
Redescription Mining: Structure Theory and Algorithms

Laxmi Parida
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598, USA
parida@us.ibm.com

Naren Ramakrishnan
Department of Computer Science
Virginia Tech, VA 24061, USA

naren@cs.vt.edu

Abstract

We introduce a new data mining problem—redescription
mining—that unifies considerations of conceptual clustering,
constructive induction, and logical formula discovery. Re-
description mining begins with a collection of sets, views it
as a propositional vocabulary, and identifies clusters of data
that can be defined in at least two ways using this vocabulary.
The primary contributions of this paper are conceptual and
theoretical: (i) we formally study the space of redescriptions
underlying a dataset and characterize their intrinsic structure,
(ii) we identify impossibility as well as strong possibility re-
sults about when mining redescriptions is feasible, (iii) we
present several scenarios of how we can custom-build re-
description mining solutions for various biases, and (iv) we
outline how many problems studied in the larger machine
learning community are really special cases of redescription
mining. By highlighting its broad scope and relevance, we
aim to establish the importance of redescription mining and
make the case for a thrust in this new line of research.

Introduction
The central goal of this paper is to introduce a new data min-
ing task—redescription mining—that is potentially of inter-
est to a broad AAAI audience working in machine learn-
ing, knowledge representation, and scientific discovery. As
the name indicates, to redescribe something is to describe
anew or to express the same concept in a different vocabu-
lary. The input to redescription mining is a collection of sets
such as shown in Fig. 1. Each bubble in this diagram de-
notes a meaningful grouping of objects (in this case, coun-
tries) according to some intensional definition. For instance,
the colors green, red, cyan, and yellow (from right, coun-
terclockwise) refer to the sets ‘permanent members of the
UN security council,’ ‘countries with a history of commu-
nism,’ ‘countries with land area > 3, 000, 000 square miles,’
and ‘popular tourist destinations in the Americas (North and
South).’ We will refer to such sets as descriptors. An ex-
ample redescription for this dataset is then: ‘Countries with
land area > 3, 000, 000 square miles outside of the Ameri-
cas’ are the same as ‘Permanent members of the UN security
council who have a history of communism.’ This redescrip-
tion defines the set {Russia, China}, once by a set intersec-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

France

Brazil

Chile

UK
USA

RussiaCanada

Argentina

Cuba

China

Figure 1: Example input to redescription mining.

tion, and again by a set difference. The goal of redesription
mining is to find which subsets afford multiple definitions
and to find these definitions. The underlying premise is that
sets that can indeed be defined in (at least) two ways are
likely to exhibit concerted behavior and are, hence, interest-
ing.

As is clear, redescription mining exhibits traits of concep-
tual clustering, constructive induction, and logical formula
discovery. It is a form of conceptual clustering (Fisher 1987;
Michalski 1980) because the mined clusters are required to
have not just one meaningful description, but two. It is
a form of constructive induction since the features impor-
tant for learning must be automatically constructed from the
given vocabulary of sets. And finally, finding redescriptions
can be viewed as learning equivalence relationships between
boolean formulas.

Why is this problem important?
We posit that today’s data-driven sciences, such as bioinfor-
matics, have greatly increased the ease with which descrip-
tors can be defined over a universal set of objects. There
is an urgent need to integrate multiple forms of characteriz-
ing datasets, situate the knowledge gained from one dataset
in the context of others, and harness high-level abstractions
for uncovering cryptic and subtle features of data. This is
important in order to relate results from different studies, or
reconcile the analyses of a common set of biological entities
(e.g., stress-responsive genes) from diverse computational
techniques and, in this way, expose novel patterns underly-

ing data. Furthermore, redescription mining can be viewed
as a generalization of many problems studied in the larger
machine learning community:

Profiling Classes: Inducing understandable definitions of
classes using a set of features (Valdes-Perez, Pericliev, &
Pereira 2000) is a goal common to all descriptive classifica-
tion applications. Redescription mining loses the distinction
between classes and features and provides necessary as well
as sufficient descriptors for covering other descriptors. An
additional requirement in class profiling is to choose features
that absolutely or partially contrast one class from another
and, typically, to choose a minimal subset of features that
can contrast all pairs of classes. Redescriptions impose an
equivalence relation over the expression space that can be
efficiently harnessed to answer these queries.

Niche Finding: Niche finding is a special case of profiling
classes where the classes are singleton sets. Redescriptions
hence cover single instances, such as this example from the
domain of universities (Valdes-Perez 1999): ‘Wake Forest
University is the only suburban Baptist university.’ Finding
niches for individuals and objects has important applications
in product placement, targeting recommendations, and per-
sonalization.

Analogical Reasoning: Learning (functional) determina-
tions is an important aid in analogical reasoning (Russell
1989) and categorical analysis. A determination captures
functional dependency but not the exact form of the depen-
dency, e.g., ‘if two instances agree on attribute X , then they
also agree on attribute Y .’ When the attributes are sets and
feature values indicate set membership, a determination can
only exist as a redescription, since the domains of all at-
tributes is boolean. Hence redescriptions enjoy the same in-
ductive applications that determinations have, such as allow-
ing us to posit properties for instances based on their mem-
bership in certain sets.

Story Telling: While traditional redescription mining is
focused on finding object sets that are similar, story telling
aims to explicitly relate object sets that are disjoint (and
hence, dissimilar). The goal of this application (Ramakr-
ishnan et al. 2004) is to find a path or connection be-
tween two disjoint sets through a sequence of intermedi-
aries, each of which is an approximate redescription of its
neighbor(s). A simple example is the word game where
we are given two words, e.g. PURE and WOOL, and we
must morph one into the other by changing only one letter
at a time (meaningfully). Here we can think of a word as
a set of (letter,position) pairs so that all meaningful English
words constitute the descriptors. One solution is: PURE→
PORE→ POLE→ POLL→ POOL→ WOOL. Each step
of this story is an approximate redescription between two
sets, having three elements in common. On a more serious
note, story telling finds applications in bioinformatics, for
instance, where the biologist is trying to relate a set of genes
expressed in one experiment to another set, implicated in a
different pathway.

F1 F2 F3 F4 F5 F6 F7 F8

o1 0 0 0 1 1 0 0 1
o2 1 0 1 0 1 1 0 1
o3 1 1 0 0 0 1 1 0
o4 0 1 1 0 0 1 0 0
o5 0 0 0 1 0 0 1 1

Figure 2: Example dataset matrix D.

Schema Matching: Learning semantic mappings between
diverse schema (Doan, Domingos, & Halevy 2003) is im-
portant for data reconciliation and information integration
applications. If we view the schema as sets, computing one-
to-one schema matchings is a problem of redescription min-
ing. We are thus extending the realm of descriptors from
propositional to predicate variables. This also allows us to
explore redescription in the context of inductive logic pro-
gramming, e.g., for inferring relational definitions that mu-
tually reinforce each other.

We hence argue that redescription mining is an especially
fruitful line of inquiry, understanding of whose issues will
shed light on many related areas of data mining. The pri-
mary contributions of this paper are conceptual and theoret-
ical — insights into the structure of redescription spaces, re-
sults about when mining redescriptions is feasible, and sce-
narios of how we can custom-build redescription mining so-
lutions for various biases.

Formalisms
Formally, the inputs to redescription mining are the universal
set of objects O = {o1, o2, . . . , on}, and a set (the vocabu-
lary) F = {F1, F2, . . . , Fm} of proper subsets of O. The
elements of F (called features) are assumed to form a cov-
ering of O (

⋃

i Fi = O), but not necessarily a partition. For
notational convenience, this information can be summarized
in the n × m binary dataset matrix D (see Fig. 2) whose
rows represent objects, columns represents the features, and
the entry Dij is 1 if object oi is a member of feature Fj , and
0 otherwise. The reader will notice the immediate parallels
between D and the traditional item-transaction modeling in
association rule mining.

Definition 1. (descriptor e, features F (e), objects O(e)) A
descriptor is a boolean expression on a set of features V ⊆
F . Given a descriptor e, we will denote the set of features
involved in e by F (e) and the set of objects it represents (for
a presumed D) by O(e).

For ease of interpretability, notice that we have over-
loaded notation: F denotes the entire set of features,
whereas F (e) denotes the subset of F that participates in e
(similarly for O). Also, in writing boolean expressions, we
will use boolean connectives (∧, ∨, ¬) as well as set con-
structors (∩, ∪, −) interchangeably, but never together in
the same expression. Example descriptors are F3, F1 ∩ F4,
¬F2 ∨ F3, and F1 − (F1 − F4).

Two descriptors e1 and e2 defined over (resp.) V1 and V2

are distinct (denoted as e1 6= e2), if one of the following
holds: (1) V1 6= V2, or (2) there exists some D for which
O(e1) 6= O(e2). Notice that this condition rules out tautolo-

gies. For example the descriptors F1∩F4 and F1−(F1−F4)
are not distinct.

Definition 2. (redescriptions R(e), O(R(e)) e′ is a re-
description of e, if and only if O(e) = O(e′) holds for the
given D. R(e) is the set of all distinct redescriptions of e.
O(R(e)) is defined to be O(e).

In the example dataset matrix D of Fig. 2, (F3 ∩ F1) ∪
(F4−F3) is a redescription of (F7−F6)∪ (F5−F7), since
they both induce the same set of objects: {o1, o2, o5}. Fur-
thermore, these expressions are also redescriptions of F8.
We will also adopt the convention that e ∈ R(e) so that
we can partition descriptor space into non-empty and non-
overlapping sets. (We still require that all elements of R(e)
be distinct from each other.) The following two lemmas fol-
low readily:

Lemma 1. Given D, if e1, e2 ∈ R(e), e1 6= e2, then (e1 ∧
e2), (e1 ∨ e2) ∈ R(e).

Lemma 2. Redescription is reflexive, symmetric, and tran-
sitive: it induces a partition on a collection of descriptors
on D.

Clearly, the set of redescriptions of e as defined by R(e)
contains redundant elements; we will soon see how to define
R(e) succinctly without enumerating all its elements. As a
first attempt at arriving at a minimal set of redescriptions for
a descriptor e, we can reason whether this set would be par-
wise disjoint in its use of features, i.e., whether the following
holds.

Conjecture 1. Fixing a set of features can endow a unique
(upto tautology) description of a set of objects.

We answer in the negative using a counterxample. Given
the D of Fig. 2, there are at least two distinct redescrip-
tions (e1 6= e2) such that F (e1) = F (e2) = {F3, F4} and
O(e1) = O(e2) = {o1, o2, o4, o5}: (1) e1 = F3 ∨ F4, and,
(2) e2 = F3 ⊕ F4 = (¬F3 ∧ F4) ∨ (F3 ∧ ¬F4). Redescrip-
tion relationships are hence heavily data dependent. Con-
versely, note that if the values of both F3 and F4 are flipped
for o3 in D, e1 and e2 are no longer redescriptions of each
other. While e2 would continue to denote the set of objects
{o1, o2, o4, o5}, the definition of e1 would get expanded.

Definition 3. (relaxation X(e) of e, e′ ≤ e) Given descrip-
tors e and e′, defined on the features V and V ′ respectively,
e′ is a relaxation of e, denoted as (e′ ≤ e), if e⇒ e′ is a tau-
tology. The collection of all the relaxations of e is denoted
by X(e).

Unlike redescription, note that relaxation is a dataset-
agnostic concept and is tantamount to formulating a version
space (Mitchell 1982) over descriptors. For example, de-
scriptor F1 is a relaxation of F1∧F2, F1∨F2 is a relaxation
of F1 ∨ (F2 ∧ F3), and F1 ∨ F2 is also a relaxation of F1. It
is easy to see the following:

Lemma 3. Relaxation is reflexive, anti-symmetric, and tran-
sitive: it induces a partial order on a collection of descrip-
tors on D.

Lemma 4. For each e2 ∈ X(e1), O(e2) ⊇ O(e1).

Given a dataset D, note that a relaxation of e is not nec-
essarily a redescription of e. Consider our running example:
F1 ∈ X(F1 ∧ F2) but F1 6∈ R(F1 ∧ F2) since O(F1) =
{o2, o3} ⊃ {o3} = O(F1 ∧ F2). On the other hand,
F4 ∈ X(F4 ∧ F8) and O(F4) = O(F4 ∧ F8) = {o1, o5},
hence F4 ∈ R(F4 ∧ F8).

Irredundant Representation of R(e)
We next address the question of describing R(e) in the most
concise manner, without any loss of information.

Definition 4. (Frontier(R(e))) Fr(R(e)) ⊆ R(e) is de-
fined as follows: (1) for each e′′ ∈ R(e), there is an
e′ ∈ Fr(R(e)) such that e′′ ∈ X(e′) and (2) there is no
e′′ ∈ R(e) such that some e′ ∈ Fr(R(e)) is a relaxation of
e′′.

Theorem 1. Fr(R(e)) is a singleton set.

Proof. Since R(e) is non-empty, it is clear that Fr(R(e))
must contain at least one element. We hence concentrate on
proving that Fr(R(e)) contains at most one element. As-
sume this is not true and that there exist distinct p > 1 ex-
pressions e1, e2, . . . , ep ∈ Fr(R(e)). Then by Lemma 1,
e1 ∧ e2 ∧ . . . ∧ ep ∈ R(e), and by the first part of Defini-
tion 4, e1 ∧ e2 ∧ . . . ∧ ep ∈ Fr(R(e)). Then, by the second
part of Definition 4, e1, e2, . . . , ep 6∈ Fr(R(e)). Hence the
assumption is wrong and p = 1.

Definition 5. (relaxation distance p, Xp(e)) e′ is a relax-
ation of e at distance p denoted as (e′ ≤p e), if there exists
distinct expressions (e′ = e0), e1, e2, . . . , (ep = e) such that
e0 ≤ e1 ≤ e2 . . . ≤ ep. Xp(e) is the collection of all relax-
ations of e at distance p.

We will assume that a descriptor is at a relaxation distance
of zero from itself. Note that if e′ ∈ Xp(e) so that O(e) ⊆
O(e′), then O(e′)−O(e) ≤ p, for any given D. We give the
following lemma that shows the redescription terrain to be
‘continuous’ in the space of relaxations of a given descriptor
(see Fig. 3).

Lemma 5. Denote Fr(R(e)) by ef . Then if (e′ ∈ R(e)) ∈
Xp(ef) for some p > 0, then there must exist some (e′′ ∈
Xq(ef)) ∈ R(e) for some 0 ≤ q < p such that e′ ∈ X(e′′).

Proof. Assume the contrary, i.e., there exists a e′′ at a re-
laxation distance q from ef and for which e′ ∈ X(e′′) but
e′′ /∈ R(e). Since e′ ≤ e′′ ≤ ef , O(ef) ⊆ O(e′′) ⊆ O(e′).
Since e′, ef ∈ R(e), O(ef) = O(e′). Then O(e′′) = O(ef).
Hence e′′ ∈ R(e) must hold.

We now show how to determine the membership of a non-
frontier descriptor e (i.e., which redescription terrain it be-
longs to) for a given dataset D.

Lemma 6. Given D, let e1 be a frontier and e ∈
Xp(e1), R(e1). Then if e ∈ Xq(e2) for some frontier
e2 6= e1, then q > p.

Proof. O(e) = O(e1) since e ∈ R(e1). O(e) ⊇ O(e2)
since e ∈ X(e2). Thus O(e1) ⊇ O(e2), hence e1 ∈ X(e2).
Let e1 ∈ Xr(e2) for some r > 0 (note that r cannot be

TRUE

^F2 F2F1 XOR F2F1^F1F1 equiv F2

^F1^F2 ^F1F2F1F2F1^F2

FALSE

F1+^F2 ^F1+F2^F1+^F2F1+F2

TRUE

^F2 F2F1 XOR F2F1^F1F1 equiv F2

^F1^F2 ^F1F2F1F2F1^F2

FALSE

F1+^F2 ^F1+F2^F1+^F2F1+F2

Figure 3: A relaxation lattice over two boolean variables (involving 222

= 16 possible descriptors). Two examples over this
lattice are given depicting redescription ‘terrains’ (in closed curves). The underlying data for the examples comes from: (left)
columns F1, F2 and rows o1, o2, o3 of Fig. 2. (right) columns F1, F2 and rows o1, o2 of Fig. 2.

Initialize() {
if e ∈ S

then E[e].front← e; E[e].len← 0
else E[e].len←∞

(initialize the topmost e for BFS)
if e = FALSE

then E[e].depth← 0
else E[e].depth← −1

}

CompRedscrp() {
for d = 0 . . .D

foreach e with (E[e].depth = d)
foreach e′ ∈ X1(e)

E[e′].depth← (d + 1)
if E[e].len < E[e′].len
then E[e′].len← E[e].len + 1;

E[e′].front← E[e].front;
}

Figure 4: Algorithm for computing redescriptions.

zero since then the premise e2 6= e1 will not hold). Then
e ∈ Xr+p(e2). Thus q = r + p and the result follows.

Lemma 6 essentially states that each non-frontier descrip-
tor e has a unique frontier ef at the shortest possible relax-
ation distance p, i.e., e ∈ Xp(ef). This suggests a very
concise representation for R(e) as Fr(R(e)) with the fol-
lowing algorithm to compute all redescriptions given S, the
set of all frontiers for the dataset D: traverse the relaxation
lattice once using a breadth first search (BFS), while com-
puting the frontier that is the shortest relaxation distance
away from each non-frontier descriptor. Let E be an ar-
ray of three-tuples indexed by the expression e. E[e].front
stores the frontier ef such that e ∈ R(ef); E[e].len stores
the relaxation distance of e from ef ; and E[e].depth is the

depth of e in the relaxation lattice (to aid in the breadth
first traversal). E is initialized as shown by Initialize in
Fig. 4. Thus E[ef].len = 0 for each frontier ef . Then,
CompRedescrp proceeds down the lattice beginning from
‘FALSE’ and assigns every descriptor to its closest equiv-
alence class (here the depth of (e = TRUE) in the re-
laxation lattice is D). Note that during the execution of
this routine, assignment and re-assignment of descriptors to
frontiers happens continuously, as long as we find a frontier
closer than the current best known frontier. At the termi-
nation of the routine, the redescription sets are defined as
R(ef) = {e | E[e].front = ef}.

Understanding Redescriptions
As Fig. 3 reveals, even the deletion of a single row (in this
case o3) causes noticeable changes in the landscape of re-
description terrains. In this section, we present further in-
sights into the relationship between dataset characteristics
and redescription space.

Impossibility Results
We begin by making some impossibility statements in the
context of mining redescriptions. The first statement as-
serts an impossibility about finding even a single descrip-
tor for certain object sets, and the second statement asserts
an impossibility about finding any redescriptions at all in a
dataset.

Lemma 7. If two rows (oi and oj) of D are identical, there
can be no descriptor involving oi but not oj .

This is easy to see since no boolean expression can be
constructed over D’s columns that can discriminate between
the two objects. The second impossibility result holds when
D has at least as many rows as a truth table:

Theorem 2. Given a (n × m) dataset D such that every
possible m-tuple binary vector (there are 2m of them) is a
row in D, let e be a descriptor defined on D’s columns. Then

R(e) = {e}, i.e., no descriptor defined over the columns of
D has a distinct redescription.

Proof. Assume the contrary, i.e., there exists some e′ 6= e
such that O(e) = O(e′). Then Fr(R(e)) = Fr(R(e′)).
Let V = F (Fr(R(e))) = F (Fr(R(e′))). Next, let D′ be
the dataset restricted to the columns in V ; D′ then has all
possible |V |-tuples. But now O(e) 6= O(e′) since e′ 6= e.
Thus e′ must be the same as e and subsequently R(e) =
{e}.

Strong Possibility Result
We next show that if even one or few rows are absent in the
dataset D, each descriptor e has a non-trivial redescription.

Theorem 3. Given a (n ×m) dataset D such that at least
one of the m-tuple binary vectors is absent in D. Then for
each descriptor e defined on D’s columns, |R(e)| > 1, i.e.,
every descriptor e defined over the columns of D has a re-
description e′ 6= e.

Proof. Consider some expression e with the support rows
as O(e). Let the absent m-tuples be denoted as A; these
correspond to the missing collection of rows. Consider the
expression e′ with O(e′) = O(e) ∪ A. Since A ∩ O(e) = φ
and A 6= φ, then e′ must be distinct from e, but O(e) =
O(e′) given D, hence e′ is a redescription of e. Thus any e
defined on D has a distinct redescription e′ constructed as
above. Hence the result.

Corollary 1. Given a (n×m) dataset D such that p m-tuple
binary vectors are absent in D. Then for each descriptor e
defined on D’s columns, |R(e)| = 2p, i.e., every descrip-
tor e defined over the columns of D has (2p − 1) distinct
redescriptions.

Proof. Let Om = {om
1 , om

2 , . . ., om
p } be the missing vec-

tors in the data. Consider O(e), then there exists e′ such
that O(e′) = O(e) ∪ (Om′

⊆ Om). Then e′ ∈ X(e).
Also there exists no e′′ with O(e′′) ∩ Om = φ such that
O(e) ⊂ O(e′′) ⊂ O(e′), hence e′ is a redescription of e.
There exist 2p such Om′

sets. Thus e can have (2p − 1)
distinct redescriptions.

Theorem 4. (Dichotomy Law) Given a dataset D either no
expression e has a distinct redescription or all expressions e
on D have distinct redescriptions.

Proof. Let D be an n×m matrix of elements. If n = 2m and
all the rows are distinct, then by Theorem 2, no expression e
has a redescription. Otherwise, by Theorem 3 each expres-
sion e has a distinct redescription. Hence the result.

Forms of expression e

In light of the dichotomy law, to ensure that the problem of
mining redescriptions is well-posed, we focus our attention
on various biases on the form of e. Notice that if the bias is
too general, then the bi-state phenomenon will continue to
hold, e.g.:

F1 F2 F3

o1 0 0 0
o2 1 0 1
o3 1 1 0
o4 0 1 1
o5 0 0 0

Figure 5: An example dataset matrix D to show that the di-
chotomy law does not hold for specific forms of expressions.

=(F2+F3)(F1+F2)(F1+F3)

F1F3

F1+F2+F3

TRUE

F1 F2 F3

F2(F1+F3) F3(F2+F1)

F1+F3 F2+F3

F1F3+F2F3F2+F1

F1+F2

F1F2+F3

F1F2 F2F3

F1F2F3

FALSE

F1(F2+F3)

F1F3+F2F3+F1F2

Figure 6: A relaxation lattice over monotone expressions of
three boolean variables. The redescription terrains for the
data of Fig. 5 are shown encircled in closed curves. Notice
that for this class of expressions, the dichotomy law (Theo-
rem 4) does not hold.

Corollary 2. If the expressions are in CNF or DNF form,
then the dichotomy law holds for the collection of descrip-
tors.

The bias we study in this paper pertains to monotone
forms (Bshouty 1995) (with the expressions either in CNF or
DNF). An alternative (not studied in detail here) is to choose
a general expression with a small number of variables. We
make the following observation.

Observation 1. If the expressions are in (1) monotone form
or (2) use only some p < m variables, then the dichotomy
law does not hold.

Proof. (Case 1) Consider the dataset shown in Fig. 5. Let
e1 = F1F2, then O(e1) = {e3} and has no distinct re-
descriptions in monotone form. However e2 = F1(F2 +F3)
has a redescription F1 with O(e2) = {2, 3} (see Fig. 6).
(Case 2) Let us restrict our attention to descriptors that use
at most p = 2 variables. Let e1 = F1 + F2 with O(e1) =
{o2, o3, o4}. Then F2 + F3 and F1 + F3 are both redescrip-
tions of e1. But e2 = F1 has no redescriptions (except it-
self).

Mining Exact Redescriptions
We now present a general framework that, given a n × m
dataset D and support k ≤ n, identifies all descriptors e and
their redescriptions R(e) such that |O(e)| ≥ k. We focus
on mining exact redescriptions here; the next section deals
with approximate redescriptions. We also begin by focusing
only on conjunctive forms and later show how we can extend
such an algorithm to mine more general forms, such as CNF
or DNF. One advantage of the conjunctions bias is that when
e′ is a relaxation of e, we have F (e′) ⊆ F (e).

Our basic mining approach has two steps:

1. Compute the O(R(e))’s for the e’s in the predefined form
and extract Fr(R(e)) for each.

2. Use CompRedscrp to compute redescriptions of e from
Fr(R(e)).

Computing O(R(e)), Fr(R(e))
We claim that, restricted to conjunctions, Fr(R(e)) is an
expression that involves all the features that play a role in
R(e).

Lemma 8. F (Fr(R(e))) = ∪e′∈R(e)F (e′)

Proof. Let there exist e′ ∈ R(e) such that

F (e′) \ F (Fr(R(e))) 6= φ

Then clearly e′ 6∈ X(Fr(R(e))) which is a contradiction,
hence the assumption must be wrong. Thus for each e′ ∈
R(e), F (e′) ⊆ F (Fr(R(e))). Further, Fr(R(e)) ∈ R(e),
hence the result.

This result shows that if there is a mechanism for com-
puting O(e) where e involves as many variables as possible,
it can be used for computing all the descriptors (and subse-
quently redescriptions). Therefore our algorithmic strategy
is to compute biclusters in the dataset matrix D; the rows in
the bicluster correspond to O(R(e)) and when the bicluster
is maximal (see below), F (Fr(R(e))) can be derived from
the columns.

From Biclusters to Redescriptions
Given D, a bicluster is a non-empty collection of rows O
and a non-empty collection of columns F such that for a
fixed j ∈ F , Dij = cj for a constant cj , for each i ∈ O and;
there does not exist i′ 6∈ O s.t. Di′j = cj for each j ∈ F .

The bicluster is maximal (also called a closed ‘itemset’ in
the association rule mining literature (Zaki 2004)) if there
does not exist j′ 6∈ F with Dij′ = cj′ for each i ∈ O
and some fixed cj′ . These conditions define the ‘constant
columns’ type of biclusters (see (Madeira & Oliveira 2004)
for different flavors of biclusters used in the bioinformatics
community). The bicluster is minimal if, for each j ∈ F , the
collection of rows O and the collection of columns F \ {j}
is no longer a bicluster.

We have implemented a generic biclustering algorithm
(BiCluster) that can find either maximal or minimal bi-
clusters. Intuitively, the algorithm searches levelwise in the
space of features, evaluating each in turn for inclusion in
the biclusters. In transitioning from one level to another,

there are three choices: include the new feature, include the
negation of the new feature, or ignore it. Maintaining tuples
T of (row set, column set) pairs the algorithm recursively
computes the biclusters and, at the same time, computes the
partial order of connectivity necessary to obtain redescrip-
tions. BiCluster has parameters to control the depth of
expressions constructed, which branches of the search tree
are explored (negated, non-negated, or both), and other user-
specified constraints. The output of BiCluster is utilized
in the redescription mining routines below. Before we pro-
ceed to describe the specific routines, the following lemma
is straightforward to verify.

Lemma 9. Let T be defined as follows: (1) T [1] = O−T [1]

and (2) T [2] = {f | f ∈ T [2]}. T is a minimal disjunction
form if and only if T is a minimal conjunction form.

Let C be all the biclusters computed. In the case of max-
imal biclusters, the time taken by BiCluster is O(L log n +
mn) where L =

∑

c∈C |c|. In the case of minimal biclus-
ters, the time taken by BiCluster is O(|C| log n+mn). Also,
in each of the cases that follow, BiCluster is invoked only
a constant number (≤ 2) of times.

Mining redescriptions in monotone CNF
Since the forms are monotone, no negation of a variable
(column) is permitted. We stage the mining of monotone
CNF expressions into:

1. Find all minimal monotone disjunctions in D, by per-
forming the following two substeps:

(a) Let D be the negation of D defined as follows:

Dij =

{

1 if Dij = 0
0 otherwise

Find all minimal conjunctions in D using BiCluster
in the minimal mode;

(b) Extract all minimal monotone disjunctions by negat-
ing each of these computed minimal conjunctions (see
Lemma 9). Let the number of disjunctions computed
be d in number.

2. Augment matrix D with the results of the last step. For
each minimal disjunction form T , introduce a new col-
umn c in D with

Dic =

{

1 if i ∈ T
0 otherwise

The augmented matrix, D′, is then of size n × (m + d).
Next, find all monotone conjunctions as maximal biclus-
ters in D′.

Mining redescriptions in monotone DNF
There are two ways to computing the DNF form. The first is
to compute the CNF forms and then derive the DNF forms
for each CNF form. The other approach is to switch the
order of calls to the routine BiCluster: first compute max-
imal conjunctions and next compute the minimal disjunc-
tions. Due to space constraints, the details will be presented
in the full version of the paper.

Mining Approximate Redescriptions
The Jaccard’s coefficient J between two object sets O1 and
O2 is given by:

J (O1, O2) =
|O1 ∩O2|

|O1 ∪O2|

J = 1.0 iff O1 = O2. In practice, it is useful to consider
approximate redescriptions with 0 < J < 1.0. Let Rθ(e)
be the set of all approximate redescriptions of e with J ≥ θ.
This set can be computed as follows:

Let R be the set of all R1’s
CompApproxRedscrp(e, θ)
{

O(Rθ(e))← O(R1(e))
For each R1(e

′) ∈ R

If (J(O(R(e)), O(R1(e
′))) ≥ θ) then

O(Rθ(e))← O(Rθ(e)) ∪ O(R1(e
′))

}

Notice that this algorithm is complete, i.e., every eligible
approximate redescription is extracted. In practice however,
this algorithm can be made very efficient using the partial
order connectivity of the exact approximations.

Application Preview
Space considerations preclude us from desribing the many
practical applications of redescription mining. We present
a brief summary of a study conducted using bioinformatics
datasets. Here, the objects are genes and the descriptors de-
fine membership in various categories of the public domain
Gene Ontology (GO). GO actually comprises three paral-
lel taxonomies, detailing cellular components (GO CEL),
molecular function (GO MOL), and biological process (GO
BIO) assignments. We utilized data from six different or-
ganisms (Baker’s yeast, the model plant Arabidopsis, Worm,
Fly, Mouse, and Human) and obtained descriptor definitions
for these organisms from the GO database. Learning rela-
tionships between these descriptors, even within an organ-
ism, sheds valuable insight into what types of biological pro-
cesses are localized in which parts of the cell, and handled
by what types of molecular machinery. These relationships
also help in mundane tasks such as functional assignment for
uncategorized genes. Finally, tracking such redescriptions
across the six organisms helps us understand how Eukary-
otic organisms have specialized constructs or evolved new
distinctions for performing similar (or related) roles. For
ease of interpretation, we restricted our attention to only ex-
act redescriptions and where the expressions on either side
involve only at most two factors. Fig 7 (a) shows a sim-
ple redescription between a GO BIO (51013) and GO CEL
(8352) categories over the Fly genome, involving 4 genes.
This shows that genes localized under ‘katanin’ are involved
in microtubule severing. We will return to Fig. 7 (b) and
(c) shortly. Fig. 7 (d), (e), and (f) show redescriptions that
hold in multiple organisms. Fig. 7 (d), in particular, shows a
redescription straddling all three GO taxonomies, relating
a set intersection to a single descriptor, and which holds
over two genomes – Yeast and Worm. This redescription

involves 12 genes in the Yeast genome and 4 genes in the
Worm genome. Fig. 7 (f) gives a redescription over three
genomes (Human, Mouse, Worm). This redescription in-
volves 45 genes for Human, 30 genes for Mouse, and 16
genes for Worm. The potential for scientific discovery can
be seen in these examples and, more clearly, in Fig. 7 (b
& c). These two scenarios attempt to redescribe the same
GO MOL descriptor in two different genomes; in the case
of the Worm genome, ‘translation release factor activity’ is
redescribed into the intersection of of ‘translational termi-
nation’ and ‘cytoplasm.’ Whereas in the case of the Ara-
bidopsis genome, the cellular component is classified as ‘un-
known.’ If sufficient homology exists between the genes
involved in these redescriptions, we can transfer functional
classifications from the Worm to the Arabidopsis genome;
this showcases the ability of redescription mining to yield
valuable insights into set overlaps and dissimilarities. This
application is currently being extended into a general frame-
work for reasoning about semantic similarity in biological
taxonomies.

Related Work

Redescriptions were first studied in (Ramakrishnan et al.
2004) which also proposes an approach (CARTwheels) to
mining redescriptions by exploiting two important proper-
ties of binary decision trees. First, if the nodes in such a tree
correspond to boolean membership variables of the given
descriptors, then we can interpret paths to represent set in-
tersections, differences, or complements; unions of paths
would correspond to disjunctions. Second, a partition of
paths in the tree corresponds to a partition of objects. These
two properties are employed in CARTwheels which grows
two trees in opposite directions so that they are joined at the
leaves. Essentially, one tree exposes a partition of objects
via its choice of subsets and the other tree tries to grow to
match this partition using a different choice of subsets. If
partition correspondence is established, then paths that join
can be read off as redescriptions. CARTwheels explores the
space of possible tree matchings via an alternation process
wherebytrees are repeatedly re-grown to match the partitions
exposed by the other tree.By suitably configuring this alter-
nation, we can guarantee, with non-zero probability, that any
redescription existing in the dataset would be found. How-
ever, CARTwheels has a tendency to re-find already mined
redescriptions as it searches for potentially unexplored re-
gions of the search space.

This paper has proposed a new class of theoretically well-
founded algorithms that do not suffer from the above draw-
back. Like (De Raedt & Kramer 2001), our approach can
be construed as an integration of a version space approach
(the systematic use of relaxation to structure the space of de-
scriptors) with the emphasis of modern data mining software
(to find all patterns satisfying a certain constraint). How-
ever, the focus on redescriptions has brought out interesting
insights about structure theory (such as how redescriptions
always exist for any descriptor in a complete bias) as well
as improved understanding about algorithms (such as how
finding redescriptions can exploit biclustering at its core).

GO BIO 51013: microtubule severing <=> GO CEL
8352: katanin

(a) Fly

katanin
microtubule

severing

1.00

GO BIO 6415: translational termination AND GO
CEL 5737: cytoplasm <=> GO MOL 3747:
translation release factor activity

(b) Worm

translation
release factor

activity

translational
termination

cytoplasm

1.00

GO BIO 6415: translational termination AND GO
CEL 8372: cellular component unknown <=> GO
MOL 3747: translation release factor activity

(c) Arabidopsis

translation
release factor

activity

translational
termination

cellular
component
unknown

1.00

(a) (b) (c)
GO BIO 6499: N-terminal protein myristoylation
AND GO CEL 8372: cellular component unknown
<=> GO MOL 4379: glycylpeptide N-
tetradecanoyltransferase activity

(b) Worm, Human

glycylpeptide
N-

tetradecanoylt
ransferase

activity

N-terminal
protein

myristoylation

cellular
component
unknown

1.00

GO MOL 8565: protein transporter activity AND GO
CEL 5643: nuclear pore <=> GO BIO 59: protein-
nucleus import, docking

(a) Yeast, Worm

protein-
nucleus
import,
docking

protein
transporter

activity

nuclear pore

1.00

GO MOL 3924: GTPase activity AND GO CEL
15630: microtubule cytoskeleton <=> GO BIO
46785: microtubule polymerization

(c) Human, Mouse , Worm

microtubule
polymerization

GTPase
activity

microtubule
cytoskeleton

1.00

(d) (e) (f)

Figure 7: Six redescriptions mined between different taxonomies of the GO ontology. (Top) Redescriptions that hold in a
particular organism. (Bottom) Redescriptions that hold in more than one organism.

Discussion
Our goal in this paper has been to introduce the redescrip-
tion mining problem along with illustrations of what makes
the problem interesting and important. Being able to reason
about any arbitrary collection of sets in an expressive way
will empower domain specialists to relate their disparate vo-
cabularies and will further knowledge discovery. Our future
work involves a detailed experimental study in a large do-
main and exploring applications in schema matching & re-
lational mining using the ideas presented here as building
blocks.

Acknowledgements
Deept Kumar helped us gather the results presented in this
paper. This work is supported in part by US NSF grants ITR-
0428344, EIA-0103660, IBN-0219332, NIH grant N01-A1-
40035, and DoD MURI grant N00014-01-1-0852 and sab-
batical support (from NYU and IISc, Bangalore) to the sec-
ond author.

References
Bshouty, N. 1995. Exact Learning Boolean Functions via
the Monotone Theory. Information and Computation Vol.
123(1):146–153.
De Raedt, L., and Kramer, S. 2001. The Levelwise Ver-
sion Space Algorithm and its Application to Molecular
Fragment Finding. In Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’01), 853–862.
Doan, A.; Domingos, P.; and Halevy, A. 2003. Learning
to Match the Schemas of Data Sources: A Multistrategy
Approach. Machine Learning Vol. 50(3):279–301.

Fisher, D. 1987. Knowledge Acquisition via Incremental
Conceptual Clustering. Machine Learning Vol. 2(2):139–
172.
Madeira, S., and Oliveira, A. 2004. Biclustering Algo-
rithms for Biological Data Analysis: A Survey. IEEE/ACM
Transactions on Computational Biology and Bioinformat-
ics Vol. 1(1):24–45.
Michalski, R. 1980. Knowledge Acquisition through
Conceptual Clustering: A Theoretical Framework and Al-
gorithm for Partitioning Data into Conjunctive Concepts.
International Journal of Policy Analysis and Information
Systems Vol. 4:219–243.
Mitchell, T. 1982. Generalization as Search. Artificial
Intelligence Vol. 18(2):203–226.
Ramakrishnan, N.; Kumar, D.; Mishra, B.; Potts, M.; and
Helm, R. 2004. Turning CARTwheels: An Alternating Al-
gorithm for Mining Redescriptions. In Proceedings of the
Tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD’04), 266–275.
Russell, S. 1989. The Use of Knowledge in Analogy and
Induction. London: Pitman.
Valdes-Perez, R.; Pericliev, V.; and Pereira, F. 2000. Con-
cise, Intelligible, and Approximate Profiling of Multiple
Classes. International Journal of Human-Computer Stud-
ies Vol. 53(3):411–436.
Valdes-Perez, R. 1999. PickNiche Software. http://www.
cs.cmu.edu/∼sci-disc/pickniche.html.
Zaki, M. 2004. Mining Non-Redundant Association Rules.
Data Mining and Knowledge Discovery Vol. 9(3):223–248.

