
Lessons from Deep Learning applied to Scholarly Information
Extraction: What Works, What Doesn’t, and Future Directions

Raquib Bin
Yousuf ∗

Subhodip Biswas∗
Computer Science
Virginia Tech

Arlington, VA, USA
raquib@vt.edu

subhodip@vt.edu

Kulendra Kumar
Kaushal†
Bloomberg

New York City, New
York, USA

kulendra@vt.edu

James Dunham
Rebecca Gelles

CSET
Georgetown
University

Washington, D.C.
USA

james.dunham@georgetown.edu
rebecca.gelles@georgetown.edu

Sathappan
Muthiah†

eBay
San Jose, California

USA
sathap1@vt.edu

Nathan Self
Patrick Butler

Naren
Ramakrishnan
Computer Science
Virginia Tech

Arlington, VA, USA
nwself@vt.edu
pabutler@vt.edu
naren@cs.vt.edu

ABSTRACT
Understanding key insights from full-text scholarly articles is essen-
tial as it enables us to determine interesting trends, give insight into
the research and development, and build knowledge graphs. How-
ever, some of the interesting key insights are only available when
considering full-text. Although researchers have made significant
progress in information extraction from short documents, extrac-
tion of scientific entities from full-text scholarly literature remains
a challenging problem. This work presents an automated End-to-
end Research Entity Extractor called EneRex to extract technical
facets such as dataset usage, objective task, method from full-text
scholarly research articles. Additionally, we extracted three novel
facets, e.g., links to source code, computing resources, program-
ming language/libraries from full-text articles. We demonstrate
how EneRex is able to extract key insights and trends from a large-
scale dataset in the domain of computer science. We further test
our pipeline on multiple datasets and found that the EneRex im-
proves upon a state of the art model. We highlight how the existing
datasets are limited in their capacity and how EneRex may fit into
an existing knowledge graph. We also present a detailed discussion
with pointers for future research. Our code and data are publicly
available at https://github.com/DiscoveryAnalyticsCenter/EneRex .

CCS CONCEPTS
• Information systems→ Information retrieval; Retrieval tasks
and goals.

KEYWORDS
full-text information extraction, scholarly literature, deep learning,
knowledge graph

1 INTRODUCTION
The number of scientific scholarly articles published each year is
staggeringly high and continues to rise. According to DBLP, 400k
articles were published in Computer science(CS)-based research
areas in 2020 alone. Extracting key scientific insights from these pa-
pers is imperative for understanding emerging technologies, their

∗Equal contribution. Author names arranged in reverse alphabetical order.
†The work was done when the author was at Virginia Tech.

prevalence, and relationships, and for enabling analysts and poli-
cymakers to identify key trends. Information extraction of these
entities from large-scale datasets would facilitate the creation of
structured knowledge graphs. Existing work builds these knowl-
edge graphs from citation graphs and clusters, coupled with the
classification of the papers by various conferences or libraries, such
as the CSET Map of Science[13, 22] and the Microsoft Academic
Graph [25]. These knowledge graphs can be used to discover clus-
ters of papers belonging to topics of research. Recently, researchers
have been attempting to automatically classify documents [11] and
discover clusters of paper related to a specific task [4]. Moreover,
such knowledge graphs are already in use helping policy makers
look into research funding practices in artificial intelligence [22].
We believe that actual scientific entities from the papers would
complement the existing citation-based knowledge graphs with
more in-depth knowledge and further enrich the information. Mo-
tivated by this, we propose an information extraction pipeline for
extracting technical entities from the full text of research articles,
allowing us to establish trends present in large scholarly databases,
particularly in the domain of CS.

Identifying salient scientific facets, or entity types, and extract-
ing them from scholarly articles is an important research endeavor
in the information retrieval community [14, 17]. Extraction involves
encoding texts, identifying sections where relevant information is
present, and then extracting the required information in a struc-
tured format. Most research work in this area has traditionally
involved working with machine-readable metadata such as title,
abstract, etc. [16, 26]. However, many important facets can only
be extracted when the full text is taken into consideration since
such information is not available in the metadata alone. A recent
survey paper concluded that the majority of work on key insight
extraction uses abstracts only [20]. They also concluded that the
primary challenge of full-text analytics is that the complexity of
the manual annotation processes grows as the dataset grows. Iden-
tifying which section of an article contains information relevant
to a given entity type is challenging since much of the text data is
irrelevant to that particular entity type. Previous work has focused
primarily on information extraction from shorter documents like
news articles, blogs, user posts, and comments on different social
media platforms [5, 9, 24]. Instead, we focused on developing a

ar
X

iv
:2

20
7.

04
02

9v
1

 [
cs

.I
R

]
 8

 J
ul

 2
02

2

https://github.com/DiscoveryAnalyticsCenter/EneRex

Yousuf and Biswas, et al.

full-text research entity extraction system which will enable us to
discover trends in computer science research.

The scarcity of large-scale data to train and evaluate our mod-
els remains a challenge. Many publicly available, labeled datasets
contain annotations for small documents. However, there is a lack
of ground truth data for full-text scientific articles. We tackled this
issue with an automated data generation process based on syntac-
tic patterns to generate training data. Recently, there have been
attempts to extract information from full-text scholarly articles and
create full-text datasets that can help train and build full-text ex-
traction modules, for instance, see [15]. However, existing datasets
are limited in their capacity. In some cases, ground truth data does
not have all the entities used for every paper. Moreover, to the
best of our knowledge, three of our facets (links to source code,
computing resources, and language/library used) have not been
extracted in prior work, so no ground truth datasets are available
for those facets.

In this work, we introduced a DL-based automated tool named
End-to-end Research Entity Extractor (EneRex) to extract from
a paper’s full text six entity types: links to source code, names
of any datasets used, the paper’s objective task, the method by
which the paper attempts the object task, how many computing
resources were required, which programming languages were used,
and which programming libraries were used. We ran EneRex on
a CS-based large-scale scholarly dataset and used the extracted
information to discover trends and insights about computer science
research areas. We discussed how EneRex can fit into an exist-
ing knowledge graph to complement that information. We also
came up with a novel dataset for computing resources and lan-
guage/library (CORLL). EneRex uses transfer learning to generate
scientific contextual embeddings from SciBERT [7], which enables
it to learn a better representation of scholarly articles. SciBERT
extends the BERT model [12] and has been trained on scientific
texts. EneRex was able to improve upon SciREX [15] which is the
only model aiming to extract similar facets from full-text scholarly
articles, to the best of our knowledge. In addition to the facets pro-
vided by SciREX, we also extracted computing resources and any
languages or libraries used in a paper. EneRex is computationally
simple with different components for handling salience and enti-
ties. For generating training data, EneRex does not need manual
annotations for all of the facets, and SciREX requires more involved
annotation efforts for all the facets. Table 1 shows a comparison
between existing models and EneRex. An example of EneRex in
practice is shown in Figure 1.

The remainder of the paper is organized as follows. Section 2
discusses the scientific entities in research articles and previous
works to identify those. We introduce the EneRex system in Sec-
tion 3 followed by evaluation in Section 4. Our system is used to

EneRex

Cornell Grasping, standard Cornell
Grasp, RGB images, Cornell grasp,..

Dataset

natural language processing, robotics,
parallel plate robotic gripper, Robotic
Grasp Detection, predicting the grasp

pose, grasping task
Objective Task

Deep Convolutional Neural Networks, vision
system, multi-modal robotic grasp detection

system, five-dimensional grasp representation

Method

CUDA enabled NVIDIA GeForce GTX
645 GPU, Intel(R) Core(TM) i7-4770

CPU @ 3.40GHz
Computing Resources

Python, Theano
Language/Library

...........

...........

Figure 1: EneRex in practice.

discover trends in computer science scholarly articles in Section 5.
Finally, in Section 6 we present some observations and conclude
the paper in Section 7.

2 SCIENTIFIC FACETS IN RESEARCH
ARTICLES AND RELATEDWORKS

The traditional facets extracted by the information retrieval com-
munity from scientific papers have been objective task, method,
and material used. These three facets are known to be helpful to
researchers for quickly comprehending the main thrust of a sci-
entific article. Gupta et al. [14] attempted to discover the focus,
technique and domain of research articles via pattern matching in
a bootstrapping manner. Tsai et al. [29] also used bootstrapping to
identify two categories of concepts: techniques and application.

More recent approaches consist of applying neural models to
identify entities and their relations. Luan [17] used neural models
with semi-supervised learning to extract entities and their relation-
ships. Mesbah et al. [19] developed NER models to detect scientific
datasets and methods in an iterative manner. These automatic scien-
tific entity extraction tasks revolved around using only the abstracts
of scholarly articles [6]. SciERC [18] and Dygie++ [31] are two such
models which work on a dataset of 500 annotated abstracts. Nasar et
al. [20] details past researchwhich extracted facets such as problems
addressed, domain, tools, and evaluation measures. The SciREX [15]
model works with full text documents in an end-to-end fashion, in
comparison to previous research approaches. Our model adds three
more features and improves upon the results from SciREX.

In an effort to improve reproducibility, researchers have increas-
ingly been publishing their code along with their papers. Papers
with Code[3] collects state-of-the-art papers for some research

Table 1: Comparison of EneRex with similar work

Method Extract
Dataset

Extract
Objective
Task

Extract
Method

Full Text
Extraction

Extract
Computing
Resources

Extract
Language
Library

Extract
Links to
Source Code

No Need for
Annotation

Simplified
Pipeline

SciREX[15] ✓ ✓ ✓ ✓

EneRex ✓ ✓ ✓ ✓ ✓ ✓ ✓ partially ✓

Lessons from Deep Learning applied to Scholarly Information Extraction

categories that have been published with source code. The struc-
tured facets available from this website are dataset, metric, task and
method.

Researchers have shown that complex natural language pro-
cessing models like GPT [21], BERT [12], Turing-NLG [23] with
billions of parameters are generally more efficient at solving chal-
lenging problems like information extraction, machine translation,
and natural language generation. Of course, the power consumed
and the required computing resources in training such complex
models is an ever-present issue [8]. In this work, we aim to extract
different computing resource entities which could help us track the
efficiency of different computing resources across different neural
networks. Furthermore, several libraries, such as PyTorch, Tensor-
Flow, and Caffee are available for different programming languages
like Python, Java, and MATLAB. Tracking the usage of different
languages and library dependencies across research articles could
help researchers determine the best possible combination and help
analyze usage trends. All of the six facets extracted in our system
are listed in Table 2.

Table 2: List of facets for extraction

Facets
Source Code Links
Dataset used
Objective Task
Method used
Computing Resources
Language/library

3 THE ENEREX SYSTEM
EneRex is capable of identifying and extracting six facets from a
full-text scholarly article. Extraction for these six facets is grouped
into two different pipelines in terms of the adopted methodology,
depending on context and other syntactic properties. The first group
(source code link, dataset, computing resource and language/library)
was extracted by a weakly-supervised learning task. Here, auto-
mated labeling of sentences and entities created a noisy ground
truth set. For this group, EneRex identifies entities in two steps:
i) identifying the relevant sentences; ii) identifying the entities
from the selected sentences. The second group (objective task and
method) was extracted with the help of transfer learning. Each of
the facets were designed with syntactic properties in mind. The
training and prediction modules were kept separate for simplicity,
thereby adopting batch training as the default knowledge ingestion
process. However, all of the facet extraction tasks share a full-text
extraction and ingestion module. In order to build a structured rep-
resentation from an article’s full text, EneRex can extract full-text
from PDF, plain text, and JSONL. Subsequent entity extraction sub-
modules use this structured representation of the article to drive
training and inference. The full-text extraction module is described
first, followed by the details of each facet and module. A concep-
tional overview of EneRex architecture in inference is shown on
Figure 2.

3.1 Data Ingestion
EneRex ingests PDFs of scholarly articles. To build a large dataset
of PDF files, we collected PDF files and metadata from arXiv[1], an
open-access research article distribution service. The arXiv corpus
contains about 2 million scholarly articles in many fields. Since re-
search articles published in fields such as physics or astronomy are
not relevant to our entity extraction tasks, we collect only articles
published in fields related to Computer Science. Using publication
metadata and “cs.” tags from the arXiv dataset to filter out docu-
ments from other disciplines, we collected PDFs and metadata for
241,646 articles. The full-text and metadata from each document
were ingested using Grobid [2] reference parsing tools which can
extract, among other things, headers, references, citation contexts,
and authors from article text. Tkaczyk et al. [27] evaluated vari-
ous reference parsing tools. Among those that handle full article
text, Grobid was the best performing, followed by Cermine [28].
Grobid successfully processed 240,051 documents, about 99% and
we generated structured representations with metadata, sections,
bibliography entries, and footnotes for all papers.

3.2 Training Data Generation
For the task of extracting these facets from scholarly articles, the
main challenge is the lack of ground truth available for training
inference models. We tackled this issue by using weakly super-
vised learning tasks. For the first group of facets (source code link,
dataset, computing resource and language/library), we extracted
salient ground truth by following the lexical and syntactic proper-
ties of the sentences. These facets required annotations on different
levels to build classifiers and named entity recognizers (NERs). The
patterns were designed by taking advantage of sentence-level de-
pendency parsing and the part-of-speech (POS) tags on each word.
The goal of this automated extraction pipeline is to require the least
human effort to extract each facet. However, the quality of this
automated pattern based extraction varied by facets. For the source
code and dataset facets, this pattern-based extraction produced less
noise than computing resources and language/library, for which
the pipeline produced significant noise in the entity level anno-
tation. After identifying candidate sentences, a follow-up manual
annotation process was carried out to identify the entities within
the sentences for these two facets.

Facet 1: Source Code Links. To extract references to source code
in a paper, our data generation script first selects any sentences
with references or footnotes that contain URLs. Using spaCy [30]
for dependency parsing obtains universal dependency relation tags
for the selected sentences and selects a contextual location of a
term (i.e., subject, object, root, etc.). Any sentence with at least two
patterns and three occurrences is considered a candidate sentence.
The sample patterns are shown in Appendix C . Special importance
was given to adjective and object patterns. Sentences containing
certain common words such as figure and table were excluded.
These constraints were decided by empirical analysis of the results.
This algorithm created a set of sentences that were used to train a
sentence classifier for this facet.

Facet 2: Dataset Used. This process is similar to the source code
process except the number of patterns and their templates are

Yousuf and Biswas, et al.

Grobid
and

TeiXML
Parsing

Relevant
Sections

Based on
Facets

... Filtering by
Syntactic
properties

and
Relations

Entities

Relations

Entities

...

TokN

Tok2

Tok1

CLS

 ...

TokN

Tok2

Tok1

CLS

Correct
Sentence

Soft
Max

CRF

O

B-HW

I-HW

Clustering
Similar
Entities

for
Each
Facet

Cornell Grasping, standard Cornell
Grasp, RGB images, Cornell grasp,..

Dataset

natural language processing, robotics,
parallel plate robotic gripper, Robotic
Grasp Detection, predicting the grasp

pose, grasping task

CUDA enabled NVIDIA GeForce GTX
645 GPU, Intel(R) Core(TM) i7-4770

CPU @ 3.40GHz
Computing Resources

Python, Theano
Language/Library

Deep Convolutional Neural Networks, vision
system, multi-modal robotic grasp detection

system, five-dimensional grasp representation

Sentence

Combined Text

TokN

Tok2

Tok1

CLS

TokN

Tok2

Tok1

CLS

... ...

Entities

Clustering
Similar

Entities for
Each Facet

Objective Task

Method

SciBERT Transformer Linear Classification SciBERT Transformer
Linear Token
Classification

Entity and Relation Extractor
Second Group (Objetive Task, Method)

First Group (Source Code, Dataset, Computing Resources, Language/library)

Title
Robotic Grasp
Detection using ...

Abstract
Deep learning has
significantly advanced ...

Introduction
Robotic grasping
lags far behind...

Experiments
For comparing our
method with others...

Conclusion
In this paper, we
presented a ...

Figure 2: The architecture of the EneRex system.

different. There are ten patterns for extracting mentions of datasets
used in a paper; seven of which depend on dependency relation tags,
as shown in Appendix C. The rest are based on whether a sentence
contains a reference, footnote, URL, or well-known dataset name.
As a first step, the pipeline extracts sentences containing words
about using dataset materials (e.g., dataset, corpus, database etc.)
and checks the next five sentences against our patterns. In practice,
sentences that contain the word “dataset” often do not contain
details of the dataset name or its usage, reserving the actual mention
for subsequent sentences.We identified dataset entities by following
several heuristic rules: a dataset name must be a noun or noun
phrase, must start with capital, but may end with digits. We used
the shortest dependency path to assign scores to each candidate
entity and empirically decided on the threshold for selecting a
candidate sentence and candidate entity. These were then used to
train a sentence classifier and NER for this facet.

Facet 5 and 6: Computing Resources, Programming Language/Library.
For these facets, our data generation script selects sentences which
contain certain seed words from a set we curated. Then, Natu-
ral Language Toolkit (NLTK) is used to tokenize, lemmatize, and
remove stop words from each sentence. The algorithm extracts
patterns using the part-of-speech (POS) tags and handcrafted rules
to identify new candidate seed words based on these patterns. Each
candidate seed word is assigned a score. If the score is over a certain
threshold, the candidate seed word is appended to the original set
of seed words, otherwise it is discarded. After identifying the can-
didate sentences, we tried an automated extraction of the entities
for these two facets. However, the results were not satisfactory
so we carried out a manual annotation of the entities within the
sentences for training the named entity recognition (NER) model
for these two facets. In this process, we tagged 600 sentences with
both computing resource and language/library entities.

CORLL: A Novel Dataset with Computing Resources and Lan-
guage/Library Entities. As there is no previous work on extract-
ing hardware-related entities, we propose a novel NER dataset for
computing resources and language/library. CORLLis comprised
of sentences containing entities that have been used and not just

mentioned in the research article, and the text span in which the
entity is present in the BILUO format. The dataset contains over 600
such salient sentences and around 1400 annotated entities overall.
Furthermore, the computing resources facet is divided into comput-
ing platform, compute time, and hardware resources entities. Table
3 shows the distribution of different facets in the CORLL dataset,
from which we can discern that some facets, like compute time, are
sparse and therefore may be challenging to extract.

Table 3: Facets and their Distribution in CORLL

Facets Count
Compute Platform 181
Compute Time 51

Hardware Resources 576
Programming Language 367
Programming Library 168

3.3 Model Training
For each of these four facets (source code links, dataset, computing
resources, language/library), we trained separate models to identify
related sentences and entities. In general, an input sentence is first
passed through a SciBERT transformer model to create contextual
embeddings. Then a linear sequence classification layer is trained on
top of that to identify it as a “correct” or “incorrect” sentence for the
respective facet. The second step is to train a NERmodel. For source
code, the correct sentences are sufficient. For the dataset, computing
resources, language/library facets, we trained three named entity
recognizers. The ground truth data for each entity are first tokenized
using spaCy. The tokens are tagged in BILUO format (beginning,
inside, last, unit, outside) and trained using a BERT + CRF based
model. The model layers are initialized with the SciBERT model,
followed by token classification layer and a CRF tagger.

During prediction, we take each sentence of a paper and feed
it through the sentence classifier first. The selected sentences are
then fed through the NER to get the final entity list. For datasets,
there can be multiple mentions of the entities in a paper so a single

Lessons from Deep Learning applied to Scholarly Information Extraction

dataset name can come up throughmultiple sentences in the system.
So we further clustered similar entities for each scholarly article.
For source code links, instead of an NER module, correct sentences
go through a URL extraction algorithm involving the sentence and
any footnotes the sentence references.

3.3.1 Objective Task and Method. For the other main group of
facets (objective task andmethod), candidate entities were extracted
using a state-of-the-art NER model and salience was achieved
by pruning the entities using syntactic properties. In particular,
EneRex took advantage of the structured full-text representation
to focus this process on only the introduction, conclusion, and sim-
ilar sections. This allows more salient entities and relations to be
extracted, thereby increasing the chances of finding a mentioned
task or method in a document. We observed that a task and method
pair often appear in a sentence connected by a ‘USED-FOR’ relation.
A task (and/or method) may be connected to the method (and/or
task) through other general or specific terms (entity or not) by
‘PART-OF’, ‘FEATURE-OF’, or ‘HYPONYM-OF’ relations. The enti-
ties and the relations are extracted by adopting a scientific entity
and relation extractor described by Wadden et al. [31]. We followed
these heuristics and an exhaustive search algorithm with our above
hypothesis to find the most salient objective task and method for
an article. EneRex clustered similar entities using fuzzy matching
to get final task and method extractions for an article.

4 EMPIRICAL EVALUATION
We evaluate each of our facet extraction tasks separately against
multiple gold datasets. Not all available gold datasets are suitable
for our purposes since they are often designed to the needs of the re-
searcher and community that generated them. Moreover, we could
not find one encompassing all the facets we are looking for. E.g.,
SciREX dataset contains only three of our targeted facets. So, we
extracted the appropriate facets from each dataset and matched our
results against them. For computing resources and language/library
dependencies, there is no established ground truth dataset avail-
able. Moreover, available datasets are limited in their capacity. We
built in-house annotated ground truth sets to address such issues.
The following subsections detail the results of component-based
evaluation for some of the facets. We also compared EneRex with
end-to-end predictions from available state-of-the-art extraction
models.

4.1 Evaluation Metrics
For each facet, we calculated precision, recall, and macro F1 for
every facet available in a particular dataset.For links to source code,
if the extracted URL matched with ground truth URL the extraction
is correct. Example of cases for links to source code is given in
Appendix D For the dataset, objective task, and method facets, we
compare the gold truth with our extracted entity clusters. We used
fuzzy string matching with a threshold value of 0.85, empirically
determined, to decide if the gold truth entity matched with any
element of the clusters. We calculated recall as how many of the
gold truth were extracted by the model and precision as correct
extractions divided by total number of clusters.

4.2 Human Annotated Dataset
We annotated 145 artificial intelligence(AI) papers from 2014-2018,
roughly 30 from each year with BRAT. We tested the extractions
of source code link, dataset usage, computing resources and lan-
guage/library against this ground truth dataset. The distribution
of different facets in the dataset are given in Appendix B. For most
papers, the first, or most prominent, related sentence was noted
because sometimes there are too many sentences that mention
an entity. On the contrary, the pipeline may extract any sentence
that mentions an entity, which is often more than one. The metric
values for all facets are presented in Table 4. A possible reason
for low precision and recall on the language/library facet is that
many entities in this set have too few characters, for instance the
programming languages C and R which can be hard to differentiate
from abbreviations and sentences with equations.

4.3 The “Papers with Code” dataset
The “Papers with Code” dataset contains state-of-the-art papers for
some research categories and highlights trends in research along
with source code. We tested the extraction of source code links and
dataset usage against a subset of the Papers with Code dataset. The
results are presented in Table 4.

For source code links, we randomly selected 980 papers from
the nearly 15,000 papers with source code in the Papers with Code
dataset. For dataset usage, we were able to download 701 papers
from 764 papers with such annotations. However, the Papers with
Code dataset has limitations that hamper the completeness of in-
formation available for each paper. Papers with Code maintains a
list of datasets and lists papers underneath each one if the paper
uses the dataset. This format often failed to capture all the dataset
usage of a paper because either Papers with Code had no listing
for a dataset used in a paper or papers simply are not listed under
datasets which they did in fact use. For example, at least one paper
in the corpus that uses four datasets (COCO, ImageNet, Kinetics,
and Cityscapes) is listed under only one of those datasets in the Pa-
pers with Code database so taking Papers with Code as the ground
truth shows only one dataset used in this paper: COCO. However,
EneRex was able to pick up all four datasets from the paper. This
gives our result a false impression of low precision.

4.4 Comparison with SciREX dataset and
model

The SciREX system introduced a dataset with 438 papers and a
model for information extraction from scientific articles. The dataset
was built with entities from the “Papers with Code” dataset. The
same limitations of the Papers with Code dataset apply here. It has
four types of entities for each paper: method, metric, task and ma-
terial. We evaluated our dataset, objective task, and method facets
on a test set from the SciREX dataset. To make an end-to-end com-
parison between SciREX model and EneRex, we extracted “salient
entity clusters” from SciREX. The “salient entity clusters” were
then used in our evaluation process to generate evaluation metrics
(section 4.1). The performance of SciREX model on SciREX dataset
by our evaluation metrics are shown on the rightmost column of
Table 4. We found that SciREX usually churns out too many en-
tity clusters which increases the recall but reduces precision and

Yousuf and Biswas, et al.

Table 4: Evaluation of EneRex on different datasets

Facet
EneRex on

Annotated Dataset
EneRex on

Papers with Code Dataset
EneRex on

SciREX Dataset

SciREX on SciREX Dataset
Salient Entity Clusters

(By our evaluation method)
Precision Recall Precision Recall Precision Recall Precision Recall

Source Code 0.29 0.40 0.43 0.50 N/A N/A
Dataset 0.58 0.77 0.37 0.71 0.53 0.79 0.39 0.88
Objective Task N/A N/A 0.21 0.59 0.17 0.85
Method Used N/A N/A 0.17 0.48 0.13 0.71
Computing Resources 0.34 0.53 N/A N/A N/A
Language/Library 0.10 0.42 N/A N/A N/A
Macro P & R 0.33 0.53 0.4 0.61 0.30 0.62 0.23 0.81

Macro F1 0.41 0.48 0.40 0.36

hampers the overall macro F1 for all facets in a dataset. In contrast,
EneRex performed well over all the facets with an 11% increase in
the F1 value over SciREX.

5 TRENDS AND KEY INSIGHTS FROM
SCHOLARLY LITERATURE

EneRex can be used to find trends and insights from a large num-
ber of papers. We attempted to answer several questions with the
output of EneRex to showcase its utility and scalability. For source
code links, dataset, method and task, the first four questions try to
find existing trends by running our pipeline on the preprocessed
arXiv CS papers. We also posed questions for usages of comput-
ing resource and language/library, specifically in the domain of AI.
These questions are based on a subset of cs.AI papers from arXiv.

Q1. What is the usage of GitHub as choice of platform to
share code? We looked into the output of the source code link to
find out how many of the papers are using GitHub as platform to
share source code. We found that the percentage of papers sharing
source code links with GitHub is increasing each year. The trend
line is presented in Figure 3a.

Q2.Does one area of research share source code linksmore
often than others? To identify and designate a paper to a research
area, we used the metadata available from arXiv, which tags each
paper with several tags indicating the research areas. We calculated
the total number of papers for each of the 40 computer science sub-
categories and found the percentage of papers publishing a source
code link. “Computation and language” has the highest percentage
with 31.64%, followed by “computer vision” with 21.26%, “artificial
intelligence” with 19.99%, and “machine learning” with 19.79%. Fig-
ure 3b summarizes the findings.

Q3. What is the most used dataset? What are the top ob-
jective tasks, methods and other datasets used along with it?
We found out that MNIST is the most used dataset in our full arXiv
corpus. In fact, papers that use MNIST have increased over time as
shown in Figure 3c.

The top used datasets after MNIST are CIFAR and ImageNet. We
present other top datasets used in these papers in Figure 3d. The top
tasks for MNIST papers are computer vision, image classification,

and object detection. Similarly we found that the top methods are
CNN, deep neural network, and GAN.

Q4. What are the research trends in sentiment analysis?
What are the top datasets used for this topic? We created a
trend line with the number of papers working on sentiment anal-
ysis, a classic research problem in the NLP community, over the
years in Figure 3e. Among the papers, Twitter is the most used
dataset, followed by Amazon, SemEval, IMDB, and Stanford. We
presented these findings in Figure 3f.

Q5.Howmuchmemory do researchers use inAI research?
EneRex‘s computing resource output contains information on the
amount of physical memory (RAM) and GPU memory used for sim-
ulations. We did not differentiate between the GPU memory and
physical memory for this use case. So, this may be the maximum
memory of the hardware platform used by each paper rather than
the actual used memory for the systems. We found out that the me-
dian physical memory has been increasing almost each year until
2017. 2019 also saw same median and same third quartile values for
memory used throughout the community which is 16GB and 32GB
respectively. A boxplot is shown in Figure 3g.

Q6. What is the market share of different hardware man-
ufacturers in the AI research community? We looked in our
computing resource output specifically for Intel, Nvidia, and AMD.
We excluded papers which mentioned two of the brands and con-
sidered papers using only one of these brands. We found that his-
torically Intel has been the strongest in market share in CS research
community. However, in 2018, Nvidia surpassed Intel as the most
used hardware platform and the upward trend is continuing, possi-
bly due to an increase in deep learning frameworks which rely on
high GPU usage. On the other hand, AMD does not hold any signifi-
cant share of the research platform. The trend is shown in Figure 3h.

Q7. What is the relative usage of popular deep learning
frameworks in AI research?We compared the usage of twomost
popular deep learning frameworks: TensorFlow and PyTorch. The
trend as paper count over time is presented in Figure 3i. Based on
our findings, TensorFlow was more popular than PyTorch before
2018. Since then PyTorch has surpassed TensorFlow with a higher

Lessons from Deep Learning applied to Scholarly Information Extraction

growth rate and has continued its climb over the following year.

Q8. Which programming language is the most popular in
AI research? We compare the number of papers for which we
extracted Java or Python for the language/library facet in Figure 3j.
Java was the more popular language until 2013. Python narrowly
beat Java in 2014 and 2015 fromwhich point Python started growing
with a sharp upward trend. In 2019, four times as many papers
mentioned Python as Java.

6 LESSONS LEARNT & FUTURE RESEARCH
Here we present lessons learnt during our attempt at entity extrac-
tion from full-text documents. Furthermore, the comparison with
multiple dataset and state-of-the-art information extraction sys-
tems also pointed out some important aspects of existing systems
in contrast to our approach. We discuss these issues below.

6.1 Lack of ground truth
The foremost difficulty involved in this type of full-text extraction is
the lack of an established ground truth dataset which hampers both
development and the evaluation of such a project. To the best of our
knowledge, the SciREX and Papers with Code datasets are the only
datasets in this area. As described, the Papers with Code dataset
is not complete so could give a false impression of low precision.
SciREX suffers from the same issues as it was built with Papers
with Code entities. Moreover, three of our facets have not been well
studied in the literature. Because of these limitations, we developed
our own training data generator to train classifiers with a weakly
supervised learning paradigm.

6.2 Issue with automated evaluation
We discovered that the ground truths in the Paper with Code dataset
are generalized versions of the entities and these are traditionally
decided by community members. The entities may not appear ex-
actly as they do in the paper. SciREX was built with these same
entities. For SciREX, we observed that 66.72% task entities, 61.16%
method entities, and 84.12% material entities do not appear as the
ground truth in the paper. However, EneRex can only extract what
is in the text of the paper. Consequently, for some papers, the auto-
mated evaluation system failed to correctly capture the comparison
between ground truth and EneRex-extracted entities. We partially
solved this issue by adopting a fuzzy string matching based evalua-
tion process (see Section 4.1) and cleaning the ground truth values.

6.3 Full Text vs Abstract vs Specific Sections
The choice of the input for each facet should be selected following
the usual structure of scholarly articles. We ingested full text to cre-
ate a representation which is structured by sections. Firstly, using
full text is necessary for the extraction of some facets as they are
generally only mentioned in the full text, especially source code,
dataset usage, hardware related entities. Secondly, working with
full text in machine learning models is sometimes too computation-
heavy. Moreover, some sections related to methodological or math-
ematical components generally introduce noise for some facets. For
objective tasks and methods, researchers tend to summarize and

mention the main objective tasks and goal in the abstract, intro-
duction and conclusion sections. With a sample set of papers, we
checked the extraction rate of EneRex when processing abstracts
alone vs processing abstracts, introductions, and conclusions and
found that the inclusion of introductions and conclusions improves
the extraction rate by 26%. We therefore struck a balance between
these practical findings and only used the sections that were most
likely to contain the specific information we seek for each facet.

6.4 Full Text Ingestion
The most common digital object format is PDF but it does not
save any structural information along with its graphical represen-
tation. Even using a state-of-the-art PDF ingestion system (Grobid),
we found instances where footnotes were not extracted properly.
References and URLs were also often incorrectly extracted. Im-
provements to this part of the ingestion system, may also improve
EneRex’s performance.

6.5 Entity Variations and Sub-Entities
EneRex often picks up different variations of the same entity. For
instance, datasets can be mentioned in abbreviated form or full form
or may have designated subsets. Objective tasks can be phrased
in different ways. Moreover, each entity can have multiple sub-
entities. We solved this issue by clustering such lists of entities and
considering them a single entity. However, we did not particularly
identify the sub-entities and main entity those belong to. Ideally, we
would like to map each variation of an entity to a standard entity
list but making this entity list remains as a future task.

6.6 Division of Tasks and Computational Load
Instead of running a single pipeline to churn out all the facets
at once, we divided our pipeline into manageable modules. The
sentence classifier part detects salient sentences first and those
sentences are fed into an NER module to extract word level entities.
Moreover, we further divided our pipeline into separate parallel
executable modules for each facet. This keeps our pipeline simpler
and annotation effort can be precise for each facet as required. How-
ever, by doing this and not merging the facets, we lose relationships
between them. Only a few of our facets have a obvious relationship
to each other such as computing resources and language/library
can be a group which sometimes have a “feature-of” or “used” rela-
tionship within the entities. Similarly dataset, objective task and
method could be combined in a relationship. We leave this task for
future expansion.

6.7 Knowledge Graph and Application
We posit that our extracted facets can be used to enrich existing
knowledge graphs and create new layers of information. Here we
will show one use case of how researchers are using such knowledge
graphs and where our developed EneRex fits into equation.

A recent article from a policy research organization focused
on measuring the development of several AI-related topics: “re-
identification”, “speaker recognition”, and “image synthesis” [10].
The authors singled out the CSET Map of Science[22] clusters for
each topic using seed papers and carried out manual analysis to map
out progress in each of these topics. However, the authors noted

Yousuf and Biswas, et al.

(a) Papers with source code hosted
on GitHub.

(b) Percentage of papers containing source
code links for various research areas.

(c) Papers per year using MNIST.

(d) Top datasets associated with theMNIST
dataset.

(e) Count of papers on sentiment analysis
over time. (f) Top datasets for sentiment analysis.

(g) Hardware memory by year.
(h) Popularity of hardware manufacturers
by paper count.

(i) Deep learning library usage (Tensor-
Flow vs PyTorch)

(j) Programming language usage (Java vs
Python)

Figure 3: Evaluation of EneRex

that such a clustering tool cannot fully encompass the subject area
and struggled to find a single representative cluster for “image
synthensis”. Moreover, to establish the quality of a research topic,
performance metrics (i.e., dataset used) need to be tracked which
was done manually in the paper. By contrast, EneRex can extract
objective task, methods, and datasets used. The first two facets can

be used to filter out a list of papers with that particular objective
task (and/or method). EneRex can also produce lists of papers
that use a specific dataset. The authors also recommended the
establishment of a continuous analysis system to keep track of
research development. Using an automated system like EneRex to
find out the interesting facets would enable us toward that goal.

Lessons from Deep Learning applied to Scholarly Information Extraction

After incorporating the extracted entities of the papers into such
a knowledge graph, the next step will be to translate the extracted
raw entities back to a standardized list of generic entities so that a
hierarchical taxonomy of the facets and sub-facets can be created
within the knowledge graph. But there is no established taxonomy
available for standardizing different scientific facets, sub-facets and
their variations, i.e., objective tasks, methods and application areas.
Most researchers adopt ad-hoc taxonomies suited to their specific
research goal. Thus this issue remains an open research problem
for future expansion.

7 CONCLUSION
This work presents an information extraction pipeline, EneRex,
developed for extracting six scientific facets from full-text scholarly
research articles: link to source code, dataset used, objective task,
method, computing resources and language/library dependency.
We demonstrated how the results from EneRex can be helpful
in discovering research trends and emerging technologies from
a large scale dataset. We evaluated EneRex on multiple datasets
and highlighted the shortcomings in existing datasets. In addition
to establishing trends, extracted entities from large scale schol-
arly datasets can be used to build knowledge graphs which have
tremendous promise for the research community. We discussed
how EneRex can complement such knowledge graphs with a use
case. This research for full-text entity extraction serves as a step-
ping stone towards automated systems for extracting entities and
updating such knowledge graphs without human effort.

ACKNOWLEDGMENTS
We are grateful to Catherine Aiken, Chengzhen Bian, Daniel Chou
and Jennifer Melot for insightful comments and helpful discussions
that shaped the research effort. This work was performed under
a subgrant agreement with the Center for Security and Emerging
Technology (CSET) at Georgetown University, subgrant number
AWD7773402-GR206518.

REFERENCES
[1] 1991. arXiv.org e-Print archive. https://arxiv.org/.
[2] 2008–2021. GROBID. https://github.com/kermitt2/grobid.
[3] 2022. The latest in Machine Learning | Papers With Code. https://paperswithcode.

com/. Accessed: 2022-02-01.
[4] Ashwin Acharya, Max Langenkamp, and James Dunham. 2022. Trends in AI

Research for the Visual Surveillance of Populations. https://doi.org/10.51593/
20200097

[5] Rexy Arulanandam, Bastin Tony Roy Savarimuthu, and Maryam A Purvis. 2014.
Extracting crime information from online newspaper articles. In Proceedings of
the second australasian web conference-volume 155. 31–38.

[6] Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and An-
drew McCallum. 2017. SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases
and Relations from Scientific Publications. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017). ACL, Vancouver, Canada, 546–
555.

[7] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language
model for scientific text. arXiv preprint arXiv:1903.10676 (2019).

[8] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be
Too Big?. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency (FAccT ’21). ACM, New York, NY, USA, 610–623.

[9] Sergey Brin. 1998. Extracting patterns and relations from the world wide web. In
International workshop on the world wide web and databases. Springer, 172–183.

[10] Jack Clark, Kyle Augustus Miller, and Rebecca Gelles. 2021. Measuring AI Devel-
opment: A Prototype Methodology to Inform Policy. https://doi.org/10.51593/
20210008

[11] Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S Weld.
2020. Specter: Document-level representation learning using citation-informed
transformers. arXiv preprint arXiv:2004.07180 (2020).

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[13] James Dunham, Jennifer Melot, and Dewey A. Murdick. 2020. Identifying the
Development and Application of Artificial Intelligence in Scientific Text. CoRR
abs/2002.07143 (2020). arXiv:2002.07143 https://arxiv.org/abs/2002.07143

[14] Sonal Gupta and Christopher D Manning. 2011. Analyzing the dynamics of
research by extracting key aspects of scientific papers. In Proceedings of 5th
international joint conference on natural language processing. 1–9.

[15] Sarthak Jain, Madeleine van Zuylen, Hannaneh Hajishirzi, and Iz Beltagy. 2020.
SciREX: A Challenge Dataset for Document-Level Information Extraction. In
ACL. 7506–7516.

[16] Shilpa Lakhanpal, Ajay Gupta, and Rajeev Agrawal. 2015. Towards Extracting
Domains from Research Publications.. In MAICS. 117–120.

[17] Yi Luan. 2018. Information extraction from scientific literature for method
recommendation. arXiv preprint arXiv:1901.00401 (2018).

[18] Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-Task
Identification of Entities, Relations, and Coreference for Scientific Knowledge
Graph Construction. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Brussels,
Belgium, 3219–3232. https://doi.org/10.18653/v1/D18-1360

[19] Sepideh Mesbah, Christoph Lofi, Manuel Valle Torre, Alessandro Bozzon, and
Geert-Jan Houben. 2018. TSE-NER: An Iterative Approach for Long-Tail Entity
Extraction in Scientific Publications. In SEMWEB.

[20] Zara Nasar, SyedWaqar Jaffry, and Muhammad Kamran Malik. 2018. Information
extraction from scientific articles: a survey. Scientometrics 117, 3 (2018), 1931–
1990.

[21] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[22] Ilya Rahkovsky, Autumn Toney, KevinW. Boyack, Richard Klavans, and Dewey A.
Murdick. 2021. AI Research Funding Portfolios and Extreme Growth. Frontiers in
Research Metrics and Analytics 6 (2021). https://doi.org/10.3389/frma.2021.630124

[23] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[24] Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011. Named entity recognition in
tweets: an experimental study. In Proceedings of the 2011 conference on empirical
methods in natural language processing. 1524–1534.

[25] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, and
Kuansan Wang. 2015. An Overview of Microsoft Academic Service
(MAS) and Applications. In WWW - World Wide Web Consortium (W3C).
https://www.microsoft.com/en-us/research/publication/an-overview-of-
microsoft-academic-service-mas-and-applications-2/

[26] Yuka Tateisi, Tomoko Ohta, Sampo Pyysalo, Yusuke Miyao, and Akiko Aizawa.
2016. Typed Entity and Relation Annotation on Computer Science Papers. In
Proceedings of the Tenth International Conference on Language Resources and Eval-
uation (LREC’16). European Language Resources Association (ELRA), Portorož,
Slovenia, 3836–3843. https://aclanthology.org/L16-1607

[27] Dominika Tkaczyk, Andrew Collins, Paraic Sheridan, and Joeran Beel. 2018.
Machine learning vs. rules and out-of-the-box vs. retrained: An evaluation of
open-source bibliographic reference and citation parsers. In Proceedings of the
18th ACM/IEEE on joint conference on digital libraries. 99–108.

[28] Dominika Tkaczyk, Paweł Szostek, Mateusz Fedoryszak, Piotr Jan Dendek, and
Lukasz Bolikowski. 2015. CERMINE: Automatic Extraction of Structured Meta-
data from Scientific Literature. Int. J. Doc. Anal. Recognit. 18, 4 (Dec. 2015),
317–335.

[29] Chen-Tse Tsai, Gourab Kundu, and Dan Roth. 2013. Concept-based analysis of
scientific literature. In Proceedings of the 22nd ACM international conference on
information & knowledge management. 1733–1738.

[30] Yuli Vasiliev. 2020. Natural Language Processing with Python and SpaCy: A
Practical Introduction. No Starch Press.

[31] David Wadden, Ulme Wennberg, Yi Luan, and Hannaneh Hajishirzi. 2019. Entity,
Relation, and Event Extraction with Contextualized Span Representations. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). ACL, Hong Kong, China, 5784–5789.

https://arxiv.org/
https://github.com/kermitt2/grobid
https://paperswithcode.com/
https://paperswithcode.com/
https://doi.org/10.51593/20200097
https://doi.org/10.51593/20200097
https://doi.org/10.51593/20210008
https://doi.org/10.51593/20210008
https://arxiv.org/abs/2002.07143
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.3389/frma.2021.630124
https://www.microsoft.com/en-us/research/publication/an-overview-of-microsoft-academic-service-mas-and-applications-2/
https://www.microsoft.com/en-us/research/publication/an-overview-of-microsoft-academic-service-mas-and-applications-2/
https://aclanthology.org/L16-1607

Yousuf and Biswas, et al.

A MODEL DETAILS
For sentence classifiers, we initialized the model with SciBERT
base [7]. We isolated the candidate sentences from our training
data generation script and randomly sampled twice as many in-
correct sentences from the papers. The train, dev and test split is
(85%:10%:5%). For dataset and source code links, We trained the
models for 3 epochs using AdamW optimizer with learning_rate 2e-
5 and seed being 1. The batch size was 8. For computing resources
and language/library, we trained the models for 10 epochs with
batch size 32. For the dataset named entity recognizer, we tokenized
the candidate sentences from our weakly supervised learning with
Spacy [30], tagged the tokens in BILUO format and trained a trans-
former model, initialized with SciBERT for 3 epochs with batch
size 16. The maximum sequence length is 256 for both cases. For
computing resource and language/library, we trained the model
with CORLL dataset with batch size 32.

To evaluate, we trained the SciREX model ourselves following
the guideline in the paper. We trained the main model for 20 epochs
and the coreference model for 10 epochs, using 10 and 4 as patience
value respectively. To ensure an even comparison, we identified the
salient entity clusters from the dataset and feed them into our own
evaluation metric which used a fuzzy string matching. All of our
training and prediction is using a NVIDIA Tesla P100 GPU with
16GB memory.

B ANNOTATED DATASET STATISTICS
We annotated a dataset, specifically for the evaluation of our com-
puting resource and language/library facets. The distribution of
different facets inside this dataset are presented below.

Table 5: Facets and their distribution in the annotated
ground truth for evaluation

Facet Type Percentage
Datasets 50.34%

Source Code 6.89%
Computing Resources 28.97%
Language/Library 40.69%

C SYNTACTIC PATTERN CREATION
For developing the syntactic patterns, we focused on four major
CS areas in which discussion of these facets is more prevalent:
Computer Vision, Machine Learning, Hardware Architecture, and
Artificial Intelligence. Each of these areas can be identified via arXiv
metadata tags. To design the patterns, we selected 80 documents
for each of the facets (20 each from the four aforementioned areas)
via some sample seed words related to that facet. As a next step, we
isolated the sentences containing these seed words and identified
their syntactic properties and patterns. The patterns and templates
for each of the facets created by this process are the building blocks
of our syntactic pattern based extraction algorithms. For source
code links, only sentences sufficed as ground truth. For dataset, com-
puting resources and language/library, we required both sentence
level and entity level ground truth to train our models.

Table 6: Syntactic Patterns for Source Code Extraction

Pattern Example
(subj) (*) (root) it we model implementation source code

supplementary material
(root) is are find release
(root) (*) (obj) Github website open-source implementa-

tion project page supplementary material
(adj/adv) publicly available online opensource open-

source supplementary

Table 7: Syntactic Patterns for Dataset Extraction

Pattern Example
(subj) (*) (root) performance paper we dataset experi-

ment
(root) make utilize adopt create construct in-

clude consist perform introduce contain
feed is use implement evaluate release
focus conduct constitute

(root) (*) (obj) database dataset github website repos-
itory online collection benchmark nu-
merical study

(adj/adv) publicly available online large-scale con-
structed synthetic dataset popular con-
structed

(root) (*)
(which/that) (verb)

generate provide utilize adopt create con-
struct include consist introduce contain
feed use release

(root) (*) (number) include consist contain constitute com-
pose comprise

(root) (*) (adj
clause) (number)

compose consist comprise

D EVALUATION METRICS
For links to source code, we considered an extraction as correct if
at least the first part of the path (excepting the network location)
matches the ground truth. For example, we consider the following
case as correct.

ground truth:“github.com/pwc/pwc-data”
extraction: “github.com/pwc”

But the following extraction is not correct:
ground truth:“github.com/pwc/pwc-data”
extraction: “github.com”

	Abstract
	1 Introduction
	2 Scientific Facets in Research Articles and Related Works
	3 The EneRex system
	3.1 Data Ingestion
	3.2 Training Data Generation
	3.3 Model Training

	4 Empirical Evaluation
	4.1 Evaluation Metrics
	4.2 Human Annotated Dataset
	4.3 The ``Papers with Code'' dataset
	4.4 Comparison with SciREX dataset and model

	5 Trends and key insights from scholarly literature
	6 Lessons Learnt & Future Research
	6.1 Lack of ground truth
	6.2 Issue with automated evaluation
	6.3 Full Text vs Abstract vs Specific Sections
	6.4 Full Text Ingestion
	6.5 Entity Variations and Sub-Entities
	6.6 Division of Tasks and Computational Load
	6.7 Knowledge Graph and Application

	7 Conclusion
	Acknowledgments
	References
	A Model Details
	B Annotated Dataset Statistics
	C Syntactic Pattern Creation
	D Evaluation Metrics

