8 0 362

Adult 32,561 9 6 78

Seattle 2,016 2 6 10

Travel 954 4 3 0

Simulated,k=[1,5,10,15] 10,000 4 0 6

Table 7: Dataset Descriptors (number of rows, categorical

columns, numerical columns, and FDs).

Algorithm 3 Building simulated data: Given a dependency graph G,

setting values for a table with 𝑛 rows and𝑚 columns with different

statistic complexity based on the initial unique value 𝑘 for the

complexity in the root column of the functional dependency chain.

1: procedure SetValues(𝑛,𝑚,𝐺, 𝑘)

2: 𝑡𝑎𝑏𝑙𝑒 [𝑛] [𝑚] ← {}
3: 𝑡𝑜𝑝_𝑜𝑟𝑑𝑒𝑟, 𝑛𝑜𝑑𝑒_𝑙𝑎𝑦𝑒𝑟 ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2(𝐺)
4: 𝑢𝑛𝑖𝑞𝑢𝑒_𝑣𝑎𝑙𝑢𝑒 ← {}
5: for 𝑣𝑒𝑟𝑡𝑒𝑥 ∈ 𝑡𝑜𝑝𝑜_𝑜𝑟𝑑𝑒𝑟 do
6: 𝑡𝑜𝑝_𝑣𝑎𝑙𝑢𝑒 [𝑣𝑒𝑟𝑡𝑒𝑥] = 2

𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟−𝑛𝑜𝑑𝑒_𝑙𝑎𝑦𝑒𝑟 [𝑣𝑒𝑟𝑡𝑒𝑥 ]

7: for 𝑗 ← 1 to𝑚 do

8: for 𝑖 ← 1 to 𝑛 do

9: 𝑡𝑎𝑏𝑙𝑒 [𝑖] [ 𝑗] ← 𝑥𝑖%(𝑡𝑜𝑝_𝑣𝑎𝑙𝑢𝑒 [ 𝑗 ]∗𝑘 )

Baselines. In benchmarking suite, we have baselines that con-

sist of current deep learning approaches for synthetic data gen-

eration (CTGAN [52], CopulaGAN [52]), and the most advanced

LLM fine-tuning synthetic table generator GReaT [3]. To guaran-

tee an equitable comparison, we employ the Distill-GReaT model

for both techniques in all tests, and adjust the hyperparameters

as advised by the official GitHub website of GReaT. It ought to

mention that GReaT utilizes textual encodings with random feature

order permutations. This implies that each sample will undergo a

different random order during the training and sampling process.

This strategy appears similar to the edge case in Algorithm 2, but in

fact, they are distinct. When the FD set is empty, PAFT will suggest

a random permutation. Nevertheless, this permutation serves as a

comprehensive guide for all samples after an in-depth assessment

of FD.

C.2 Reproducibility detail

Baselines. Each baseline (CTGAN, CopulaGAN, TabSyn, GReaT)

sticks to the recommended hyperparameters and utilizes officially

released API tools: Synthetic Data Vault [36] and GReaT [3]. As

for the fair comparison of GReaT and PAFT, the LoRA fine-tuning

parameters are set as: Lora attention dimension 𝑟 = 16, alpha

parameter for Lora scaling 𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 = 32, The names of the

modules to apply the adapter to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑚𝑜𝑑𝑢𝑙𝑒𝑠 = 𝑐_𝑎𝑡𝑡𝑛, The

dropout probability for Lora layers 𝑙𝑜𝑟𝑎_𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05, 𝑏𝑖𝑎𝑠 =

𝑛𝑜𝑛𝑒 .

Computational Resources. To ensure fairness in the compar-

ison between the baselines, all baseline models and experiments

were executed on a single Tesla P100-PCIE-16GB GPU.

Parameters for MLE and Discriminator Models. We uti-

lize neural network, linear/logistic regression, and random forest

models from the Scikit-Learn package for the ML efficiency and

discriminator experiments. The exact hyperparameters for each

model are detailed in Table 8. Every result is evaluated through the

process of 5-fold cross-validation.

Low-order statistics [55] of column-wise data density is calcu-

lated with SDV library.

D Additional Research Questions and Case

Studies

D.1 RQ2: Does PAFT generate data respecting

the consistency of intrinsic data

characteristics?

Table 9 details the standard deviations from five experimental runs.

D.2 RQ3: Can data generated by PAFT replace

real data in downstream ML model

training?

Table 10 details the standard deviations from five experimental

runs.
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RF LR NN

n_est max_depth max_iter max_iter hidden_layer_sizes learning_rate

Classification 100 None 100 300 (150, 100, 50) 0.001

Regression 100 None 100 300 (150, 100, 50) 0.001

Table 8: The parameters we used for MLE and Discriminator models remain the same across all datasets.

Dataset Intrinsic Fact

Fact Violation Rate (↓)
CTGAN CopulaGAN TabSyn GReaT PAFT

US-locations State-code→ Bird 94.66±0.32% 95.66±0.17% 0.10±0.04% 0.30±0.00% 0.00±0.00%
US-locations Lat-long→ State 99.22±0.08% 98.51±0.07% 21.50±0.32% 8.16±0.14% 2.93±0.15%
California Lat-long→ CA 47.56±6.37% 99.93±0.00% 8.83±0.13% 5.42±0.16% 1.26±0.06%

California

Median house price

→ [1.4𝑒5, 5𝑒5]
1.46±1.52% 0.01±0.01% 0.00±0.00% 0.00±0.00% 0.00±0.00%

Adult

education→
education-num

83.94± 1.93% 19.09± 0.58% 1.43±0.04% 1.24±0.09% 0.46± 0.03%

Seattle Zipcode→ Seattle 0.00±0.00% 99.88±0.00% 0.00±0.00% 0.00±0.00% 0.00±0.00%
Table 9: Additional Std. details in intrinsic characteristics evaluation.

D.3 RQ4: Does PAFTadhere to real distribution

and possess mode diversity?

Tables 11 demonstrate that the PAFT synthetic data closely matches

the real data in terms of univariate distribution and bivariate corre-

lation, outperforming the baseline. Visual examples are depicted

in Figure 7. PAFT has the ability to generate a wide range of diver-

sity, encompassing both continuous and discrete variables, which

closely resembles real data.

D.4 RQ5: Does the synthetic data generated by

PAFT pass the privacy test?

Similar to the analysis conducted in recent work [3] (GReaT), we

employ the random forest (RF) algorithm to train discriminators

Figure 5: Semantic Complexity: using the random order per-

mutation to modeling the mixture of states data is more

challenging when the rectangularity index (left) and com-

pactness index (right) increase.

Figure 6: Statistical Complexity can be figured out by ana-

lyzing the distribution of the data. For instance, California

Housing data is simpler to model concerning the Functional

Dependency as it only includes the longitude and latitude

for a single state.

to distinguish real data (labelled as True) and synthetically gen-

erated data (labeled as False). Subsequently, we test performance

on an unseen set (consisting of 50% synthetically generated data

and 50% real data). In this experiment, scores represent the percent-

age of correctly classified entities. In this case, an ideal accuracy

score would be close to 50%, which means the discrimniator fails to

distinguish between real and synthesized data. Scores are shown

in Table 13 and indicate that the data generated by PAFT is most

indistinguishable from real data, even by powerful discriminative

models.
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Regression Task MAPE (↓) Over Different Methods

Dataset Orig. CTGAN CopulaGAN TabSyn GReaT PAFT

Beijing (*)

RF 0.41% 2.49±0.57% 2.15±0.29% 0.7±0.01% 0.57±0.00% 0.52±0.00%
LR 1.37% 2.23±0.54% 1.55±0.21% 1.25±0.0% 0.97±0.01% 1.34±0.01%
NN 0.99% 2.44±0.74% 2.83±1.18% 1.01±0.14% 1.16±0.56% 0.95±0.13%

California (*)

RF 0.18% 0.65±0.09% 0.39±0.01% 0.22±0.0% 0.25±0.00% 0.20±0.00%
LR 0.30% 0.54±0.1% 0.5±0.01% 0.30±0.0% 0.29±0.00% 0.31±0.00%
NN 0.34% 0.53±0.11% 0.47±0.02% 0.29±0.02% 0.3±0.01% 0.27±0.00%

Seattle (*)

RF 0.33% 0.76±0.34% 0.38±0.07% 0.30±0.06% 0.35±0.01% 0.28±0.03%
LR 0.29% 0.74±0.35% 0.32±0.03% 0.23±0.04% 0.33±0.00% 0.29±0.03%
NN 0.28% 0.71±0.33% 0.38±0.08% 0.28±0.01% 0.33±0.00% 0.27±0.01%

Classification Task Accuracy (↑) Over Different Methods

Dataset Orig. CTGAN CopulaGAN TabSyn GReaT PAFT

US-locations

RF 99.95% 7.17±1.58% 45.33±2.82% 99.99±0.01% 99.84±0.07% 99.91±0.03%
LR 46.1% 5.11±3.14% 31.08±1.92% 43.69±1.9% 45.65±0.86% 49.41±1.57%
NN 99.85% 7.56±4.61% 53.34±1.59% 99.64±0.17% 98.94±1.16% 99.44±0.28%

Adult

RF 84.97% 71.15±5.59% 81.33±1.53% 83.69±0.28% 83.89±0.42% 83.06±0.35%
LR 78.53% 75.68±0.14% 78.18± 1.53% 78.38±0.11% 76.1±0.29% 77.24±0.09%
NN 76.9% 75.69±0.10% 76.6±1.26% 78.36±1.23% 78.23±1.31% 79.16±0.15%

Travel

RF 88.95% 56.35±2.64% 67.18±3.0% 84.09±1.18% 79.78±1.29% 85.19±1.99%
LR 82.87% 70.17±17.46% 79.56±0.00% 83.31±0.22% 78.34±2.02% 82.76±1.01%
NN 81.77% 71.05±17.85% 79.56±0.00% 81.88±1.33% 80.77±1.33% 83.2±0.90%

Table 10: MLE Performance (%): Comparison of original data to synthetic data.For datasets denoted as (*), we use a regression

model for prediction, and calculate MAPE as performance (where lower scores are ideal); For other datasets, classification

models are used for prediction and we calculate the accuracy as performance. The best results are marked in bold and the

second-best results are underlined. RF: random forests; LR: linear regression: NN: a traditional multi-layer perceptron.

Dataset CTGAN CopulaGAN TabSyn GReaT PAFT

Adult 0.81±0.01 0.92±0.01 0.98±0.00 0.88±0.00 0.90±0.00
Beijing 0.89±0.01 0.79±0.01 0.98±0.00 0.93±0.00 0.97±0.00
California 0.87±0.03 0.77±0.01 0.98±0.00 0.89±0.00 0.83±0.00
US-locations 0.83±0.02 0.82±0.00 0.96±0.00 0.93±0.00 0.97±0.00
Seattle 0.83±0.01 0.73±0.02 0.93±0.00 0.90±0.00 0.93±0.00
Travel 0.84±0.01 0.90±0.02 0.93±0.01 0.93±0.01 0.93±0.01

Table 11: Error rate (%) of column-wise density estimation
2
. Bold Face represents the best score on each dataset. Higher values

indicate more accurate estimation (superior results). PAFToutperforms the best generative baseline model in most case. The

best results are marked in bold, the second-best results are underlined.

D.5 RQ6: Can PAFTenhance the stability in

generating high quality tables, resulting in

a faster sampling phase?

When it comes to the comparison between fine-tuning approaches

in LLM, the quality of the generated table rows can be reflected

in the sampling process. This is particularly evident when gener-

ating an i.i.d row that involves auto-regressive generation. If the

generated row cannot be decoded back into a real table row, then

another sample needs to be redone. Given that the device condi-

tion and hyperparameters of the GReaT and PAFT are identical, a

shorter sampling time indicates a higher probability of accepting

a generated row, meaning improved generation quality. (See Ta-

ble 14.) Furthermore, the time measurement is based solely on a

single-core GPU to ensure a fair comparison of different baselines.

Using multiple GPU parallel computing can significantly speed up

the fine-tuning process in practice.
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Dataset CTGAN CopulaGAN TabSyn GReaT PAFT

Adult 0.81±0.02 0.86±0.01 0.93±0.00 0.80±0.01 0.78±0.00
Beijing 0.92±0.01 0.94±0.01 0.99±0.00 0.95±0.00 0.98±0.01
California 0.84±0.00 0.87±0.01 0.97±0.00 0.87±0.01 0.91±0.02
US-locations 0.50±0.02 0.55±0.00 0.93±0.00 0.89±0.00 0.94±0.00
Seattle 0.74±0.02 0.72±0.01 0.80±0.01 0.76±0.03 0.81±0.01
Travel 0.77±0.02 0.80±0.02 0.87±0.01 0.85±0.01 0.82±0.05

Table 12: Error rate (%) of pair-wise column correlation score
2
. Bold Face represents the best score on each dataset.

PAFToutperforms the best baseline model in most case. The best results are marked in bold, the second-best results are

underlined.

Figure 7: Column distributions visualization for each dataset generated by CTGAN, CopulaGAN, GReaT, and PAFT . The top row

displays examples of numerical columns, while the bottom row presents examples of categorical columns. Overall, PAFT (Blue)

has the closest distribution to real data (Red) compared to other synthesis methods. PAFT also showcase the ability to generate

a wide range of diversity.

Admittedly, PAFT and all LLM fine-tuning based table generators

share the identical challenge of time consuming (both training and

sampling), comparing to classic DL or GAN based table generators.

In exchange for the investment of time, there are several advantages

to consider. These include the elimination of data preprocessing

which is a significant time cost for a human expert in charge of

data preparation, a deep understanding of real-world knowledge,

and finally DL-bsaed generators have been shown to fail when the

table generation task involves generating columns with textual

sentences as their values.

D.6 Case Study: Influence of Statistical and

Semantic Factors

Statistical Factor The occurrence of functional dependency in a

table is influenced by various factors, including the number of rows

and columns, the distinct values in the columns, the relationship

between columns, and the presence of duplicate rows, etc. Table 1

and 5 shows different dataset may have different level of statistic

difficulties.

Semantic Factors The acquisition of semantic factors is typi-

cally not achievable from direct observation of the data’s appear-

ance. Typically, this implies that the data’s worth will be influenced
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Data Privacy - Sniff Test: ML Discriminator Accuracy (Ideal→ 50%)

Method CTGAN CopulaGAN TabSyn GReaT PAFT

Beijing 99.16± 0.08% 98.69± 0.39% 50.97±0.06% 51.1± 0.08% 50.09± 0.05%

US-locations 99.94± 0.03% 97.74± 0.22% 51.97±0.18% 50.47± 0.07% 50.01± 0.01%

California 98.35± 0.2% 86.64± 0.67% 50.64±0.15% 53.74± 0.27% 49.89± 0.03%

Adult 94.43± 0.53% 59.82± 0.9% 51.64±0.14% 51.12± 0.26% 48.75± 0.03%

Seattle 87.61± 1.06% 85.7± 2.0% 50.12±0.9% 68.27± 1.34% 47.21± 0.48%

Travel 77.96± 1.4% 74.14± 1.64% 50.66±1.97% 62.49± 1.2% 48.18± 0.81%

Table 13: Discriminator Performance (%): Comparison of synthesized data from CTGAN, CopulaGAN, TabSyn, GReaT, and

PAFT . The scores stand for the accuracy for detecting real or fake data, where the ML models are trained using 50% real data

and 50% random data. An ideal accuracy score is 50, indicating the model cannot distinguish between real and synthesized data.

The best results are marked in bold, the second-best results are underlined.

CTGAN CopulaGAN TabSyn

Training Time Sampling Time Training Time Sampling Time Training Time Sampling Time

Adult 50:38 sec 0:47 sec 11:26 min 1:04 sec 46.35 min 7.38 sec

Beijing 55:72 sec 1:07 sec 13:94 min 2:67 sec 54:11 min 9:89 sec

California Housing 2:79 min 5:68 sec 5:72 min 1:02 sec 33:27 min 4:81 sec

US-locations 18:53 sec 0:17 sec 4:72 min 0:39 sec 28:6 min 4:47 sec

Seattle 3:56 sec 0:07 sec 24:93 sec 0:13 sec 18:43 min 0:64 sec

Travel 0:40 sec 0:04 sec 12:49 sec 0:06 sec 16:44 min 0:63 sec

GReaT PAFT

Training Time Sampling Time Training Time Sampling Time

Adult 3:52 hr 37:47 min 3:49 hr 5:15 min

Beijing 4:10 hr 5:24 min 4:08 hr 5:21 min

California Housing 2:23 hr 4:16 min 2:22 hr 2:58 min

US-locations 55:48 min 58 sec 54:33 min 58 sec

Seattle 7:42 min 10 sec 7:43 min 11 sec

Travel 3:30 min 5 sec 3:33 min 5 sec

Table 14: A run time comparison of all generative models. Models were trained and fine-tuned using comparable hyper-

parameters, and generated samples were of the same size as the real dataset. For certain datasets that pose difficulties for

auto-regressive generation (such as Adult), PAFT can significantly enhance the quality of the generation process, resulting in

reduced generation time. For typical datasets with fewer challenges, the time-efficiency performance of GreaT and PAFT is

comparable. (The standard variance of time in the five random experiments was smaller than one secondary unit, so it has

been omitted).

by real-world expertise in a specific field. For instance, map coordi-

nates are influenced by the geopolitical borders of actual countries

and states. Similarly, even if only a subset of data points from a

mathematical function are observed, there is a need to compre-

hend the complete representation of that particular mathematical

function.

Fig. 6 shows the difficulty of capturing the functional dependency

can also leaded by the semantic conext of a sub-class in a mixture

dataset, such as the state shape and geo location distribution. For

this case, previous Table 2 have already shown the improvement of

utilizing PAFT .
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Figure 8: For a composite dataset, comparison of state-specific violation rates for different synthetic data generation approaches.

Here, the states (x-axis) are sorted based on increasing violations. PAFT significantly mitigates state-specific violations in a

composite dataset.
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