
networked agents

forScientificComputing

Tzvetan Drashansky, Elias N. Houstis,

Naren Ramakrishnan, and John R. Rice

Ideally, a designer
would change some

aspect of the engine and then run a simulation to see
how the change affects the performance, cost, dura-
bility, and so forth. Such a simple approach will be
infeasible for the foreseeable future because the com-
plete simulation of an engine design requires days,
weeks or even years on petaflops class computing sys-
tems. Thus the design process and simulation soft-
ware must be configurable so that a simulation can
focus on particular aspects of the engine. For example,
in designing a new turbine blade (they do not all have
the same shape) one might (a) model the blade itself

very accurately, (b) model the air flow field and struc-
ture near the blade with moderate accuracy, (c)
roughly model the air flow fields and structures fur-
ther away from the blade, and (d) model the remain-
der of the engine by fixed boundary conditions
surrounding the focal area of this particular simula-
tion. Step (d), of course, removes over 99% of the
parts and phenomena from this particular simulation,
making it feasible to explore many design parameter
effects quickly. As a new engine design evolves and
matures, the focus of such simulations is enlarged,
first bringing several new parts together, then dozens
or hundreds of parts, then complete subassemblies,

48 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

How an ensemble of agents can conduct
large-scale scientific simulations.

T
he central argument of this article is that agent-based

computing provides important advantages for scientific comput-

ing. We present our ideas in the context of a particular application, the sim-

ulation of gas turbine engines. This application is typical in that it involves

an enormously complex device of great economic importance, one whose

design is continually evolving to achieve higher value and to fit new uses.

and, finally, the entire engine. Concurrent with this
bottom-up approach there will be top-down simula-
tion effort in which “everything” is modeled, though
roughly (many parts or assemblies are merged into
single simulation components or simply ignored) to

obtain initial, rough estimates of overall behavior. As
difficulties or shortcomings appear, various combina-
tions of these two approaches are used. This form of
prototyping requires knowledge and computational
models from multiple disciplines.

As illustrated in Figure 1, gas turbine engines typically have tens of thousands of parts, many of which
experience extreme operating conditions. Important physical phenomena take place at space scales from
tens of microns (combustion, turbulence, material failure) to meters (gas flow, rotating structures) and
at time scales from microseconds to months.

The analysis of an engine involves the domains of thermodynamics (models the heat flows throughout
the engines), reactive fluid dynamics (models the behavior of the gases in the combustor), mechanics
(models the kinematic and dynamic behaviors of pistons, links, cranks, etc.), structures (models the
stresses and strains on the parts) and geometry (models the shape of the components and the structural
constraints). The design of the engine requires that these different domain-specific analyses interact in
order to find the final solution. While these different domains might share common parameters and inter-
faces, each of them is governed by its own constraints and limitations.

There are thousands of well-defined modules for modeling various parts and behaviors or for support-
ing the simulation process (for example, visualization, data management, module interfacing). For most
design aspects there are multiple software modules to choose from. These embody different numerical
methods (iterative or direct solvers), numerical models (standard finite differences, collocation with
cubic elements, Galerkin with linear elements, rectangular grids, triangular meshes), and physical models
(cylindrical symmetry, steady state, rigid body mechanics, full 3D time-dependent physics).

Turbines

Figure 1. Cutaway view of gas turbine engine for an airplane (courtesy Sanford Fleeter).
Some of the performance and complexity characteristics of this device are indicated.

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 49

31,000 PARTS
1,300 parts rotate to 50,000 rpm
Up to 10 “g” maneuver loads (repeatedly)
Up to 40 atmospheres of pressure

“Unclean”
Air

F.O.D.
rain
sand
rocks
rivets, etc.

<3 seconds accel time
(idle to max. power)

High-strength Materials Are Sensitive
Notches (<0.002 inch)
Rubs (small kisses)
Chemical attach (oxidation/corrosion)
Surface defects (natural & service)
Long term exposure (creep)
Cyclic mechanical & thermal loading order
Synergistic loads

Constant Changes of Throttle
Constant flight envelope changes
Max. maneuvering to meet mission
-each flight and pilot is different

Complex Environment

Thermal Stress
up to-1400F above melt. temp
rich in oxygen & sulfur

Mechanical Stress
-80% ultimate strength
steady + vibratory loads
fluctuating pressure fields
mech. & thermal deflections
acoustics
impact loads

50 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

Distributed problem solving. The first step of
modeling is to replace the original multiphysics prob-
lem by a set of smaller simulation problems on sim-
ple geometries that need to be solved simultaneously
while satisfying a set of interface conditions. These
simpler problems may be chosen to reflect the
underlying structure/geometry/physics of the system
to be simulated, or artificially created by scientific
computing techniques such as domain decomposi-
tion. For physical systems and devices, these sub-
problems are usually modeled by partial differential
equations (PDEs). The next step is to create a net-
work of collaborating solver agents in which each
such agent deals with one of the subproblems
defined earlier. The original multiphysics problem is
solved when one has satisified all the equations on
the individual components and these solutions
match properly on the interfaces between the com-
ponents. Matching is the responsibility of mediator
agents that facilitate the collaboration between solver
agent pairs. The term “match properly” is defined by
the physics if the interface is where the physics
changes. For heat flow, for example, this means that
temperature is the same on both sides of the inter-
face and that the amount of heat flowing into one
component is the same as the amount flowing out of
the other. If the interface is artificially introduced to
make the computations simpler, or to exploit paral-
lel computation, then “match properly” is defined
mathematically and means that the solutions join
smoothly (have continuous values and derivatives).
Distinguishing solver and mediator agents enables
users to handle complex mathematical models natu-
rally and directly. The agents can be organized into
hierarchical structures that reflect the physical struc-
ture of, say, the jet engine. This hierarchy allows
alternative models and solvers to facilitate the many
locally focused simulations to be made.

Other approaches to distributed problem solving
have been proposed for scientific computing, particu-
larly ones that focus on harnessing distributed object-
oriented technologies. The Globus system [5]
provides basic software infrastructure for computa-
tions that integrate geographically disparate resources.
The Legion project [9] provides an object-based
metasystem to enable third-party development of sci-
entific applications and infrastructure components.
The Infospheres project [2] at Cal-Tech provides a
distributed programming layer using the World-Wide
Web, Java, and the Internet. These operate at a lower
level of abstraction and the ideas illustrated here can
utilize them as back ends to facilitate interaction and
coordination among the agents. This methodology
is a natural component of metacomputing, see [8]

and related articles in the November 1998 issue of
Communications.

Resource Selection
For a complex device, the solver and mediator agents
form a large pool of computational objects spread
across the network. The past few decades have seen
a huge amount of sophisticated code being devel-
oped to solve specific, homogeneous problems.
Clearly, expecting a solver/mediator agent to be
aware of all the potentially useful software on the
Net is not realistic. Nor is a single user likely to know
all the hardware choices available to solve a problem.
To circumvent this resource selection bottleneck, we
introduce recommender agents that serve as “advi-
sory” engines. The purpose of a recommender agent
is to accept a query from a solver (or mediator) agent
about a problem, determine a suitable algorithm that
applies to that problem and finally, direct (recom-
mend) it to an appropriate location on the Net
where software implementing the algorithm can be
obtained and executed. This is similar to the idea of
recommender systems that harness distributed infor-
mation resources on the Internet [11]. Such agents
are extensively used in commercial search engines
and Web-based data warehouses.

The organization of software on the Net and track-
ing software availability is facilitated by cross-indices
of mathematical software such as GAMS [1]. GAMS
is a virtual mathematical software repository that
helps users to identify and locate the right pieces of
software for their problems. However, the users have
to select the specific routine most appropriate for the
given problem, download the software along with its
installation and use instructions, install the software,
compile (and possibly port) it, and then learn how to
invoke it appropriately. The recommender agents
automate many aspects of this software/resource selec-
tion process.

Even after the choice of software/algorithm is
made, the specialized facilities/platform requirements
of the software might not be available to the user
locally. In such cases, the user must access remote
computational servers that can act as (or serve) the
agents performing the computations. In other words,
the solvers and mediators needed for the simulation
should be accessible over the Net and recommender
agents should be able to dynamically adapt and deter-
mine the most suitable location(s) to perform compu-
tations.

In our implementation, the recommender agents
help select the algorithm and its executable imple-
mentation. Each recommender agent can provide rec-
ommendations for a certain class of problems and can

also collaborate with other agents to collectively arrive
at a recommendation. For example, with a certain
input, an agent might provide the recommendation:
‘Us e the 5-po in t s ta r a l go r i thm wi th a
200x200 g r id on an NCube /2 u s in g 16
proce s sor s : Confidence - 0.85. Software available at
http://math.nist.gov/cgi-bin/gams-serve/
list-module-components/ELLPACK/1-14-46/
13058.html’.

The PYTHIA system provides the recommender
agents needed for multidisciplinary simulation. A
PYTHIA agent [12] gathers performance information
about solvers on standardized test problems and uses
this data (plus features of existing problems) to deter-
mine good algorithms to solve a newly presented
problem. The efficacy of a single agent is thus depen-
dent on the methods and the problem sets referenced
in the performance information collected by it and its
ability to determine the features of the new problem.
PYTHIA’s methodology recognizes that there are
many different kinds of problems but that most rec-
ommender agents are able to advise for only a limited
subset of those in an application domain. When an
agent’s expertise is exhausted, it solicits recommenda-
tions from all the other agents and chooses the one
that has the highest degree of “reasonableness” [7].
Collaboration between the agents is facilitated by a
language called PYTHIA-Talk that is based on the
KQML model of agent communication [4].
PYTHIA-Talk describes the meaning (content) of the

KQML messages while the underlying communica-
tion infrastructure is provided by the TCP transport
protocol. Our implementation also provides facilities
for agents to dynamically enter and leave the system.

This prototype implementation relates to a variety

of PDEs known as elliptic PDEs. At the outset, there
is a facility to provide feature information about a
PDE problem. In particular, there are forms that
enable the user to provide details about the operator,
function, domain geometry and boundary condi-
tions—basic parts of a PDE. Once these details are
provided, a PYTHIA agent starts its task by first clas-
sifying the given problem into one of several cate-
gories of problems. It uses this classification to
determine whether its expertise could be used to pro-
vide recommendations or whether other agents need
to be contacted. If needed, the PDE is transferred to
another PYTHIA agent appropriate for its class of
problems, which in turn predicts an optimal strategy
to report back to the original agent and the user. This
process is repeated, if necessary, to arrive at a good
solution. Having performed software selection,
PYTHIA now interfaces with the GAMS system to
direct the user to an implementation of the recom-
mended algorithm.

The interface between PYTHIA and the GAMS
repository forms the basis of a collaborative software
selection facility [10]. This interface uses the GAMS
taxonomy of mathematical software to categorize the
PYTHIA agents and their capabilities. Moreover, the
PYTHIA agents are themselves based on extensive
performance evaluation of GAMS-indexed software,
so the combination is very pertinent. The interface
serves a dual purpose: to direct PYTHIA users to
appropriate GAMS locations for their software needs,

and also to provide advisory support to GAMS users.
In our implementation, the connection between

the PYTHIA system and GAMS is achieved by a
proxy software program that is configured for this
purpose. Requests sent to the GAMS server about

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 51

GAMS [1] is a virtual mathematical software repository system with access to thousands of software
modules. The gas turbine design process would use a version of GAMS specialized and enlarged for this
application. It promotes easy access and also encourages software reuse in the current distributed com-
puting environments. GAMS’s main contribution to mathematical software, however, lies in the tree
structured taxonomy of mathematical and software problems used to classify software modules. This
taxonomy extends to seven levels and provides a convenient interface to home in on appropriate mod-
ules. For example, the problem class I refers to modules catering to differential and integral equations, I2
indexes to modules about PDEs, I2b caters to elliptic boundary value problems, I2b1 refers to the linear
kind of these problems, and so on. This taxonomy indexes problem-solving modules from software pack-
ages maintained at four software repositories on the Internet. Much of this software is in Fortran format
for problems from linear algebra, differential equations, number theory, optimization, statistics, interpo-
lation, approximation, symbolic computation, geometry, and most other areas in computational science.

Tools Available for Scientific Computing

methods for some categories of problems (for exam-
ple, elliptic PDEs of the I2b1a1 category) are trans-
ferred to the appropriate PYTHIA agent by the proxy.
Thus the proxy serves to enforce acceptability criteria
on the user’s input. At this point, the PYTHIA agent
in turn requests input from the user about the PDE
problem characteristics and recommends a method to
solve the given PDE. In addition to displaying this
information, it also provides a hyperlink back to the
GAMS system to download the appropriate software
modules. Our facility also provides a convenient
scheme to switch back and forth between the GAMS
and PYTHIA systems.

SciAgents. While PYTHIA supplies the recom-
mender agents that interface with GAMS, the solver
and mediator agents are provided by the SciAgents
system [3]. Each solver agent is considered a “black
box” by the other agents and interacts with them
using an interagent language. This allows all compu-
tational decisions for solving one individual subprob-
lem to be taken independently from the decisions in
any other subproblem—a major improvement over
the traditional approaches to multidisciplinary simu-
lations. Each mediator agent is responsible for adjust-
ments at an interface between two neighboring
subproblems. The interface between two subprob-
lems might be complex, so more than one mediator
might be assigned, each operating on a separate piece

of the interface. The mediators control the data
exchange between the solvers working on neighbor-
ing subproblems by applying mediating formulas and
algorithms to the data from the solvers.

SciAgents provides a robust mechanism for coop-
eration among the computing agents. The agents per-
form only local computations and communicate only
with neighboring agents. They cooperate in solving a
global, complex problem, and none of them exercises
centralized control over the computations. The global
solution emerges in a well-defined mathematical way
from the local computations as a result of intelligent
decision making done locally and independently by
the mediator agents. The agents may change their
goals dynamically according to the local status of the
solution process, switching between observing results
and computing new data.

SciAgents operates in conjunction with the Parallel
ELLPACK Problem Solving Environment (PSE) [6].
Parallel ELLPACK is a scientific software server that
provides a natural interface for simulations based on
partial differential equations. In addition, Parallel
ELLPACK tracks extended problem-solving tasks and
allows users to review them easily by exploiting mod-
ern technologies such as interactive color graphics,
computation steering, parallel processors and net-
works of specialized services.

We illustrate the performance of SciAgents by

52 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

Figure 2. SciAgents applied to a problem with four subdomains with different PDEs. The left portion of the figure provides a
snapshot of the display during the subproblem definition process. Parts of three Parallel ELLPACK domain tools are shown
containing subdomain geometries and finite element meshes. Each subdomain is discretized independently from the others.
The right portion of the figure depicts a combined picture of all subdomain solutions. The global solution corresponds to the
physical intuition about the behavior of the modeled real-world system.

applying it to the solution of a composite problem
that involves heat distributions in the walls of an
engine part and in the surrounding isolating and
cooling structures. Once the subdomains (and the
solvers), their properties, and the mediators are
defined, SciAgents builds a network of solvers and
mediators to solve the problem. A global controller
provides the “navigation” necessary to steer the com-
putations. When a mediator observes convergence

(the change of the boundary conditions for the next
iteration is smaller than the tolerance), it reports this
to the global controller, and after all mediators report
convergence, the global controller issues a message to
all agents to stop. Figure 2 describes a sample input
problem definition to SciAgents and the final solu-
tion obtained after convergence. It can be observed
that all contour lines match when crossing from one
subdomain to another; there are even a few that go
through three subdomains and one going through all
four subdomains. This demonstrates the efficacy of
our collaborative approach to problem solving.

The multiagent architecture presented here enables
us to combine existing full-fledged problem-solving
environments and software libraries to realize large-
scale multidisciplinary simulation facilities. We are
optimistic that systems like SciAgents and PYTHIA
will provide the core functionality necessary to
achieve these goals. We refer to these new facilities as
“multidisciplinary problem-solving environments.”

Our ongoing research focuses on many more
aspects of these problems. SciAgents is being
extended to address more problem domains and the
recommender agents of PYTHIA are being used to
satisfy more software selection needs. In addition,
issues in learning and adaptation in multiagent sys-
tems are being explored to aid in better coordination
control between the various types of agents. Together,
they promise to address one of the most important
challenges in scientific computing.

References
1. Boisvert, R.F., Howe, S.E., and Kahaner, D.K. The guide to available

mathematical software problem classification system. Communications
in Statistics—Simulation and Computation 20, 4 (1991), 811–842;
http://gams.nist.gov.

2. Chandy, K.M. The scientist’s infosphere. IEEE Computational Science
Eng. 3, 2 (Summer 1996), 43–44.

3. Drashansky, T.T., Joshi, A. and Rice, J.R. SciAgents—An agent based
environment for distributed, cooperative scientific computing. In Pro-
ceedings of the 7th International Conference on Tools with Artificial
Intelligence IEEE Computer Society, (1995), pp. 452–459.

4. Finin, T., Labrou, Y., and Mayfield, J. KQML as an agent communica-
tion language. In J. Bradshaw, Ed., Software
Agents. MIT Press, Cambridge, 1997.

5. Foster, I. and Kesselman, C. The
Globus project: A status report. In Pro-
ceedings of IPPS/SPDP ‘98 Heterogeneous
Computing Workshop (1998), 4–18.

6. Houstis, E.N., Rice, J.R., Weerawarana,
S., Catlin, A.C., Papchiou, P., Wang, K-
Y, and Gaitatzes, M. PELLPACK: A
problem solving environments for PDE-
based applications on multicomputer
platforms. ACM Trans. Mathematical
Software 24, 1 (1998), 30–73.

7. Joshi, A. To learn or not to learn. In G.
Weiss and S. Sen, Eds., Adaptation
and Learning in Multiagent Systems,
Vol. 1042 of Lecture Notes in Artificial
Intelligence, Springer Verlag, 1996,
127–139.

8. Karin, S. and Graham, S. The high-
performance computing continuum.
Commun. ACM 41, 11 (Nov. 1998),
32–35.

9. Lewis, M.J. and Grimshaw, A. The core legion object model. In Pro-
ceedings of the Fifth IEEE International Symposium on High Performance
Distributed Computing. IEEE Computer Society Press, August 1996.

10. Ramakrishnan, N., Houstis, E.N., Joshi, A., Rice, J.R., and Weer-
awarana, S. Intelligent networked scientific computing. In Proceedings
of the Fifthteenth IMACS World Congress, Vol. 4, Wissenschaft and
Technic Verlag, (1997), pp. 785–790.

11. Resnik, P. and Varian, H.R. Recommender systems. Commun. ACM
40, 3 (1997), 56–58.

12. Weerawarana, S., Houstis, E.N., Rice, J.R., Joshi, A., and Houstis,
C.E. PYTHIA: A knowledge-based system to select scientific algo-
rithms. ACM Trans. Mathematical Software 22, 4 (1996), 447–468.

Tzvetan Drashansky (ttd@staff.juno.com) is a member of the
technical staff with Juno Online Services in New York.
Elias N. Houstis (enh@cs.purdue.edu) is a professor in the
Department of Computer Sciences and the director of the
Computational Science and Engineering Program at Purdue
University in West Lafayette, IN.
Naren Ramakrishnan (naren@cs.vt.edu) is an assistant professor
in the Department of Computer Science at Virginia Polytechnic
Institute and State University in Blacksburg, VA.
John R. Rice (jrr@cs.purdue.edu) is W. Brooks Fortune
Distinguished Professor of Computer Sciences at Purdue University
in West Lafayette, IN.

This research was supported in part by the National Science Foundation
(CDA-9123502, CCR-9311486) and the Defense Advanced Research Projects
Agency through the Army Research Office (DAAH04-94-G-0010).

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0300 $5.00c

54 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

The multiagent architecture
enables us to combine existing
full-fledged problem-solving
environments and
software libraries.

