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ABSTRACT
Identifying residue coupling relationships within a protein
family can provide important insights into the family’s evo-
lutionary record, and has significant applications in ana-
lyzing and optimizing sequence-structure-function relation-
ships. We present the first algorithm to infer an undi-
rected graphical model representing residue coupling in pro-
tein families. Such a model, which we call a residue coupling
network, serves as a compact description of the joint amino
acid distribution, focused on the independences among res-
idues. This stands in contrast to current methods, which
manipulate dense representations of co-variation and are fo-
cused on assessing dependence, which can conflate direct
and indirect relationships. Our probabilistic model provides
a sound basis for predictive (will this newly designed protein
be folded and functional?), diagnostic (why is this protein
not stable or functional?), and abductive reasoning (what if
I attempt to graft features of one protein family onto an-
other?). Further, our algorithm can readily incorporate,
as priors, hypotheses regarding possible underlying mech-
anistic/energetic explanations for coupling. The resulting
approach constitutes a powerful and discriminatory mech-
anism to identify residue coupling from protein sequences
and structures. Analysis results on the G-protein coupled
receptor (GPCR) and PDZ domain families demonstrate the
ability of our approach to effectively uncover and exploit
models of residue coupling.
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1. INTRODUCTION
When studying a family of proteins that have evolved to
perform a particular function, a major goal of contemporary
biological research is to uncover constraints that appear to
be acting on the family, with an eye toward understanding
the molecular mechanisms imposing the constraints. For

example, amino acid conservation has long been recognized
as an important indicator of structural or functional sig-
nificance [27]. In the 1990s, researchers began generaliz-
ing single-position conservation to correlated co-evolution
of amino acid pairs, thus revealing cooperativity and cou-
pling constraints (e.g., one early study focused on the HIV-1
envelope protein, with the aim of guiding peptide vaccine
design [16]). Such works boosted the discovery of coupled
residues, which could previously have been identified only by
painstaking in vitro approaches such as thermodynamic dou-
ble mutant analysis [11]. The next step was to summarize
information about correlated positions into pathways [15],
motifs [1, 20], and structural templates [20] in protein fami-
lies. Today, projects undertake ambitious large-scale recom-
bination [28] or site-directed and combinatorial mutagenesis
studies [23] to identify entire building blocks of proteins im-
portant to preserve function.

Knowing which pairs (or sets) of residues are coupled in
a protein family aids our understanding of many impor-
tant processes, e.g., conformational change and protein fold-
ing [21, 24], signaling [26], protein-protein interaction, and
even protein complex assembly [13]. Since the basis for cou-
pling can be structural and/or functional, information about
coupled residues can be used predictively for assessing pro-
tein structure [25], fold classification [9], or even to suggest
novel sequences for protein engineering [22].

While there are many computational techniques for study-
ing residue coupling [6], all methods begin by defining a
metric to quantify the degree to which two residues co-vary.
Global methods then determine pairs of coupled residues by
observing correlated mutations in the protein family multi-
ple sequence alignment (MSA) as a whole (e.g., [16]). The
state-of-the-art in understanding residue coupling is, how-
ever, a local method—so-called ‘perturbation-based’ analy-
sis [4] introduced by Lockless and Ranganathan [18]. The
basic idea is to subset the MSA according to some condi-
tion (e.g., containing a moderately conserved residue type
at a particular position) and observe the effect of the per-
turbation on residue distributions at other positions. If the
subsetting operation significantly alters the proportions of
amino acids at some other position, it is inferred to be cou-
pled to the perturbed position, according to the evolutionary
record. Even though this approach is purely sequence-based,
it has been shown to uncover structural networks of residues
underlying important allosteric communication pathways in
proteins [26].



A key missing ingredient to date is a formal probabilistic
model capturing the constraints inferred from residue cou-
pling studies. Such a model would help assess the feasibility
and significance of performing inference from coupling data,
including determining whether coupling is a persistent fea-
ture of a protein family or merely a hallucination. The pro-
cess of inferring such a model would help make explicit the
essential constraints underlying the family (e.g., by identi-
fying a small set of correlations that explain the data nearly
as well as the complete set). A model would enable the
careful combination of multiple information sources (e.g.,
by integrating priors from structural and functional studies
with correlations derived from sequence analysis). Finally,
the model would serve as a compact description of the joint
amino acid distribution, and could be used for predictive
(will this newly designed protein be folded and functional?),
diagnostic (why is this protein not stable or functional?),
and abductive reasoning (what if I attempt to graft features
of one protein family onto another?).

This paper addresses these needs by formulating and eluci-
dating the natural correspondence between residue coupling
(qualifying interdependence among residues) and a proba-
bilistic graphical model (summarizing interrelationships be-
tween random variables).

1. We present the first algorithm to infer an undirected
graphical model, which we call a residue coupling net-
work, representing coupling relationships in protein
families. We bring in ideas from the extensive liter-
ature on probabilistic models [3] to derive networks
that are meaningful as indicators of joint variation of
sequence positions and that also explain structural fea-
tures of protein families.

2. Unlike current correlated mutation algorithms that are
focused on assessing dependence (which can conflate
direct and indirect relationships) we focus on assessing
independence (which enables modular reasoning about
variation). We thus derive more compact descriptions
of underlying networks highlighting the most impor-
tant relationships.

3. We demonstrate how hypotheses regarding possible
underlying mechanistic/energetic explanations for cou-
pling can be used as priors for computational model
discovery. For instance, if we have reason to believe
that coupling in a given family would be only between
nearby residues, a representative contact graph can
be utilized as a valuable prior, benefiting algorithmic
complexity and ensuring biological interpretability of
the results.

2. BACKGROUND: CORRELATED MUTA-
TIONS AND RESIDUE COUPLING

We begin by providing some background about correlated
mutations and how they are used as indicators of residue
coupling. Typically, we are given a multiple sequence align-
ment (MSA) whose rows are the members of the family and
the columns are the aligned residue positions. Thus the
MSA can be thought of as a matrix A where the value in
row s and column j refers to the jth residue according to

sequence s. We ignore columns with more than 50% gaps
(’gapful’ columns) and ignore in the calculations below the
remaining entries that are gaps.

A coupling constraint quantifies the degree to which two
positions in the family co-vary. Given positions i and k,
information about amino acid occurrences contained in the
ith and kth column vectors of the MSA can be summarized
into 20-element vectors of frequencies, or probability distri-
butions P (i) and P (k). Essentially, this allows us to think of
residue positions as random variables over a discrete sample
space of 20 possibilities (recall that we ignore gaps). Cou-
pling can then be estimated by many information-theoretic
and statistical metrics; one example is the (global) mutual
information between P (i) and P (k), given by:

MI(i, k) ≡
20X

i=1

20X
k=1

P (i, k) log
P (i, k)

P (i)P (k)

Notice that the mutual information is actually the KL diver-
gence [19] between the distributions P (i, k) and P (i)P (k);
it quantifies the margin of error in assuming that the joint
distribution P (i, k) is decomposable. MI(i, k) is zero when
the underlying distributions are independent and non-zero
otherwise. Another way to think of MI(i, k) is as the dif-
ference

MI(i, k) ≡ H(i)−H(i|k)

where H(i) is the entropy of the random variable i and
H(i|k) is the entropy of the probability distribution P (i|k).
If MI(i, k) = 0, then knowing the value of k does not re-
duce our uncertainty about i. A high score of MI(i, k) is
typically used as an indicator of coupling [16].

There are other ways to quantify coupling, e.g., using co-
variances and correlations; see [6]. In contrast to global
methods for assessing coupling, perturbation based methods
assess coupling between i and k by first selecting the rows of
A that have position i fixed to some residue and observing
the effect of this in silico perturbation on P (k) (notice the
asymmetry in this approach). Once again, we can assess
the difference between P (k) (before) and P (k) (after) using
a variety of metrics [4], including mutual information.

All metrics suffer from estimation problems under high or
low degrees of conservation. For instance, if position i is
always alanine and position k is always glutamine, then
MI(i, k) would be assigned zero even though we have not ob-
served any variation in either! Similar problems arise with
residues that have low frequencies of certain amino acids.
It is hence well-recognized that ‘correlated mutation algo-
rithms must favor an intermediate level of conservation’ [6].

A typical use of a coupling study is to visualize the in-
ferred constraints in order to guide further experiments and
gain insights into the sequence-structure-function relation-
ship. For example, couplings have been organized into path-
ways of allosteric communication through the protein [15].
The discovery of such pathways has recently been reinvig-
orated with the work of [26] where the authors perform
perturbation-based analysis at numerous positions and sub-
sequently ‘cluster’ the pairs of coupled residues; this pro-
cedure has been shown to yield sparse, connected networks
in many protein families. Researchers have also used cou-



pling constraints as a basis to infer the contact map, since
coupled residues are known to often be spatially proximal.
This is still a popular way to validate correlated mutation
algorithms (e.g., see [4]). Others compare the constraints
to known energetic couplings inferred from double mutant
experiments [7].

3. LEARNING GRAPHICAL MODELS OF
RESIDUE COUPLING

If coupled residues indeed capture meaningful relationships,
then they must afford a probabilistic interpretation. That
is our working hypothesis for this paper and helps high-
light where all previous work falls short. All previous ap-
proaches to inferring networks from data do so by direct
incorporation of couplings as dependences and, as is well
known, such an approach cannot distinguish direct from
transitive dependences. It is also clear that (in)dependence
of random variables is a very conditional phenomenon: two
random variables may be correlated, become uncorrelated
in the presence of new evidence, become correlated again
when given further evidence, and so on. This means that
we must pay careful attention to conditioning contexts, es-
pecially when we employ perturbation-based correlated mu-
tation algorithms.

Our proposed approach is to directly learn a residue cou-
pling network, an undirected graphical model N(V, E) that
represents the residue coupling relationships. Such a model
encodes probabilistic independence between its vertices ac-
cording to an interpretation such as:

• Pairwise: For every pair (a, b) of non-adjacent nodes,
a is conditionally independent of b, given every other
node;

• Local: A node is conditionally independent of all other
nodes, given its immediate neighbors; or

• Global: If a set of nodes c separates a from b, then a
is conditionally independent of b given c.

In asserting independence between a given pair of random
variables (nodes), notice that the Global interpretation uses
a smaller conditioning context than the Local, whose condi-
tioning context is even smaller than the Pairwise interpreta-
tion. For this reason, if a network satisfies the Global prop-
erty, then it will also satisfy the Local property. Similarly,
the Local property implies the Pairwise property. Symboli-
cally, Global ⇒ Local ⇒ Pairwise.

Concomitant with the above independence interpretations,
we can equally think of a network as representing a factoriza-
tion of the joint pdf of the random variables in V (residues):

P ({V}) =
1

Z

Y
c∈ cliques(N)

φc(vc) (1)

Here, the φc are potential functions so that

Z =
X

v

Y
c∈ cliques(N)

φc(vc) (2)

normalizes their product into a probability measure. In Eq. 1
and Eq. 2, v denotes instantiations of the joint sample space
of {V} whereas vc denotes instantiations over only those ran-
dom variables participating in the clique (c). The structure
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Figure 1: Residue coupling networks. (Top) A
graph expressing a prior over possible coupling re-
lationships. One source for a prior could be the
contact graph representation of a protein’s three-
dimensional structure; here, mechanistic explana-
tions for coupling posit either a direct interaction
between contacting residues, or an indirect (tran-
sitive) propagation of an interaction through net-
works of contacting residues. (Middle) The mul-
tiple sequence alignment for members of a protein
family provides evidence for dependence and inde-
pendence. In the example, positions i and k are
very correlated—when i is a ‘filled in’ residue, k
tends to be as well; similarly when i is ‘empty,’ k
tends to agree. However, knowing j makes the posi-
tions rather independent. In the most common case
where j is filled in, we see the combinations of types
at i and k are more evenly distributed. This suggests
that i and k are conditionally independent, given
j. (Of course, even in this example, noise obscures
the degree of independence.) (Bottom) A graphical
model (darkened edges) captures conditional inde-
pendence. We construct such a model by selecting
edges from the prior that best decouple other rela-
tionships. For example, we see that the conditional
independence of i and k given j can be explained by
a transitive propagation of interaction along model
edges.



of the potential functions satisfies:Y
c∈ cliques(N)

φc(vc) =

Q
c P (vc)Q

a∈ cliqueadj(N) P (va)
(3)

In other words, the likelihood is given by the product of
marginals defined over the cliques of N divided by the prod-
uct of marginals defined over the clique adjacencies of N
(cliqueadj, which could be nodes, edges, or general sub-
graphs). In this view, each potential of Eq. 1 is either a
conditional or a joint marginal distribution. For instance,
in an undirected network over three variables and two edges,
with adjacencies (a, b) and (b, c), the product of the poten-
tials is given by:

φa,bφb,c =
P (a, b)× P (b, c)

P (b)

We can view φa,b to be the conditional (P (a,b)
P (b)

) and φb,c to

be the marginal (P (b, c)), or vice versa.

Two well-known theorems in the probabilistic models litera-
ture [17] reconcile the independence and factorization view-
points. First, if a distribution factorizes according to Eq. 1,
then it satisfies the Global interpretation (and hence, the
Local and Pairwise interpretations as well). Second, the
Hammersley-Clifford theorem [3] states that if a joint pdf is
positive everywhere (i.e., it has non-zero mass for all argu-
ments), then it factorizes according to Eq. 1 iff it satisfies the
Pairwise property (notice the bidirectionality of this theo-
rem). Combining the above two theorems, we have: if a jpdf
is positive everywhere, then the above three properties—
Pairwise, Local, and Global—are equivalent. Any one of
them holding true will imply the others.

In what follows, we adopt a statistical estimator of joint
probability that assigns non-zero probability mass to every
possible sequence. Thus, since the positivity assumption is
satisfied, we can adopt any of the above three interpreta-
tions to infer independence between residue positions. In
this case, the Local interpretation is easiest to operational-
ize. The Pairwise interpretation requires us to ‘fix’ (con-
dition on) all but one residue and it is unlikely that this
will retain a significant enough portion of the MSA to be
confident about any probability assessments. The Global in-
terpretation does not suffer from this drawback but makes
the independence assessment more complicated by relying
on a graph separation test.

If our MSA were sufficiently large and diverse enough to
represent the joint probability of the family, then it is clear
that the best unbiased estimator would be the maximum
likelihood estimator (i.e., simply take the frequencies from
the MSA). As the clique size grows, however, it is unlikely
that the MSA is sufficiently representative of every possible
clique value (i.e., set of residue types for the nodes). There-
fore, we must consider the possibility that a clique value
may not occur in the MSA but still be a member of the
family. To this end, we adopt the following estimator for
the probability of a clique value

P (c) =
f(c) + αN

20|c|

N(1 + α)
(4)

Here f(c) is the frequency of the clique value in the MSA, N

function InferNetwork (G = (V, E))
V ← V ; E ← ∅
s← Score(V, E)
C ← {(e, s− Score(V, E ∪ {e}))|e ∈ E}
repeat

e← arg maxe∈E−E C(e)
E ← E ∪ {e}
for all e′ ∈ E−E such that e and e′ share a vertex
do

C(e′)← C(e)− Score(V, E ∪ {e′})
end for

until stopping criterion satisfied

Figure 2: Algorithm for inferring a residue coupling
network.

is the total number of sequences in the MSA, |c| is the size of
the clique and α is a parameter that weights the importance
of missing data. Notice that even when a particular clique
value does not appear in the MSA, it still has a positive (but
small) probability. This satisfies the desired positivity con-
straint. We are actively developing more sophisticated esti-
mators, but results show that Eq. 4 is effective in practice.
We employ a value of .1 for α but tests (data not shown)
indicate that results are similar for reasonable values of α
(between .01 and .25).

Uncovering graphical models from datasets is known to be
an NP-hard problem in the general case and researchers typ-
ically restrict either the topology of the network (e.g., to
trees [14]) or adopt heuristics to search the space of possibil-
ities. In this paper, we assume the existence of a candidate
set of edges (a graph prior; see below) and propose heuris-
tics that sequentially infer conditional independences among
this set (rather than dependences as followed in prior work).
If we know that residues i and k become independent given
j, i.e., the conditional mutual information

MI(i, k|j) = H(i|j)−H(i|k, j)

is zero, then it is easy to see that the removal of j and its
incident edges must separate i and k in the unknown network
N . This assessment is made in the context of a prior graph
G = (V, E), where we assume V = V and E ⊂ E. This
approach is akin to the ‘sparse candidate’ algorithm [8] for
learning (directed) Bayesian networks.

Fig. 1 presents an example of such an inference. In attempt-
ing to de-couple position i from k, we need only consider
neighbors of i (e.g., j) according to the graph prior. We con-
sider here two priors: the complete graph or a contact graph.
The complete graph is clearly an uninformative prior, as-
suming that all possible interactions are equally likely. The
contact graph places edges between all pairs of residues that
are “close-enough” (e.g., with some atoms within some dis-
tance threshold) in the three-dimensional structure of the
protein. (Since structure is more conserved than sequence,
we assume that all members of the family adopt essentially
the same contact graph and select one from the PDB.) Phys-
ically speaking, this is a reasonable assumption in seeking
to uncover direct energetic interactions and in distinguish-
ing indirect ones propagated transitively (e.g., one residue
‘pushes’ another, which ‘pushes’ a third). We compare here



results from these two priors, but note that other priors
are possible, e.g., a graph accounting for functional infor-
mation, coupling via an intermediate (ligand binding), or
longer-range electrostatic coupling.

The score for a network, following the Local interpretation,
is given by:

Score(N(V, E)) =
X
n∈V

X
m/∈neighbors(n)

MI(n, m|neighbors(n))

In de-coupling a pair of positions i and k given neighbor j,
rather than aiming for absolute independence (MI(i, k|j) =
0), we assess by how much the conditional mutual informa-
tion is decreased. We use the notion of network score to
define an edge score as the difference in score between the
network without the edge and the network with the edge.
Note that the score of an edge can be negative, if adding
the edge produces more coupling in the network. Given the
ability to evaluate the edges, we greedily grow a network by,
at each step, selecting the edge that scores best with respect
to the current network. Fig. 2 gives this algorithm. The al-
gorithm can be configured to utilize various greedy stopping
criteria—stop when the newly added edge’s contribution is
not significant enough, stop when a designated number of
edges have been added, or stop when the likelihood of the
model is within acceptable bounds.

The run-time of our algorithm depends on n, the number
of residues in the protein of interest and d, the maximum
degree of nodes in the prior. With an uninformative prior,
d is n. For stronger priors (e.g., a contact graph), we can
assume a bounded number of neighbors for any residue, so
d is O(1). The algorithm scores O(dn) edges at each iter-
ation. Naive execution of the algorithm requires that the
score of the network be computed for each edge at each it-
eration. Scoring a network requires O(n) MI computations
for each residue and there are n residues, so naive execution
requires O(dn3) MI computations at each iteration. Since
conditioning contexts change dynamically during the oper-
ation of the algorithm, we cannot perform any a priori pre-
processing to accumulate sufficient statistics (in contrast to
global methods where mutual information between all pairs
of residues can be computed in a single pass). However,
the cost of making fresh assessments is curtailed since con-
ditioning contexts are merely subsets of neighbors. Thus
by caching values efficiently we can improve the runtime by
a factor of O(n2) at each iteration. First, precompute the
score of every edge in consideration, requiring O(dn3) MI
computations. At each iteration, rather than recomputing
scores, pick the edge in the cache that improves the score of
the network the most. This requires O(n) time, but does not
require any MI computations. The key observation is that
after an edge is added, the only edges whose scores change
are those incident to the edge just added. Since there are at
most O(d) of those that need to be updated, we need only
O(dn) MI computations, for a speedup of O(n2). Addi-
tional constant factor speedups can be achieved by remov-
ing at each step edges that produce statistically unsound
conditioning contexts.

4. EXPERIMENTS
We illustrate our algorithm for inferring residue coupling
networks with two protein families: GPCRs (G-protein cou-

pled receptors) and PDZ domains. GPCRs are membrane-
bound proteins critical in intracellular communication and
signaling, and a key target of molecular modeling in drug
discovery. Since ligand binding at the extracellular face ini-
tiates propagation of structural changes through the trans-
membrane helices and ultimately to the cytoplasmic do-
mains, GPCRs make an appropriate and compelling study
for network identification [26]. PDZ domains are protein-
protein interaction domains that occur in many proteins and
are involved in a wide variety of biological processes [10].
One role of PDZ domains is assisting in the formation of
protein complexes by binding to the C-termini of certain
ligands [10]. Through these two studies we aim to explore
many pertinent aspects of our approach, such as how to set
priors, studying the progress of the algorithm as new edges
are added, using the induced graphical model for classify-
ing protein sequences, and biological interpretation of the
results.

4.1 Results
4.1.1 GPCRs
In the GPCR study, we evaluate the use of protein contact
graphs as priors and also explicitly relate the structure of our
identified networks with those previously identified [26]. We
first retrieved the multiple sequence alignment of 940 mem-
bers of the class A GPCR family, each with 348 residues, as
discussed in [26]. In order to explore contact graph priors,
we constructed a contact graph from the three-dimensional
structure of one prominent GPCR member, bovine rhodop-
sin (PDB id 1HZX), identifying 3161 pairs of residues with
atoms within 7 Å. We verified that the residues previously
identified as belonging to networks [26] form connected sub-
graphs of this contact graph.

For this study, in testing conditional mutual information,
we only considered cases for which at least 15% of the orig-
inal set of sequences remained after subsetting to a particu-
lar residue type. That is, we only allowed a residue to pick
neighbors that, when restricted to their most common amino
acid type, retain at least 15% of the original sequences. As
discussed [18], such a bound is required in order to ensure
sufficient fidelity to the original MSA and allow for evo-
lutionary exploration. Our bound of 15% is roughly half
that used in [26], since our algorithm subsets according to
multiple residues, depending on the number of neighbors
available, whereas the previous algorithm subsets according
to only one residue. From extensive experiments with this
parameter (data not shown), we found that while there is
some variation in the edges with changes of this parameter,
many (> 70%) of the best edges are insensitive to the exact
threshold.

In order to evaluate the implications of restricting depen-
dences to structural neighbors, we compared the MI scores
for edges in the protein contact map against those for all
pairs of residues. This tested the hypothesis that the bulk
of the correlation could be explained as correlation between
structural (contact graph) neighbors. For every residue, we
identified both the best decoupler anywhere in the protein,
and the best decoupling contact graph neighbor. Fig. 3
shows the absolute differences between these values. No-
tice that in most cases, the best neighbor provides nearly as
much decoupling as the best residue elsewhere in the graph.



However, there are some nodes that incur a large penalty.
In general, these nodes are highly conserved and therefore
have small scores against all other nodes. However, since
the total number of residues is large, the sum of all these
small correlations becomes non-trivial. When a node is sub-
setted, making an originally highly conserved node become
perfectly conserved, the score for that node drops to 0. In
this case there is a large difference in improvement between
selecting a distant node and a node from the original prior
graph. It is important to keep these caveats in mind in the
discussion that follows.

Our first model inference test was to start with the previ-
ously identified network of Suel et al. [26], use its induced
subgraph of the contact graph as input to our algorithm, and
see if we could recover the network. There are 144 edges to
be considered. The algorithm constructed a model with 52
edges, after which point no other edge could be added with-
out making the score worse, so the algorithm terminated.
Fig. 5 (left) illustrates the 52-edge network identified by our
algorithm. Fig. 4 (red) shows the change in score as edges
are added to the network. Notice the score decreases as
edges are added and levels out toward the end (leading to
termination when any remaining edge would increase the
score).

To study the influence of the contact graph prior, we re-ran
our algorithm using an uninformative prior so that all pairs
of residues would be tested for inclusion. This time, the algo-
rithm considered 1080 edges and picked 67 of them for inclu-
sion before terminating with no edges available to improve
the score. The resulting network has a better score than
that of the network under the contact graph prior (Fig. 4
(blue)), but does not have as nice a visualization (Fig. 5
(right)).

Since the score differences between these two runs were sub-
stantial, we investigated the best possible score achievable
for this protein family. Towards this end, we randomly shuf-
fled the columns of the MSA, yielding a new MSA having
the same level of conservation for each residue but with cor-
relation lost due to the independent shuffling. We measured
the correlation in 2500 of these MSAs (which consisted of
just noise) by computing the score of the empty network
(one with no edges) on the MSA. The resulting scores were
normally distributed over a small range (63.5 to 65.1) with
mean value 64.3. This means that for the GPCR family, if
we accounted for all possible correlation we would expect a
score of about 64.3. The algorithm run with the uninfor-
mative prior scores 73.6, well within the margin of error we
would expect due to the greedy property of our algorithm
or the nature of the conditioning contexts.

While our modeling formulation is different in nature from
that of Suel et al. (independence vs. dependence, small num-
ber of parameters, etc.), our model that used the uninforma-
tive prior identifies many of the same biologically relevant
features. For example, Suel et al. identify coupling between
residues 296 and 265 that form “part of a linked network ex-
tending parallel to the plasma membrane from 296 to form
the bottom of the ligand-binding pocket.” Our algorithm
likewise identifies an edge between residues 296 and 265.
Several other identified interactions appear as indirect re-
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Figure 3: Penalty for decoupling using a contact
graph neighbor rather than any residue (frequency
distribution). Lower score differences indicate that
neighbors perform as well as other residues.
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Figure 4: Improvement of MI score as edges are suc-
cessively added for the contact graph prior (red) and
uninformative prior (blue). The green line shows a
lower bound for the score for the GPCR MSA.

lationships in our model. For example, coupling between
residue 296 and 293, identified as a “helical packing inter-
action” is identified by our model as being indirect. In this
case, residue 117 actually makes residues 296 and 293 con-
ditionally independent, lowering their mutual information
scores from .3347 to .0259. This is true also of the cou-
pling between residue 296 and residues 298 and 299. These
couplings are part of “a sparse but contiguous network of
inter-helical interactions linking the ligand-binding pocket
with the cytoplasmic surface.” Both 296/298 and 296/299
become conditionally independent in the presence of residue
117.

Although our algorithm does produce many of the relation-
ships as identified by Suel et al., there are several differences
between the models. For instance, our network does not
identify the coupling between residues 296 and 113 which
“makes a salt-bridge interaction with the protonated form
of the Schiff base,” as either direct or indirect. Nor does
our algorithm find the “inter-helical packing interaction” be-
tween residues 296 and 91. Conversely, our algorithm finds a
strong direct coupling between residues 296 and 117 as well
as between residues 90 and 91. Further investigation into



Figure 5: GPCR network identification: three-dimensional structure of bovine rhodopsin with overlaid net-
work, and just the network for model inferred from (left) contact graph induced by the previously published
network and (right) uninformative prior comprising all pairs of edges. Edges are colored by score, with red
the strongest ‘decouplers’ and blue the weakest.

these strong couplings may be of interest to biologists (e.g.,
by mutagenesis studies). This illustrates the ability of our
approach to help formulate testable biological hypotheses.

4.1.2 PDZs
In the PDZ study, we demonstrate the utility in subsequent
analyses of the graphical models learned by our algorithm.
We study the ability of our inferred residue coupling net-
works to capture the ‘essence’ of a protein, namely in classi-
fying PDZ domains. Traditionally, PDZ domains have been
classified into two types according to which type of ligand
they bind. The first class of PDZ domains binds to C ter-
mini with sequences S/T-X-Φ (Φ is a hydrophobic residue)
while the second class targets sequences of the form Φ-X-
Φ. Although the two classes in this protein family may be
defined by simple sequence motifs, we show that coupling-
based models provide more discriminatory power, and we
use this opportunity to subject our approach to a rigorous
evaluation in a maximum likelihood framework.

We obtained MSAs for the two classes of PDZ domains from
PDZBase [2] by querying according to the ligand type and
removing duplicate entries, thereby obtaining 95 class I and
12 class II sequences. We ran our algorithm on the sequences
in class I using an uninformative prior (no contact graph).
After adding 85 of a possible 5671 edges to our model, the
MI score converged (as was previously demonstrated with
the GPCR family).

Using the estimator of Eq. 4, we compared the likelihoods
from proteins in class I and II against different models, in
a leave-one-out cross-validation test. Fig. 6 (top) shows
the evolution of likelihood scores as edges are added to our
model. On the far left of the plot is the likelihood based
solely on conservation (i.e., with no edges in the network).
As the network grows, so does its power to discriminate
classes. Thus we conclude that conservation alone does not
adequately represent the multiple sequence alignment. Once
40 edges are added to the network, the model has the power
to discriminate perfectly between the two classes. We could

continue to the limit by adding all edges to the network. In
this case, we would derive a clique, with a joint distribution
over all residues that would provide a reasonable score only
for sequences in the original alignment. The convergence of
the MI score prevents our algorithm from overfitting in this
manner.

Fig. 6 (bottom) shows a receiver operating characteristic
(ROC) curve that illustrates the classifying power of the
conservation-based model and our inferred residue coupling
network. The figure shows that classification of proteins can
indeed be improved by moving beyond models that consider
conservation alone to models that properly account for cou-
pling relationships.

4.2 Comparison with Other Approaches
There are multiple dimensions along which our approach can
be compared to others. The graphical models uncovered by
our algorithm lie between a purely conservation-based rep-
resentation of a protein family, and a dense representation
of all co-variation within that family. As our results show
quantitatively, we are able to account for the bulk of the
co-variation with a significantly smaller number of param-
eters than is required by the complete graph assumed by
other coupling studies. Thus our models should not over-
fit, but still account for significant coupling missed by pure
conservation. Perhaps more importantly, while we employ
the same co-variation analysis at the heart of our algorithm,
none of the prior works results in a probabilistic model of
any form, and hence none of them can systematically de-
compose observed co-variation into a core set of functional
dependences, as is done here. This shortcoming holds even
for the pioneering work on perturbation analysis [18, 26],
since the ‘networks’ mined cannot be directly used as pre-
dictive models (e.g., from which new sequences belonging to
the family can be drawn) or even as statistical indicators
of variation (e.g., for assessing the likelihood of additional
sequences). The approach presented here clearly overcomes
these drawbacks by providing models that encode proba-
bilistic assumptions of data and which can be genuinely fal-
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Figure 6: Evolution of likelihood as edges are added
to the network. (Top) Sequences from class I (blue)
and class II (red) against the class I model. Each
plot shows the mean, maximum and minimum like-
lihood. The far left of the plot is the model based
only on conservation. As the number of edges grows,
more correlation is captured by the model. The far
right is the model that contains all the correlations
found by our algorithm. (Bottom) ROC curve show-
ing the power of classifying by likelihood using only
conservation (red) or the converged model produced
by our algorithm (blue, following the box bound-
ary).

sified given appropriate data. We anticipate that this work
will serve as a catalyst for more model-driven research into
coupling networks.

5. DISCUSSION
This work marries research into residue co-variation with
probabilistic graphical models, producing a systematic and
sound algorithmic approach to inferring residue coupling
networks underlying protein families. Our use of condi-
tional mutual information as a criterion for growing a net-
work means that our algorithm can also be viewed as a
perturbation-based approach; however, in contrast to [26]
who infer coupling between the perturbed position and an-
other position, we infer independence between residues on
either side of the perturbed position. The results indicate
that independence of residues can be a good guiding princi-
ple for the discovery of evolutionarily conserved structure.

While there are other ways to infer networks from covari-
ation data (e.g., gaussian graphical models [5]) they either

require the specification of complete sets (e.g., all pairs) of
dependency information or must necessarily make assump-
tions about the parametric form of interrelationships. In
contrast, our approach employs the broader notion of inde-
pendences to situate the network. In addition, it models all
significant couplings and conditional independences, hence
capturing the essence of what it means to belong to a given
family. This has tremendous applications in protein fold
classification and protein design.

An important feature of our approach is the ability to make
(selective) use of prior information towards a coupling study.
Some priors (e.g., the contact graph) aid interpretability of
the results but (as shown in our tests) might not yield as
good as a model. There may be other potential explanations
for observed couplings (e.g., electrostatics, ligand binding)
that could be incorporated in the prior. Conversely, in the
course of the algorithm, edges could be scored not only for
reduction in MI but for consistency with a background the-
ory.

The success of the approach is dependent on the quality of
the provided MSA. We would like to scale up our algorithms
to work with MSAs involving greater numbers of sequences,
and thus more complete samplings of families. Inferring
graphical models from such large datasets will benefit from
research aimed at scaling up model inference (e.g., see [12])
and we propose to consider these for inferring coupled resi-
dues. We would also like to ensure fidelity of the alignment,
particularly by using available structural information. Even-
tually, we hope to integrate alignment and model inference,
perhaps employing shared hidden variables so that they it-
eratively improve each other.

Since motifs can be viewed as a limiting case (conservation
only) of coupling relationships, we intend to build upon the
work in that domain on representing general traits. For in-
stance, we intend to relax our modeling of residues as distri-
butions over amino acids, and instead consider distributions
over classes of amino acids (e.g., polar, hydrophobic, small).
Since there are multiple, overlapping, taxonomies of amino
acids [27] we can even assume a hidden variable model (de-
noting an unknown relabeling of each residue) and attempt
to infer the network as well as the relabeling function from
a given MSA and contact map. An alternative is to employ
a scoring matrix in evaluating extent of co-variation [24].

Finally, we intend to explore applications in protein design.
Sampling from an inferred model is a natural way to gener-
ate new representatives of a family. Simultaneous construc-
tion of models for multiple families could help define their
boundaries and thus even enable control over specificity in
design.
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