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Abstract

Background: Over the past few decades, numerous forecasting methods have been proposed in the field of
epidemic forecasting. Such methods can be classified into different categories such as deterministic vs. probabilistic,
comparative methods vs. generative methods, and so on. In some of the more popular comparative methods,
researchers compare observed epidemiological data from the early stages of an outbreak with the output of
proposed models to forecast the future trend and prevalence of the pandemic. A significant problem in this area is
the lack of standard well-defined evaluation measures to select the best algorithm among different ones, as well as for
selecting the best possible configuration for a particular algorithm.

Results: In this paper we present an evaluation framework which allows for combining different features, error
measures, and ranking schema to evaluate forecasts. We describe the various epidemic features (Epi-features) included
to characterize the output of forecasting methods and provide suitable error measures that could be used to evaluate
the accuracy of the methods with respect to these Epi-features. We focus on long-term predictions rather than short-
term forecasting and demonstrate the utility of the framework by evaluating six forecasting methods for predicting
influenza in the United States. Our results demonstrate that different error measures lead to different rankings even for
a single Epi-feature. Further, our experimental analyses show that no single method dominates the rest in predicting all
Epi-features when evaluated across error measures. As an alternative, we provide various Consensus Ranking schema
that summarize individual rankings, thus accounting for different error measures. Since each Epi-feature presents a
different aspect of the epidemic, multiple methods need to be combined to provide a comprehensive forecast. Thus
we call for a more nuanced approach while evaluating epidemic forecasts and we believe that a comprehensive
evaluation framework, as presented in this paper, will add value to the computational epidemiology community.
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Background
There is considerable interest in forecasting future trends
in diverse fields such as weather, economics and epidemi-
ology [1–6]. Epidemic forecasting, specifically, is of prime
importance to epidemiologists and health-care providers,
and many forecasting methods have been proposed in
this area [7]. Typically, predictive models receive input
in the form of a time-series of the epidemiological data
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from the early stages of an outbreak and are used to pre-
dict a few data points in the future and/or the remainder
of the season. However, assessing the performance of a
forecasting algorithm is a big challenge. Recently, several
epidemic forecasting challenges have been organized by
the Centers for Disease Control and Prevention (CDC),
National Institutes of Health (NIH), Department of Health
and Human Services (HHS), National Oceanic and Atmo-
spheric Administration (NOAA), and Defense Advanced
Research Projects Agency (DARPA) to encourage dif-
ferent research groups to provide forecasting methods
for disease outbreaks such as Flu [8], Ebola [9], Dengue
[10, 11] and Chikungunya [12]. Fair evaluation and com-
parison of the output of different forecasting methods has
remained an open question. Three competitions, named
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Makridakis Competitions (M-Competitions), were held in
1982, 1993, and 2000 to evaluate and compare the perfor-
mance and accuracy of different time-series forecasting
methods [13, 14]. In their analysis, the accuracy of dif-
ferent methods is evaluated by calculating different error
measures on business and economic time-series which
may be applicable to other disciplines. The target for
prediction was economic time-series which have charac-
teristically different behavior compared to those arising
in epidemiology. Though their analysis is generic enough,
it does not consider properties of the time-series that
are epidemiologically relevant. Armstrong [15] provides
a thorough summary of the key principles that must be
considered while evaluating such forecast methods. Our
work expands upon his philosophy of objective evalua-
tion, with specific focus on the domain of epidemiology.
To the best of our knowledge, at the time of writing this
paper, there have been no formal studies on comparing
the standard epidemiologically relevant features across
appropriate error measures for evaluating and comparing
epidemic forecasting algorithms.
Nsoesie et al. [16] reviewed different studies in the

field of forecasting influenza outbreaks and presented the
features used to evaluate the performance of proposed
methods. Eleven of the sixteen forecasting methods stud-
ied by the authors predicted daily/weekly case counts [16].
Some of the studies used various distance functions or
errors as a measure of closeness between the predicted
and observed time-series. For example, Viboud et al. [17],
Aguirre and Gonzalez [18], and Jiang et al. [19] used cor-
relation coefficients to calculate the accuracy of daily or
weekly forecasts of influenza case counts. Other studies
evaluated the precision and “closeness” of predicted activ-
ities to observed values using different statistical measures
of error such as root-mean-square-error (RMSE), per-
centage error [19, 20], etc. However, defining a good
distance function which demonstrates closeness between
the surveillance and predicted epidemic curves is still a
challenge.Moreover, the distance function provides a gen-
eral comparison between the two time-series and ignores
the epidemiological relevance between them, which are
more significant and meaningful from the epidemiolo-
gist perspective; these features could be better criteria
to compare epidemic curves together rather than simple
distance error. Cha [21] provided a survey on different
distance/similarity functions for calculating the closeness
between two time-series or discrete probability density
functions. Some other studies have analyzed the overlap
or difference between the predicted and observed weekly
activities by graphical inspection [22]. Epidemic peak is
one of the most important quantities of interest in an out-
break, and its magnitude and timing are important from
the perspective of health service providers. Consequently,
accurately predicting the peak has been the goal of some

forecasting studies [18, 22–30]. Hall et al. [24], Aguirre
and Gonzalez [18] and Hyder et al. [30] predicted the
pandemic duration and computed the error between the
predicted and real value. A few studies also consider
the attack rate for the epidemic season as the feature of
interest for their method [20, 26].

Study objective & summary of results
In this paper, an epidemic forecast generated by a
model/data-driven approach is quantified based on epi-
demiologically relevant features which we refer to as
Epi-features. Further, the accuracy of a model’s estimate
of a particular Epi-feature is quantified by evaluating its
error with respect to the Epi-features extracted from the
ground truth. This is enabled by using functions that
capture their dissimilarity, which we refer to as error
measures.
We present a simple end to end framework for evalu-

ating epidemic forecasts, keeping in mind the variety of
epidemic features and error measures that can be used to
quantify their performance. The software framework, Epi-
Evaluator (shown in Fig. 1), is built by taking into account
several possible use cases and expected to be a growing
lightweight library of loosely coupled scripts. To demon-
strate its potential and flexibility, we use the framework
on a collection of six different methods used to predict
influenza in the United States. In addition to quantifying
the performance of each method, we also show how the
framework allows for comparison among the methods by
ranking them.
We used influenza surveillance data, as reported by the

United States Centers for Disease Control and Preven-
tion (CDC) [31], as the gold standard epidemiological
data. Output of six forecasting methods was used as the
predicted data. We calculated 8 Epi-features on the 2013-
2014 season data against 10 HHS regions of the United
States (provided by the U.S. Department of Health &
Human Services) [32] and 6 error measures to assess
the Epi-features. We applied the proposed Epi-features
and error measures on both real and predicted data to
compare them to each other.
As expected, the performance of a particular method

depends on the Epi-features and error measures of choice.
Our experimental results demonstrate that some algo-
rithms perform well with regard to one Epi-feature, but do
not perform well with respect to other ones. It is possible
that none of the forecasting algorithms dominate all the
other algorithms in every Epi-feature and error measure.
As a single Epi-feature cannot describe all attributes of

a forecasting algorithm’s output, all of them should be
considered in the ranking process to obtain a compre-
hensive comparison. We suggest aggregation of different
errormeasures in the ranking procedure. To this effect, we
show how Consensus Ranking could be used to provide
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Fig. 1 Software Framework: Software Framework contains four packages: Epi-features package, Error Measure package, Ranking schema and
Visualization module. The packages are independent and are only connected through the exchanged data

comprehensive evaluation. In addition, depending on the
purpose of the forecasting algorithm, some Epi-features
could be considered more significant than others, and
weighted more accordingly while evaluating forecasts. We
recommend a second level of Consensus Ranking to accu-
mulate the analysis for various features and provide a total
summary of forecasting methods’ capabilities.
We also propose another ranking method, named Hori-

zon Ranking, to provide a comparative evaluation of the
methods performance across time. If the Horizon Rank-
ing fluctuates a lot over the time steps, that gives lower
credit to the average Consensus Ranking as selection cri-
teria for the best method. Based on experimental results
of Horizon Ranking, it is noticed that for a single Epi-
feature, one method may show the best performance
in early stages of the prediction, whereas another algo-
rithm is the dominator in other time intervals. Find-
ing patterns in Horizon Ranking plots helps in selecting
the most appropriate method for different forecasting
periods.
Note that many of the proposed Epi-features or error

measures have been studied earlier in the literature. The
aim of our study is to perform an objective comparison
across Epi-features and error measures and ascertain their
impact on evaluating and ranking competing models. Fur-
ther, the focus is not on the performance of methods being
compared, but on the features provided by the software
framework for evaluating them. The software package is
scheduled to be released in an open source environment.

We envision it as a growing ecosystem, where end-users,
domain experts and statisticians alike, can contribute Epi-
features and error measures for performance analysis of
forecasting methods.

Methods
The goal of this paper is to demonstrate how to apply the
Epi-features and error measures on the output of a fore-
casting algorithm to evaluate its performance and com-
pare it with other methods. We implemented a stochastic
compartment SEIR algorithm [33] with six different con-
figurations to forecast influenza outbreak (described in
the Additional files 1 and 2). These six configurations
result in different forecasts which are then used for
evaluation. In the following sections, we expand upon
the different possibilities we consider for each module
(Epi-features, error measures and ranking schema) and
demonstrate their effect on evaluating and ranking the
forecasting methods.

Forecasting process
Epidemic data are in the form of a time-series such as
y (1) , . . . , y (t) , .., y (T), where y (t) denotes the number of
new infected cases observed in time t, and T is the dura-
tion of the epidemic season.Weekly time-steps are usually
preferred to average out the noise in daily case counts.
Let us denote the prediction time by k and the

prediction horizon by w. Given the early time-series up to
time k (y (1) , . . . , y (k)) as observed data, the forecasting
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algorithm predicts the time-series up to the prediction
horizon as x (k + 1) , . . . , x (k + w). The forecasts could be
short-term (small w), or long-term (w = T − k). As most
of the proposed Epi-features are only defined based on
the complete epidemic curve rather than a few predicted
data points, we generate long-term forecasts for each pre-
diction time. The remainder of the observed time-series
(y (k + 1) , . . . , y (T)) is used as a test set for compar-
ing with the predicted time-series (Fig. 2). We increment
the prediction time k, and update the predictions as we
observe newer data points. For each prediction time k,
we generate an epidemic curve for the remainder of the
season.

Epidemiologically relevant features
In this section, we list the Epi-features we will use to char-
acterize the features of an epidemic time-series. While
some of these quantities are generic and applicable to
any time-series, the others are specific to epidemiol-
ogy. Table 1 summarizes the notations needed to define
these Epi-features and Table 2 lists the brief definition of
them.

Peak value & time
Peak value is the highest value in a time-series. In the epi-
demic context, it refers to the highest number of newly
infected individuals at any given week during an epidemic
season. Closely associated with peak value is peak time,
which is the week in which the peak value is attained.
Predicting these values accurately helps the healthcare
providers with resource planning.

First-take-off (value & time):
Seasonal outbreaks, like the flu, usually remain dormant
and exhibit a sharp rise in the number of cases just as
the season commences. A similar phenomenon of sharp
increase is exhibited by emerging infectious diseases.
The early detection of “first-take-off” time, will help the
authorities alert the public and raise awareness. Mathe-
matically, it is the time at which the first derivative of
the epidemic curve exceeds a specific threshold. Since
the epidemic curve is discretized in weekly increments,
the approximate slope of the curve over �t time steps is
defined as follows:

s(x,�t) = x(t + �t) − x(t)
�t

(1)

where x is the number of new infected case-counts and
t indicates the week number. In our experiment, we set
�t = 2. The value of s(x,�t) is the slope of the curve
and shows the take-off-value while the start time of the
take-off indicates the take-off-time. The threshold used in
calculating the first-take-off depends on the type of the
disease and how aggressive and dangerous the outbreak
could be. The epidemiologists determine the threshold
value and is also based on the geographic area. In this case,
we set the threshold to 150.

Intensity duration
Intensity Duration (ID) indicates the number of weeks,
usually consecutive, where the number of new infected
case counts is greater than a specific threshold. This fea-
ture can be used by hospitals to estimate the number of

Fig. 2 Predicting Epidemic Curve. The red arrow points to the prediction time k in which prediction occurs based on k initial data points of
time-series. The red dashed line is predicted epidemic curve and the black line is observed one
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Table 1 Notation and Symbols

Symbol Definition

y(t) number of new cases of disease in the tth week observed in
surveillance data

x(t) number of new cases of disease in the tth week predicted
by forecasting methods

xstart number of new cases of disease predicted at the start of
epidemic season

xpeak predicted value of the maximum number of new cases of
the disease

et et = yt − xt : the prediction error

T duration of the epidemic season

ȳ ȳ = 1
T

∑T
t=1(yt) : the mean for y values over T weeks

σ 2 σ 2 = 1
T−1

∑T
t=1(yt − ȳ)2 : The variance of y values over T

weeks

ntot Total number of infected persons during specified period

nps The population size at the start of specified period

ntot(age) Total number of infected persons with specific age during
the specified period

nps (age) The population size with specific age at the start of
specified period

nc or ncontacts is the number of contacts of primary infected
persons

nsg or nsecond−generation is the new number of infected persons
among the contacts of primary infected individuals during
a specified period

GM{Error} GM(e) = (∏n
i=1(ei)

)(1/n) : GeometricMean of a set of Errors

M{Error} Arithmetic Mean of a set of Errors

Md{Error} Median value of a set of Errors

RMS{Error} Root Mean Square of a set of Errors

weeks for which the epidemic will stress their resources
(Fig. 3).

Speed of Epidemic
The Speed of Epidemic (SpE) indicates how fast the
infected case counts reach the peak value. This feature

includes peak value and peak time simultaneously. The
following equation shows the definition of speed of epi-
demic:

SpE = xpeak − xstart
tpeak − tstart

(2)

where xpeak and xstart are the number of new case count
diseases at peak time and the start time of the season,
respectively. In other words, speed of epidemic is the
steepness of the line that connects the start data-point of
time-series sequence to the peak data-point(Fig. 4).

Total Attack Rate (TAR):
Attack rate (TAR) is the ratio of the total number of
infected cases during a specified period, usually one sea-
son, to the size of the whole population at the start of the
period.

TAR = ntot
nps

(3)

where nt is the total number of infected people during
specified period.

Age-specific Attack Rate (Age-AR)
This is similar to the total attack rate but focuses on a
specific sub-population. Specific attack rate is not only
limited to age-specific attack rate, but the sub-population
could be restricted by any feature like age, gender, or any
special group.

AgeAR
(
age

) = ntot(age)
nps

(
age

) (4)

Secondary Attack Rate (SAR):
Secondary attack rate (SAR) means the ratio of new
infected cases of a disease, during a particular period,
among the contacts of primary cases who are infected

Table 2 Definitions of different Epidemiologically Relevant features (Epi-features)

Epi-feature name Definition

Peak value Maximum number of new infected cases in a given week in the epidemic time-series

Peak time The week when peak value is attained

Total attack rate Fraction of individuals ever infected in the whole population

Age-specific attack rate Fraction of individuals ever infected belonging to a specific age window

First-take-off-(value): Sharp increase in the number of new infected case counts over a few consecutive weeks

First-take-off-(time): The start time of sudden increase in the number of new infected case counts

Intensity duration The number of weeks (usually consecutive) where the number of new infected case counts is more
than a specific threshold

Speed of epidemic Rate at which the case counts approach the peak value

Start-time of disease season Time at which the fraction of infected individuals exceeds a specific threshold
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Fig. 3 Figure explaining Intensity Duration. Intensity Duration’s length (ID) indicates the number of weeks where the number of new infected case
counts are more than a specific threshold

first; in other words, it is a measure of the spreading of
disease in the contact network.

SAR = nsg
nc

(5)

where nc is the number of contacts of primary infected
persons and nsg is the number of infected persons among
those contacts during a specified period [34]. In order to
calculate the secondary attack rate, individual information
about households and their contact networks are needed.
Epidemiologists estimated the secondary attack rate in

household contacts of several states in the U.S. to be 18%
to 19% for acute-respiratory-illness (ARI) and 8% to 12%
for influenza-like-illness (ILI) [35].

Start-time of a disease Season
We define the “Start-time of a flu season” as the week
when the flu-percentage exceeds a specified threshold.
The flu-percentage is defined as follows:

Per (Flu) = ni (Flu)

ni (All)
(6)

Fig. 4 Figure explaining Speed of Epidemic. Speed of Epidemic (SpE) is the steepness of the line that connects the start data-point of time-series
sequence to the peak data-point. SpE indicates how fast the infected case counts reach the peak value
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where ni (Flu) is weekly influenza related illnesses in ith
week and ni (All) is the weekly number of all patients
including non-ILI ones seen by health providers for any
reason and/or all specimens tested by clinical laborato-
ries. The value of threshold that is used as the criteria is
determined by the epidemiologist and could be calculated
in different ways. We define the threshold by analyzing
the past flu seasons based on the flu baseline definition
given by the CDC [36]. The CDC defines the baseline as
the mean percentage of visits for influenza during non-
influenza weeks for the previous three seasons plus two
standard deviations [36]. The non-influenza weeks are
defined as two or more consecutive weeks in which the
number of counted ILI diagnoses for each week is less
than 2% of total seasonal ILI case counts. The definition of
start-of-season could be generalized for any disease such
as Ebola, Zika, etc.

Error measures
The second step of evaluating epidemic forecasting algo-
rithms is to measure the error for each predicted Epi-
feature. There are a variety of measures that can be used
to assess the error between the predicted time-series and
the observed one. The error measures that we consider
in this study are listed in Table 3 along with their fea-
tures. The notations used in the error measure equations
are described in Table 1. Note that all the error mea-
sures considered only handle the absolute value of the
error. They do not distinguish between under and over-
estimation of the time-series. The signed versions of some
of these absolute error measures are listed in the sup-
porting information. These signed measures include the
direction of error (i.e. the positive sign demonstrates the
underestimation while the negative one indicates overesti-
mation). Moreover, all the measures referred to in Table 3
use Arithmetic Mean to get an average value of the error.
Variants that use geometric mean, median, etc. are listed
in the Additional file 2: Table S11.
After careful consideration, we selected MAE, RMSE,

MAPE, sMAPE, MdAPE and MdsAPE as the error mea-
sures for evaluating the Epi-features. We list our reasons
and observations on the eliminated error measures in part
B of Additional file 1. Also, instead of using MAPE, we
suggest correctedMAPE (cMAPE) to solve the problem of
division by zero:

cMAPE =

⎧
⎪⎨

⎪⎩

1
T

∑T
t=1

∣
∣
∣ etyt

∣
∣
∣ , if yt �= 0

1
T

∑T
t=1

∣
∣
∣ et
yt+ε

∣
∣
∣ , otherwise

(7)

where ε is a small value. It could be equal to the lowest
non-zero value of observed data. We have also added two
error measures based on the median: Median Absolute

Percentage Error (MdAPE) and Median symmetric Abso-
lute Percentage Error (MdsAPE). However, as median
errors have low sensitivity to change in methods, we do
not recommend them for isolated use as the selection or
calibration criteria.

Rankingmethods
The third step of the evaluation process is ranking differ-
ent methods based on different Epi-features and the result
of different errormeasures. For this purpose, we have used
two kinds of ranking methods: Consensus Ranking and
Horizon Ranking.

• Consensus Ranking: Consensus Ranking (CR) for
each method is defined as the average ranking of the
method among others. This kind of Consensus
Ranking could be defined in different scenarios. For
example, the average ranking that is used in Table 5
in the Result section is Consensus Ranking of a
method based on one specific Epi-feature integrated
across different error measures.

CRm
EM =

nEM∑

i=1

∣
∣
∣
∣
Ri,m
nEM

∣
∣
∣
∣ (8)

where Ri,m is the individual ranking assigned to
methodm among other methods for predicting one
Epi-feature based on error measure i, nEM is the
number of error measures, and Consensus Ranking
CRm

EM is the overall ranking of method m based on
different error measures.
Consensus Ranking could also be defined across
different Epi-features. In this case, CR over error
measures could be considered as the individual
ranking of a method, and the average is calculated
over different Epi-features. It is important to consider
the variance of ranking and the intensity of quartiles
besides the mean value of CR. In the Results section
we demonstrate how to process and analyze these
rankings in a meaningful way.

• Horizon Ranking: While Consensus Ranking
considers the average performance of methods over
prediction times, Horizon Ranking demonstrates the
performance trend of various forecasting methods in
predicting a single Epi-feature across different
prediction times. First, for each Epi-feature, we
compute an error measure like Absolute Percentage
Error (APE) or its symmetric variant (sAPE) per
prediction time. For each prediction time, APE values
of different forecasting methods are sorted from
smallest to largest to determine the ranking of the
methods. The average value of this ranking over
different error measures determines the overall
Horizon Ranking of the methods in each time-step.
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Data
The ILI surveillance data used in this paper was obtained
from the website of the United States Centers for Dis-
ease Control and Prevention (CDC). The information of
patient visits to health care providers and hospitals for ILI
was collected through the US Outpatient Influenza-like
Illness Surveillance Network since 1997 and lagged by two
weeks(ILINet) [31, 37]; this Network covers all 50 states,
Puerto Rico, the District of Columbia and the U.S. Virgin
Islands.
The weekly data are separately provided for 10 regions

of HHS regions [32] that cover all of the US. The forecast-
ing algorithms have been applied to CDC data for each
HSS region. We applied our forecasting algorithm on the
2013-2014 flu season data where every season is less than
or equal to one year and contains one major epidemic.
Figure 5 shows the HHS Region Map that assigned US
states to the regions.

Results and analysis
Past literature in the area of forecasting provides an overall
evaluation for assessing the performance of the predic-
tive algorithm by defining a statistical distance/similarity
function to measure the closeness of the predicted epi-
demic curve to the observed epidemic curve. However,
they rarely evaluate the robustness of a method’s per-
formance across epidemic features of interest and error
measures. Although the focus of the paper is not on a spe-
cific method to be chosen, it is instructive to observe the
funtionality of the software framework in action applied
on the sample methods.

Rankings based on error measures applied to peak value
In Table 4, we calculated six error measures, MAE, RMSE,
MAPE, sMAPE, MdAPE, and MdsAPE for the peak value
predicted by six different forecasting methods. The cor-
responding ranks are provided in the Ranking Table
(Table 5). The most successful method is assigned rank 1
(R1); As can be seen, even similar measures like MAPE
and sMAPE do not behave the same for the ranking pro-
cess. The fourth algorithm wins six first places among
other methods for seven error measures and shows almost
the best performance. However, it is hard to come to a
similar conclusion for other methods. The last column in
the table is Consensus Ranking, which shows the aver-
age ranking of the method over different error measures.
Figure 6 shows the Box-Whisker diagram of method rank-
ings. Note that, Methods 2 and 5 despite having identical
Consensus Ranking, have different interquartile ranges,
which represents Method 5 as a more reliable approach.
Based on such analysis, the fourth method (M4) is the
superior for predicting the peak value. After that, the
order of performance for other methods will be: Method 6
(M6), Method 3,Method 5,Method 2 andMethod 1. Note
however, this analysis is specific to using peak value as the
Epi-feature of interest.

Consensus Ranking across all Epi-features
In order to make a comprehensive comparison, we have
calculated the error measures on the following Epi-
features: Peak value and time, Take-off-value and Take-
off-time, Intensity Duration’s length and start time, Speed
of epidemic, and start of flu season. We do not include

Fig. 5 HHS region map, based on “U.S. Department of Health & Human Services” division [32]
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Table 4 Different errors for predicting peak value for Region 1
over whole season (2013-2014)

MAE RMSE MAPE sMAPE MdAPE MdsAPE

Method 1 4992.0 9838.6 4.9 1.04 1.7 1.03

Method 2 4825.2 9770.4 4.7 0.99 1.4 0.95

Method 3 3263.0 5146.5 3.2 0.96 1.5 1.01

Method 4 2990.7 4651.3 2.9 0.899 1.1 0.85

Method 5 3523.2 5334.8 3.4 0.95 2.1 1.01

Method 6 3310.9 4948.5 3.2 0.896 1.5 0.85

demographic-specific Epi-features, such as age-specific
attack rate or secondary attack rate, since such informa-
tion is not available for our methods.
Figure 7 shows the Consensus Ranking of the meth-

ods in predicting different Epi-features for Region 1. Note
that Method 4, which is superior in predicting some Epi-
features such as Peak value and start of Flu season, is
worse than other methods in predicting other Epi-features
such as Take-off time and Intensity Duration. The tables
corresponding to the box-plots are included in Additional
file 2.
Figure 8 shows the second level of Consensus Ranking

over various Epi-features for Region 1. This figure sum-
marizes the performance of different methods based on
the average Consensus Rankings that are listed in Table 6.
It is evident that Method 1, Method 2, and Method 5 have
similar performance, while the third method performs
moderately well across Epi-features. Method 4, which per-
forms best for five out of eight Epi-features, is not among
the top three methods for predicting Take-off time and
Intensity Duration. Method 6 comes in as the second best
method when considering the Consensus Ranking.
The first level of Consensus Ranking over error mea-

sures for other HHS regions are included in Additional
files 4, 5, 6, 7, 8, 9, 10, 11 and 12, which contain sup-
porting figures S2–S10. Figures 9 and 10 represent the
second level of Consensus Rankings of the six approaches
over all Epi-features for regions 1 to 10. Often, experts

need to select one method as the best predictor for all
regions, hence we propose the third level of Consensus
Ranking to aggregate the results across different regions.
Figure 11 represents the Consensus Ranking over all 10
HHS regions, based on the average of Consensus Rankings
across all Epi-features for each region listed in Table 7. As
can be seen in Fig. 11, the performance of the first and
the second methods are behind the other approaches and
we can exclude them from the pool of selected algorithms.
However, the other four methods show very competitive
performance and are considered the same according to the
total rankings. The sequential aggregations provide a gen-
eral conclusion which eliminates the nuances of similar
methods.

Horizon Rankings for each Epi-feature
Horizon Ranking helps track the change in accuracy and
ranking of the methods over prediction time. Higher fluc-
tuations in the Horizon Ranking across the time steps,
hints at the unsuitability of Consensus Ranking as selec-
tion criteria for the best method. It is possible that the
method that performs best during early stages of pre-
diction may not perform the best at later time-points.
Figure 12 shows the evolution of Horizon Ranking of
the six methods for predicting the peak value calculated
based on APE and sAPE. As shown in Fig. 7, Methods 4
and 6 have the best average Consensus Ranking in pre-
dicting peak value and is consistent with observations on
Horizon Ranking. In Fig. 12 the ranking of Methods 4
and 6 demonstrates a little fluctuation at the first time-
steps. However, as prediction time moves forward these
methods provide more accurate forecasts causing them to
rank higher. The most interesting case for Horizon Rank-
ings concerns the prediction of peak time. The Consensus
Ranking in Fig. 7 selects Method 5 as superior in predict-
ing peak time and Methods 6 and 4 as the second and
third best approaches. However, by observing the trends
of ranks over prediction times (Fig. 13), Methods 4 and
6 are dominant for the first eight weeks of prediction,
then Method 1 wins the first place for seven weeks. In

Table 5 Ranking of methods for predicting peak value based on different error measures for Region 1 over whole season (2013-2014).
The color spectrum demonstrates different ranking levels. Dark green represents the best rank, whereas dark orange represents the
worst one

MAE RMSE MAPE sMAPE MdAPE MdsAPE Consensus Median

Ranking

Method 1 6 6 6 6 5 6 5.83 6

Method 2 5 5 5 5 2 3 4.17 5

Method 3 2 3 2 4 3 4 3.00 3

Method 4 1 1 1 2 1 1 1.17 1

Method 5 4 4 4 3 6 4 4.17 4

Method 6 3 2 3 1 3 1 2.17 2.5
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Fig. 6 Box-Whisker Plot shows the Consensus Ranking of forecasting methods in predicting Peak value for Region 1, aggregated on different error
measures

the next eight weeks, Methods 1, 3, and 5 are superiors
simultaneously.
Figures 14, 15 and 16 show Horizon Ranking graphs

for leveraging forecasting methods in predicting other
Epi-features. These Horizon Rankings are almost con-
sistent with their corresponding Consensus Rankings
which confirms the best methods from the Consensus
Ranking perspective could be used for any prediction
time.

Visual comparison of forecasting methods
In order to visualize the output of forecastingmethods, we
generate the one-step-ahead epidemic curve. Given the
early time-series up to time k (y (1) , . . . , y (k)) as observed
data, the forecasting algorithm predicts the next data
point of time-series x (k + 1) and this process is repeated
for all values of prediction time k where tb ≤ k ≤ te.
By putting together the short-term predictions, we con-
struct a time-series from tb to te as a one-step-ahead
predicted epidemic curve. Figure 17 depicts the one-step-
ahead predicted epidemic-curves for HHS region 1 that
are generated by the six forecasting methods (refer to
Additional files 13, 14, 15, 16, 17, 18, 19, 20, and 21 for
other Regions). We used tb = 2 and te = T − 1 as
the beginning and end for the prediction time. As can be
seen in Fig. 17, the first and second methods show big-
ger deviations from the observed curve, especially in the
first half of the season. As these six methods are different
configurations of one algorithm, their outputs are com-
petitive and sometimes similar to each other. Methods 3

and 5, and Methods 4 and 6 show some similarity in their
one-step-ahead epidemic curve that is consistent with
Horizon Ranking charts for various Epi-features. How-
ever, Horizon Ranking graphs contain more information
regarding long-term predictions; therefore, the ranking
methods, especially Horizon Ranking, could help experts
to distinguish better methods when the outputs of fore-
casting methods are competitive and judgment based on
the visual graph is not straightforward.

Epidemic forecast evaluation framework
We have proposed a set of Epi-features and error mea-
sures and have shown how to evaluate different forecast-
ing methods. These are incorporated into the Software
Framework as described (Fig. 1). The software framework,
named Epi-Evaluator, receives the observed and predicted
epidemic curves as inputs and can generate various rank-
ings based on the choice of Epi-features and error mea-
sures. The system is designed as a collection of scripts
that are loosely coupled through the data they exchange.
This is motivated by two possible scenarios: (a) individuals
must be able to use each module in isolation and (b) users
must not be restricted to the possibilities described in this
paper, and be able to contribute features and measures of
their interest.
We also include a standardized visualization module

capable of producing a variety of plots and charts sum-
marizing the intermediate outputs of each module. This
provides a plug-and-play advantage for end users. We
envision the end-users ranging from (a) epidemiologists
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Fig. 7 Consensus Ranking of forecasting methods over all error measures for predicting different Epi-features for Region 1. Method 4 is superior in
predicting five Epi-features out of eight, but is far behind other methods in predicting three other Epi-features

who wish to quickly extract/plot key Epi-features from
a given surveillance curve, (b) computational model-
ers who wish to quantify their predictions and possibly
choose between different modeling approaches, (c) fore-
casting challenge organizers who wish to compare and
rank the competing models, and (d) policymakers who
wish to decide on models based on their Epi-feature of
interest.

Evaluating stochastic forecasts
The aforementioned measures deal primarily with deter-
ministic forecasts. A number of stochastic forecasting
algorithms with some levels of uncertainty have been
studied in the literature. Moreover, the observed data may

be stochastic because of possible errors in measurements
and sources of information. We extend our measures and
provide new methods to handle stochastic forecasts and
observations. Stochastic forecasts could be in one of the
following formats:

• Multiple replicates of the time-series
• A time-series of mean and variance of the predicted

values

Stochastic forecasts as multiple replicates
Most of the stochastic algorithms generate multiple repli-
cates of series and/or state vectors to generate the pos-
terior density function by aggregating discrete values
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Fig. 8 The box-whisker diagrams shows the median, mean and the variance of Consensus Ranking of methods over all Epi-features for Region 1

together. A state vector contains the parameters that are
used by the epidemic model to generate the epidemic
curve (time-series of new infected cases). Therefore, the
best state vectors (models) are those that generate an
epidemic-curve closer to the observed one (i.e., models
with higher likelihood). When the forecasting method’s
output is a collection of replicates of state vectors and
time-series, we have the option to calculate Epi-features
on each series, for each prediction time, and assess the
error measures on each series. The error measures can
be accumulated across the series through getting Arith-
metic Mean, Median, Geometric Mean, etc. to provide a
unique comparable value per each method. Table 8 pro-
vides advanced error measures to aggregating the error
values over the series.
Armstrong [38] performed an evaluation over some of

these measures and suggested the best ones in different
conditions. In calibration problems, a sensitive error mea-
sure is needed to demonstrate the change in parameters
in the error measure values. The EMs with good sen-
sitivity are RMSE, MAPE, and GMRAE. He suggested
GMRAE because of poor reliability of RMSE and claimed
that MAPE is biased towards the low forecasts [38]. As

we mention in the “Discussion” section, we believe that
MAPE is not biased in favor of the low forecasts and
could also be a good metric for calibration (refer to“Dis-
cussion” section). Also, GMRAE could drop to zero when
the error contains at least one zero, thus lowering its
sensitivity to zero too.
For selecting among forecasting methods, Armstrong

suggested MdRAE when the output has a small set of
series and MdAPE for a moderate number of series. He
believes that reliability, protection against outliers, con-
struct validity, and the relationship to decision-making are
more important criteria than sensitivity. MdRAE is reli-
able and has better protection against outliers. MdAPE
has a closer relationship to decision making and is pro-
tected against outliers [38].
For the stochastic algorithms that generate multiple

time-series with uneven weights, it is important to
consider the weight of the series in calculating the arith-
metic means. As an illustration, instead of calculating
MAPE, sMAPE, RMSE, and MdAPE across the time-
series, we suggest measuring weighted-MAPE, weighted-
sMAPE, weighted-RMSE, and weighted-MdAPE
respectively.

Table 6 Average Consensus Ranking over different error measures for all Epi-features- Region 1

Peak value Peak time Take-off-value Take-off-time ID length ID start time Start of flu season Speed of epidemic Average Median

M1 5.83 3.83 6 1 3.33 5.67 6 5.83 4.69 5.67

M2 4.17 4.5 5 2 1 4.33 5.0 4.5 3.81 4.33

M3 3 2.83 3.83 3 3.33 3.17 3 3.17 3.17 3.17

M4 1.17 3.33 1.17 5 4.00 1.0 1 1.17 2.23 1.17

M5 4.17 1.17 3 4 4.33 4.67 3 4.17 3.56 4

M6 2.17 2.33 1.50 6 4.67 2.00 1.00 1.67 2.67 2.17
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Fig. 9 Consensus Ranking over all Epi-Features - Regions 1-6. The box-whisker diagrams show the median, mean and the variance of Consensus
Ranking of methods in predicting different Epi-features

Stochastic forecasts with uncertainty estimates
Sometimes the output of a stochastic forecasting method
is in the form of mean value and variance/uncertainty
interval for the predicted value.
In statistics theory, the summation of Euclidean dis-

tance between the data points and a fixed unknown point
in n-dimensional space is minimized in the mean point.
Therefore, the mean value is a good representative of
other data points. As a result, we can simply calculate the
epi-measure on the predicted mean value of an epidemic
curve and compare them through error metrics. However,
this comparison is not comprehensive enough because the
deviation from the average value is not included in the dis-
cussion. To handle this kind of evaluation, we divide the
problem into two sub-problems:

• A) Deterministic observation and stochastic forecasts
with uncertainty estimates

• B) Stochastic observation and stochastic forecasts
with uncertainty estimates

A) Deterministic observation and stochastic forecasts with
uncertainty estimates
In this case, we assume that each forecasting method’s
output is a time-series of uncertain estimates of predicted
case counts and is reported by the mean value xt , variance
σ 2
t for data point at tth week, and the number of samples

Nx. For simplicity, we eliminate the subscript t. Table 9
lists the required notations used in the following sections.
Sample size refers to the number of predicted samples
from which the mean and variance are obtained. In the
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Fig. 10 Consensus Ranking over all Epi-Features- Regions 7-10. The box-whisker diagrams show the median, mean and the variance of Consensus
Ranking of methods in predicting different Epi-features

Fig. 11 Consensus Ranking over all 10 HHS-Regions. The box-whisker diagrams show the median, mean and the variance of Consensus Ranking of
methods in predicting the Epi-features for all HHS regions
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Table 7 Average Consensus Ranking of methods over different Epi-features- Regions 1 - 10

Region1 Region2 Region3 Region4 Region5 Region6 Region7 Region8 Region9 Region10 Ave

M1 4.69 3.31 4.6 3.94 3.65 2.21 4.3 3.94 3.46 4.29 3.84

M2 3.81 2.77 4.23 4.0 3.71 1.29 3.73 3.69 3.79 3.96 3.50

M3 3.17 3.46 1.96 2.68 2.67 2.21 3.03 2.73 2.17 2.33 2.64

M4 2.23 3.19 2.04 2.7 3.08 1.29 2.93 2.60 2.44 3.71 2.62

M5 3.56 1.79 1.79 2.41 2.77 2.21 2.67 3.06 2.88 2.67 2.58

M6 2.67 3.23 2.13 2.48 2.83 1.29 2.60 3.27 3.13 3.58 2.72

best situation, the forecast algorithm could provide with
the probability density function (pdf) of each predicted
data point denoted by f (x), unless we assume the pdf is
Normal distribution fx ∼ N(μx, σx) for the large enough
sample size, or t-distribution fx ∼ t(μx, v) if the sample
size is low. T-distribution has heavier tails, which means
it is more subject to producing values far from the mean.
Nx ≥ 30 is assumed as a large sample size. Nx is used to
calculate the standard deviation of the random variable X,
from the standard deviation of its samples: σx = σ/

√
Nx.

When the sample size is low, the degree of freedom of
t-distribution is calculated by Nx: v = Nx − 1.
In order to evaluate the performance of stochasticmeth-

ods, we suggest performing the Bootstrap sampling from

the distribution f (x) and generate the sample set Sx = {si}
for each data point of time-series where |Sx| >> Nx.
Note that we do not have access to the instances of the
first sample size, so we generate a large enough sample
set from its pdf function f (x). Then, the six selected error
measures, MAE, RMSE, MAPE, sMAPE, MdAPE, and
MdsAPE, are calculated across the sample set Sx for each
week. Additional file 2: Table S8 contains the extended
formulation of the errormeasures used for stochastic fore-
casts. Using the equations in Additional file 2: Table S8
we can estimate different expected/median errors for each
week for a stochastic forecasting method. The weekly
errors could be aggregated by deriving Mean or Median
across the time to calculate the total error measures for

Fig. 12 Horizon Ranking of six methods for predicting the peak value calculated based on APE, and sAPE, on Region 1
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Fig. 13 Horizon Ranking of six methods for predicting the peak time calculated based on APE, and sAPE, on Region 1. Methods 4 and 6 are the
dominant for the first eight weeks of prediction, and then method 1 wins the first place for seven weeks. In the next eight weeks, methods 1, 3, and
5 are superiors simultaneously

each method. The aggregated error measures can be used
to calculate the Consensus Ranking for the existing fore-
casting approaches. Moreover, having the errors for each
week, we can depict the Horizon Ranking and evaluate the
trend of rankings across the time similar to the graphs for
deterministic approaches.

B) Stochastic observation and stochastic forecasts with
uncertainty estimates
There are many sources of errors in measurements and
data collections which result in uncertainty for the obser-
vation data. This makes evaluation more challenging.
We suggest two categories of solutions to deal with this
problem:

• a) Calculating the distance between probability
density functions

• b) Calculating the proposed error measures between
two probability density functions

B-a) Calculating the distance between probability density
functions
Assuming that both predicted and observed data are
stochastic, they are represented as the time-series of

probability density functions (pdfs). There are many dis-
tance functions that can calculate the distance between
two pdfs [21]. Three most common distance functions for
this application are listed in Table 10.
Bhattacharyya distance function [21] and Hellinger [39]

both belong to the squared-chord family, and their contin-
uous forms are available for comparing continuous proba-
bility density functions. In special cases, e.g. when the two
pdfs follow the Gaussian distribution, these two distance
functions can be calculated by the mean and variances of
pdfs as follows [40, 41]:

DB(P,Q) = 1
4
ln

(
1
4

(
σ 2
p

σ 2
q

+ σ 2
q

σ 2
p

+ 2
))

+ 1
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)
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σ 2
1 + σ 2
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.exp

(
−(μ1 − μ2)2

4(σ 2
1 + σ 2

2 )

))

(10)

However, calculating the Integral may not be straight-
forward for an arbitrary pdf. Also, Jaccard distance func-
tion is in the discrete form. To solve this problem, we
suggest Bootstrap sampling from both predicted and
observed pdfs and generating the sample set S = Sx ∪ Sy
where Sx = {

sxi |sxi ∼ f (x)
}
, Sy =

{
syj |syj ∼ g(y)

}
, and
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Fig. 14 Horizon Ranking of six methods for predicting the Intensity Duration length and start time calculated based on APE, and sAPE, on Region 1

|Sx| = |Sy| >> Nx. Then we calculate the summation for
the distance function over all the items that belong to the
sample set S. As an example for Jaccard distance function:

DJac=1 −
∑|S|

k=1 f (sk) × g(sk)
∑|S|

k=1 f (sk)2 + ∑|S|
k=1 g(sk)2 − ∑|S|

k=1 f (sk) × g(sk)
(11)

Jaccard distance function belongs to the inner product
class and incorporates both similarity and dissimilarity
of two pdfs. Using one of the aforementioned distance
functions between the stochastic forecasts and stochastic
observation, we can demonstrate Horizon Ranking across
time and also aggregate the distance values by getting
the mean value over the weeks, and then, calculate the
Consensus Ranking. Although these distance functions

between the two pdfs seem to be a reasonable metric for
comparing the forecast outputs, it ignores some informa-
tion about the magnitude of error and its ratio to the
real value. In other words, any pair of distributions like
(P1,Q1) and (P2,Q2) could have the same distance value if
: |μP1 − μQ1 | = |μP2 − μQ2 | and σP1 = σP2 and σQ1 =
σQ2 . Therefore, the distance functions lose the informa-
tion about the relative magnitude of error to the observed
value.
In the ranking process of different forecasting

approaches, as the observed data is assumed to be fixed,
this issue will not be a concern. The other problem
of using distance functions between pdfs arises when
some forecasting methods are stochastic and others are
deterministic. As the proposed error measures are not
compatible with distance functions, we cannot compare
them together.
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Fig. 15 Horizon Ranking of six methods for predicting the Take-off value and time calculated based on APE, and sAPE, on Region 1

B-b) Calculating the error measures between two
probability density functions
In order to compare stochastic and deterministic fore-
casting approaches together, we suggest estimating the
same error measures used for deterministic methods.
We perform Bootstrap sampling from both predicted
and observed pdfs for each data point of time-series
and generate two separate sample sets Sx and Sy where
Sx = {

sxi |sxi ∼ f (x)
}
, Sy =

{
syj |syj ∼ g(y)

}
and |Sx| =

|Sy| >> Nx. The six selected error measures, MAE,
RMSE, MAPE, sMAPE, MdAPE, and MdsAPE, could
be estimated through the equations listed in Additional
file 2: Table S9. These measures incorporate the vari-
ance of pdfs through the sampling and represent the
difference between the predicted and observed densi-
ties by weighted expected value of the error across the
samples.

Discussion
As shown in previous sections, none of the forecasting
algorithms may outperform the others in predicting all
Epi-features. For a given Epi-feature, we recommend using
the Consensus Ranking across different error measures.
Further, even for a single Epi-feature, the rankings of
methods seem to vary as the prediction time varies.

Horizon Ranking vs Consensus Ranking
How do we decide on the best method when Horizon
Ranking and Consensus Ranking lead to different con-
clusions? The significant difference between Horizon and
Consensus Rankings comes from the fact that Consensus
Ranking calculates the average (or median) of the errors
for a given time step and then sorts them to determine the
ranking. This aggregation of errors is not always a disad-
vantage, because sometimes a slight difference in errors
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Fig. 16 Horizon Ranking graphs for leveraging forecasting methods in predicting Speed of Epidemic and Start of flu season, on Region 1

could change the Horizon Ranking level while the Con-
sensus Ranking accumulates the errors for a whole time-
series which gives an overall perspective of each method’s
performance. If the purpose of evaluation is to select a
method as the best predictor for all weeks, Consensus
Rankings can be used to guide themethod selection. How-
ever, if there is a possibility for using different prediction
methods at different periods, we suggest identifying a few
time intervals in which the Horizon Rankings of the best
methods are consistent. Then, in each time interval, the
best method based on Horizon Ranking could be selected,
or the Consensus Ranking could be calculated for each
period by calculating the average errors (error measures)
over time steps. The superior method for each time inter-
val is the one with first Consensus Ranking in that period.
One of the advantages of Horizon Ranking is to detect
and reduce the effect of outliers across time horizons,
whereas Consensus Ranking aggregates the errors across
time steps that results in a noticeable change in total value
of error measures by outliers.

MAPE vs sMAPE
MAPE and sMAPE have been the two important error
measures in assessing forecast errors since 1993. MAPE
was used as the primary measure in M2-Competition,
and it was replaced by sMAPE in M3-Competition to
overcome the disadvantages of MAPE. One of the draw-
backs is that MAPE could get a large or undefined value
when the observed data point gets close to zero. This is
alleviated to some extent by using the average of observed
and predicted value in the denominator for sMAPE. The
other issue that has been claimed for MAPE in some
literature is biasing in favor of small forecasts. Therefore,
the critics believe that MAPE leads to a higher penalty
for large overestimation rather than any underestimation.
sMAPE, as the symmetric version of MAPE, normalized
the error value with the mean of predicted and observed
data which limits the range of sMAPE error between
0 and 2 for both overestimating and underestimating
of the prediction. However, we believe that although
the range of sMAPE function is symmetric, it does not
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Fig. 17 Visual comparison of 1-step-ahead predicted curves generated by six methods vs. the observed curve, Region 1: The first and second
methods show bigger deviations from observed curve, especially in the first half of the season. As the six methods are different configurations of
one algorithm, their outputs are so competitive and sometimes similar to each other; methods 3 and 5, and methods 4 and 6 show some similarity
in their one-step-ahead epidemic curve that is consistent with Horizon Ranking charts for various Epi-features
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Table 8 List of advanced error measures to aggregating the error values across multiple series

Measure name Formula Description

Absolute Percentage Error (APEt,s) APEt,s = | yt−xt,s
yt

| where t is time horizon and s is the series
index.

Mean Absolute Percentage Error
(MAPEt )

MAPE = 1
S

∑S
s=1 APEt,s where t is time horizon, s is the series index S

is the number of series for the method.

Median Absolute Percentage Error
(MdAPEt )

Median Observation of APEs Obtaining median of APE errors over series.

Relative Absolute Error (RAEt,s) RAEt,s = |yt−xt,s|
|yt−xRWt,s | Measures the ratio of absolute error to Ran-

dom walk error in time horizon t.

Geometric Mean Relative Absolute
Error (GMRAEt )

GMRAEt =[
∏S

s=1 |RAEt,s|]1/S Measures the Geometric average ratio of
absolute error to Random walk error

Median Relative Absolute Error
(MdRAEt )

Median Observation of RAEs Measures the median observation of RAEs for
time horizon t

Cumulative Relative Error (CumRAEs) CumRAEs =
∑T

t=1 |yt,s−xt,s|
∑T

t=1 |yt,s−xRWt,s |
Ratio of accumulation of errors to cumulative
error of Random walk Method

Geometric Mean Cumulative Rela-
tive Error (GMCumRAE )

GMCumRAE =[
∏S

s=1 |CumRAEs|]1/S Geometric Mean of Cumulative Relative Error
across all series.

Median Cumulative Relative Error
(MdCumRAE )

MdCumRAE = Median(|CumRAEs|) Median of Cumulative Relative Error across all
series.

Root Mean Squared Error (RMSEt ) RMSEt =
√ ∑S

s=1(yt−xt,s)2

S Square root of average squared error across
series in time horizon t

Percent Better (PBt ) PBt = 1
S

∑S
s=1[ I{es,t , eWRt}] Demonstrates average number of times

that method overcomes the Random Walk
method in time horizon t.

|es,t| ≤ |eWRt| ↔ I{es,t , eWRt} = 1

Table 9 Notation Table II

Symbol Definition

X Random variable X (or Xt ) that is the predicted
estimate of a data point at one week( tth week)

f (x)|fx Probability density function (pdf) of random
variable X

μx Mean value for the random variable X

σx = σ/
√
Nx Standard deviation for the random variable X

x Mean value of the samples belonging to ran-
dom variable X

σ Standard deviation of the samples belonging
to random variable X

v v = Nx −1 Degree of freedom of t-distribution

ȳ ȳ = 1
n

∑n
t=1(yt) : the mean for y values over n

weeks

Sx = {si} where si is the sample from distribution fx

Nsx = |Sx| Number of sample set Sx

Y Random variable Y (or Yt ) that is the estimate
of observed value at one week( tth week)

g(y)|gy Probability density function (pdf) of random
variable Y

Sy = {
sj
}

where sj is the sample from distribution gx

provide a uniform scoring of the errors. We believe
sMAPE is significantly biased toward large forecasts.
Figure 18 and Additional file 2: Table S8 demonstrate
the corresponding domains that generate equal MAPE or
sMAPE errors in term ofmagnitude. The figures in the left
column belong to MAPE and the right ones are sMAPE’s.
In Fig. 18, the black line represents the observed epi-
demic curve (y), and the horizontal axis is the weekly time
steps (t). The yellow borders show the predicted curves as
overestimated or underestimated predictions which both
result inMAPE= 0.5 or sMAPE = 0.5. The green spectrum
shows the predicted curves with low values of MAPE or
sMAPE. Equal colors in these figures correspond to equal
values for the discussed error measure. The red borders in
the left graph belong to predicted curves x(t) = 2 × y(t)
and x(t) = 0 × y(t) with MAPE = 1 and the red bor-
ders in the right chart correspond to x(t) = 3 × y(t) and
x(t) = (1/3) × y(t) which generate sMAPE = 1. As can
be seen, MAPE grows faster than sMAPE which means
MAPE reaches 1 with smaller values in the domain. More-
over, MAPE demonstrates symmetrical growth around
the observed curve that results in fair scoring toward over
and underestimation.
The black borders in the lower charts of Fig. 18 corre-

spond to the predicted epidemic curve which generates
MAPE=2 and sMAPE =2 in the left and right charts



Tabataba et al. BMC Infectious Diseases  (2017) 17:345 Page 23 of 27

Table 10 Distance functions to measure dissimilarity between probability density functions of stochastic observation and stochastic
predicted outputs

Distance function Formula (continuous form) Formula (discrete form)

Bhattacharyya DB(P,Q) = −Ln(BC(P,Q)) DB(P,Q) = −Ln(BC(P,Q))

, BC(P,Q) = ∫ √
P(x)Q(x)dx , BC(P,Q) = ∑ √

P(x)Q(x)

Hellinger DH =
√
2
∫

(P(x) − Q(x))2dx DH(P,Q) =
√

2
∑d

k=1 (P(xk) − Q(xk))2

= 2
√
1 − ∫ √

P(x)Q(x)dx = 2
√

1 − ∑d
k=1

√
P(xk)Q(xk)

Jaccard - DJac = 1 − SJac

SJac =
∑d

k=1 P(xk)×Q(xk)
∑d

k=1 P(xk)
2+∑d

k=1 Q(xk)2−
∑d

k=1 P(xk).Q(xk)

sequentially. The color spectrum of sMAPE in the right
chart represents the non-symmetric feature of this error
measure which is in favor of large predictions. As we
couldn’t show the infinity domain for sMAPE, we limited
it to the predicted curve x(t) = 20× y(t). Figure 19 shows
the blue spectrum of MAPE that corresponds to large
predictions where x(t) >> 3y(t) and MAPE approaches

infinity. This error measure provides more sensible scor-
ing for both calibration and selection problems.

Relative evaluation vs absolute one
In this paper, we covered how to evaluate the perfor-
mance of forecasting algorithms relative to each other and
rank them based on various error measures. The ranking

A) B)

C) D)

Fig. 18 Comparison of MAPE and sMAPE domains and ranges spectrum: Red borders in the left graph (a) belong to predicted curves
x(t) = 2 × y(t) and x(t) = 0 × y(t) with MAPE = 1 and the red borders in the right chart (b) corresponds to x(t) = 3 × y(t) and x(t) = (1/3) × y(t)
which generate sMAPE = 1. The black borders in graphs c & d are corresponding to predicted epidemic curves which generates MAPE=2 and
sMAPE =2 in the left and right charts sequentially
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Fig. 19 Colored Spectrum of MAPE range: MAPE does not have any limitation from the upper side that results in eliminating the large
overestimated forecasting

methods, like the Horizon Ranking, can represent the dif-
ference in performances even when the algorithms are
so competitive. However, the ranking values conceal the
information about error gaps and are senseless when the
absolute evaluation of a single method is needed.
The absolute measurement is a challenge because most

of the available error measures are not scaled or normal-
ized and do not provide a meaningful range. If one needs
to evaluate a single forecasting method, we suggest utiliz-
ing ofMAPEmeasure as it is scaled based on the observed
value and its magnitude defines how large on average the
error is, compared with the observed value.
For multiple algorithms, we suggest calculating MAPE

measure on the one-step-ahead epidemic curve of each
algorithm and clustering them based on its MAPE value.
As discussed in the previous section and Additional file 2:
Table S10, four meaningful intervals for MAPE value
could be defined as the criteria to cluster the forecasting
approaches into the four corresponding groups: Methods
with 0 ≤ MAPE ≤ 1/2, Methods with 1/2 ≤ MAPE ≤
1, Methods with 1 ≤ MAPE ≤ 2, and Methods with
2 ≤ MAPE. This kind of clustering can provide borders
between the methods which are completely different in
performance. Then, the algorithms of each group can be
passed through the three steps of evaluation framework,
and be ranked based on various Epi-features and error
measures. As an illustration, Table 11 provides the average

value of different error measures over all 10 HHS regions
for the six aforementioned methods and an autoregressive
forecasting method named ARIMA [42]. As can be seen,
the MAPE value of the six methods are under 0.5, which
clusters all of them in the same category, while the MAPE
for the ARIMAmethod is 0.77 which assigns it to the sec-
ond group. It means the performance of ARIMA is com-
pletely behind all other methods. Figure 20 depicts the
one-step-ahead predicted curve of the ARIMA method
compared to the observed data that shows the ARIMA
output has large deviations from the real observed curve
and confirms the correctness of the clustering approach.

Table 11 Different error measures calculated for one-step-ahead
epidemic curve over whole season (2013-2014), averaged across
all HHS regions: Comparing Methods M1 to M6 and ARIMA
approach

MAE RMSE MAPE sMAPE MdAPE MdsAPE

Method 1 316.18 378.63 0.39 0.33 0.34 0.29

Method 2 293.76 357.34 0.35 0.31 0.30 0.26

Method 3 224.53 293.52 0.25 0.22 0.22 0.20

Method 4 204.5 274.41 0.21 0.21 0.18 0.18

Method 5 224.57 293.90 0.25 0.22 0.22 0.20

Method 6 204.25 274.97 0.21 0.20 0.18 0.18

ARIMA 1015.60 1187.62 0.77 0.74 0.78 0.75
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Fig. 20 1-step-ahead predicted curve generated by ARIMA vs the observed curve: The large gap between predicted and observed curves shows
that ARIMA performance is behind the other six approaches and confirms that clustering approach based on MAPE value could be a good criteria
for discriminating methods with totally different performances

Prediction error vs calibration error
In this paper, prediction error is considered to calculate
the predicted error measures, i.e. only the errors after
prediction time is taken into account and the deviation
between the model curve and data before prediction time
is ignored. However, we suggest the evaluator framework
in two different modes: forecasting mode vs calibration
mode. As mentioned in the forecasting mode, only pre-
diction error is measured. Moreover, if the observed Epi-
feature has already occurred in the ith week, the forecasts
corresponding to the prediction times after the ith week
are not considered in accumulation of the errors, because
they are not interested anymore. However, in calibration
mode, the aim is to find the error between model curves
and observed data, regardless of the time of observed Epi-
feature. Therefore the error measures on one epi-feature
are accumulated for all weeks. Also, in calculating error
measures on the epidemic curve, the fitting errors before
the prediction time are cumulated with prediction errors,
to measure the calibration error.

Conclusion
Evaluating epidemic forecasts arising from varied models
is inherently challenging due to the wide variety of epi-
demic features and error measures to choose from. We

proposed different Epi-features for quantifying the predic-
tion accuracy of forecasting methods and demonstrated
how suitable error measures could be applied to those
Epi-features to evaluate the accuracy and error of pre-
diction. We have applied the proposed Epi-features and
error measures on the output of six forecasting methods
to assess their performance. As the experimental results
showed, different error measures provide various mea-
surements of the error for a single Epi-feature. Therefore,
we provided the Consensus Ranking method to aggre-
gate the rankings across error measures and summarize
the performance of forecasting algorithms in predicting
a single Epi-feature. Based on the first round of rank-
ings, none of the forecasting algorithms could outperform
the others in predicting all Epi-features. Therefore, we
recommended the second set of rankings to accumulate
the analysis for various Epi-features and provide a total
summary of the forecasting method capabilities. We also
proposed Horizon Ranking to trace the performance of
algorithms across the time steps to provide better per-
spective over time. We finally hint at how these methods
can be adapted for the stochastic setting. Choosing the
best forecasting method enables policy planners to make
more reliable recommendations. Understanding the prac-
tical relevance of various Epi-features of interest, and the
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properties offered by different error measures, will help
guide the method selection.We hope that our work allows
for a more informed conversation and decision process
while using and evaluating epidemic forecasts.
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