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Abstract
School redistricting is an optimization problem of

geographically partitioning students to public schools.
A school board chooses the set of criteria used to
compare and evaluate redistricting plans, which often
include measures and constraints such as compactness of
school attendance zones (SAZs), proximity of students
to their schools, connectivity of the SAZs, and so on.
Connectivity has been heavily explored in redistricting
literature. In this work, we develop an integer nonlinear
programming model that expresses SAZ connectivity
exactly using the Laplacian matrices of SAZs. We
also offer another formulation that indirectly applies
the connectivity constraint via lazily added cutting
planes. The latter formulation may be seen as more
computationally viable with existing software.

Index Terms—school redistricting, integer programming,
multiobjective optimization, graph connectivity, graph
Laplacian matrix

1. Introduction

School redistricting is a continuing process of geo-
graphically partitioning students to public schools. Often
at the city or county level in the United States, a school
board is responsible for deciding how to redistrict. The
process is invoked for a number of reasons including the
building of a new school, the decommissioning of an
old school, local population growth or decline, changes
in schools’ available resources, attempts at improving
equality and diversity, etc[1]. Thus, there are many
natural reasons to change the schools that students attend.

Changing students’ schools is a highly political
process. Statistically, parents are willing to pay more in
housing costs in return for better test scores[2]. This
reflects general perceptions that some schools are better
than others, and it is a major factor in how parents shop
for housing. Children too, of course, are stakeholders in
the redistricting process. It is often an objective of school

planners to minimize student displacement in new school
district plans. Administratively, the school board can
handle this by only enacting the new plans as students
transition to the next school level.

Redistricting is commonly referred to as a partitioning
problem, a clustering problem, and an assignment
problem. In school redistricting, school planning areas
(SPAs) are assigned to school attendance zones (SAZs).
SPAs are often neighborhoods or smaller geographic units
that a school board has decided on. The SPAs assigned
to an SAZ make up the population of students that will
attend a school.

Fair redistricting is then a problem of “optimally”
choosing such an assignment according to an agreed
upon set of criteria. Common criteria in school
redistricting include compactness, student proximity,
staying within schools’ student capacities, extending
this capacity constraint to future projected enrollments,
and ensuring that SAZs are geographically connected
(contiguous). Additionally, school planners increasingly
consider ethical criteria, especially as it relates to
equitability: racial diversity in schools, socioeconomic
diversity, language diversity, student displacement, etc.

Some of these criteria share a foundation in the
related problem of political redistricting. Compactness
arises from the desire for unbiased districting as well
as transportation costs. Proximity measures also rein-
force minimizing costs and assigning students to nearest
schools, when possible. Connectivity constraints resem-
ble those seen in addressing political gerrymandering.
However, the key difference between the two is that
schools act as fixed points in the redistricting problem.
Especially as it pertains to busing, students farther away
should not be assigned to a school when none of the
other children in between will not also attend that school.

Redistricting as an assignment problem is one of
combinatorial optimization. The search space has
exponentially many feasible solutions. Redistricting and
several of its separate objectives were proven to be



NP-hard by Altman in 1997[3]. Puppe and Tasnádi later
proved fair redistricting was NP-complete in 2008[4].
So, not only is the general problem of redistricting NP-
complete, but the connectivity requirement in redistricting
is at least NP-hard as well[3].

It is this intractibility that has led many past researchers
to leave connectivity as a “desirable” feature in a
solution, but not considered, or one that is only solved
approximately[1]. In our work, we introduce an integer
nonlinear programming model that can achieve exact
connectivity in the problem of school redistricting via
a graph’s algebraic connectivity, as defined by a graph
Laplacian matrix.

2. Related works

Various redistricting formulations have been addressed
with integer linear programming[5] and many heuristics
such as hill climbing[6], simulated annealing, and tabu
search[7].

Early redistricting formulations would ignore con-
nectivity during the solving phase and repair it in
postprocessing, like in the Hess model[5]. Some other
works consider connectivity, but use formulations that are
not globally sufficient[1]. It is common for heuristic
techniques to try to preserve connectivity by starting
with a known good solution and only making assignment
exchanges that preserve it. Other heuristic methods may
try to repair connectivity during the local search phase
[8].

Drexl and Haase[9], in a sales territory design
problem, introduced a formulation of connectivity using
an exponential number of linear constraints. Their for-
mulation has seen continued use in sales territory design:
[10] and [11] both apply Drexl and Haase’s constraints
for connectivity in their heuristic methods. It has slowly
permeated into works on political redistricting[12] and
more recently school redistricting[8]. The exponential
number of constraints prevents any formulation from
directly expressing exact connectivity in large problems.

Shirabe developed an exact method of contiguity via
a polynomial number of constraints based on network
flow [13]. However, he concluded that “for many
practical applications, it is necessary to rely on heuristic
techniques” due to the combinatorial complexity. It is
possible this is no longer the case as new network flow
based redistricting models arise[14].

There are also formulations of graph connectivity that
have likely never been used in redistricting. The algebraic
connectivity of a graph, the second smallest eigenvalue
of its Laplacian matrix, can determine whether the graph
is connected[15]. However, there is no closed-form way
of expressing it, which is necessary in currently existing
integer programming solvers.

In this work, we propose an integer nonlinear
programming model for school redistricting. We draw
inspiration from the subtour elimination constraints seen
in the traveling salesman problem to combine Drexl
and Haase’s constraints with those based on a graph’s
algebraic connectivity.

3. School redistricting problem

The public school district of a city or county in the
United States may typically be decomposed into school
attendance zones (SAZs), which are clusters of school
planning areas (SPAs). The SPAs are often defined
at a neighborhood or smaller level by a school board.
Although SPAs may sometimes need to administratively
change, we assume that these units and their geographic
boundaries are fixed. This preexisting framework makes
redistricting a problem of assigning SPAs to SAZs at
each school level: elementary, middle, and high. We also
assume that all public schools in the district have K-5,
6-8, and 9-12 grade levels, respectively. This assumption
implies separability for redistricting at each school level.
Caro et al. consider school redistricting in a city where
not all schools have the same splitting of grades[1].

3.1. Problem formalization

Let the population data

P =
{(

x, y, 0g, 1g, . . . , 12g, Eg, Mg, Hg
)}

,

be the set of SPAs where(x, y) are geographic coordinates
of the approximate geographic center of the SPA,0g,

1g, . . ., 12g are the population sizes of grades 0 (K),
1, . . ., 12, respectively, andEg, Mg, Hg are the 5-year
projected enrollments for each of the school levels. The
total number of SPAs isn = |P|.

The school data for elementary, middle, and high
schools areES, MS, HS, respectively. Let eachS =
{

(x, y, c)
}

, where(x, y) are the geographic coordinates
of a school andc is its student capacity. LetX denote
any of E, M , or H so thatXS represents a dataset of
a given school level. LetEnS = |ES|, MnS = |MS|,

HnS = |HS| be the numbers of the different types
of schools (or equivalently,XnS = |XS|). For some
1 ≤ i ≤ XnS , let (Xxi, Xyi, Xci) denote the data of
schooli.

To manage the requirement of geographically con-
nected SAZs, letG be the (n × n) adjacency matrix

Gij =

{

1, SPAsi andj are deemed adjacent,
0, otherwise.

Here, “adjacent” means having a common border of
more than just a point, which is also referred to as rook
adjacency in geospatial literature[8].



Denoting student planning areai by σi =
(

xi, yi,

0gi, 1gi, . . ., 12gi, Eg, Mg, Hg
)

, an acceptable school
districting is three partitionsEZ, MZ, HZ of P of
respective sizesEnS , MnS , HnS , where each subset
(SAZ) of P

XZi =
{

σj1 , . . . , σj
X mi

}

, i = 1, . . . , XnS ,

and Xmi is the number of SPAsm assigned to school
i of type X . Each SAZXZi is defined by its school
planning area index setXIi =

{

j1, . . ., j
X

mi

}

.

3.2. Core model

The school attendance zonesXZi in a partition
must be geographically connected, compact, and satisfy
physical and political constraints. We optimize on
compactness and approximate student travel distances
subject to constraints on connectivity of SAZs, student
population with respect to capacity, and 5-year projected
populations with respect to capacity. There are also
viability constraints protecting against non-assignment
and multiple assignment of a SPA as well as assignment
of a SPA containing a school to another school.

The attendance at schooli of type E, M , H is,
respectively,

EAi =
∑

j∈
E
Ii

5
∑

k=0

kgj ,

MAi =
∑

j∈
M

Ii

8
∑

k=6

kgj ,

HAi =
∑

j∈
H
Ii

12
∑

k=9

kgj.

The physical capacity constraints of the schools are
therefore

(1 − τ)Eci ≤ EAi ≤ (1 + τ)Eci, i = 1, . . . , EnS ,

(1 − τ)M ci ≤ MAi ≤ (1 + τ)Mci, i = 1, . . . , MnS ,

(1 − τ)Hci ≤ HAi ≤ (1 + τ)Hci, i = 1, . . . , HnS,

and the capacity constraints from the 5-year projected
enrollment would be

(1 − τ)Eci ≤
∑

j∈EIi

Egj ≤ (1 + τ)Eci, i = 1, . . . , EnS ,

(1−τ)Mci ≤
∑

j∈
M

Ii

Mgj ≤ (1+τ)M ci, i = 1, . . . , MnS,

(1 − τ)Hci ≤
∑

j∈
H
Ii

Hgj ≤ (1 + τ)Hci, i = 1, . . . , HnS ,

whereτ is a parameter chosen by the school board as a
tolerance for going under or over school capacity (e.g.
τ = 0.2).

The partition subsetsXZi and index setsXIi may be
conveniently recognized as binary variables

XWij =

{

1, if SPA j is assigned to SAZi,
0, otherwise,

for i = 1, . . ., EnS (X = E), i = 1, . . ., MnS (X = M ),
i = 1, . . ., HnS (X = H), and j = 1, . . ., n. For
viability, each of the 0-1 matricesXW must have exactly
one 1 in each column, meaning each SPA must be
assigned to a single SAZ:

XnS
∑

i=1

XWij = 1, j = 1, . . . , n.

The school planning areas that contain a school must also
be assigned to their corresponding SAZ. These constraints
are

XWij = 1 if SPA j contains schooli,

for i = 1, . . . , XnS , and j = 1, . . . , n. This anchors
SAZs to the schools they represent.

Define the population barycenter of school attendance
zoneXZi for each school typeX as

E(x̄i, ȳi) =
∑

j∈EIi

(

5
∑

k=0

kgj

/

EAi

)

(xj , yj),

M (x̄i, ȳi) =
∑

j∈MIi

(

9
∑

k=6

kgj

/

MAi

)

(xj , yj),

H(x̄i, ȳi) =
∑

j∈HIi

(

12
∑

k=10

kgj

/

HAi

)

(xj , yj).

The barycenter is a population-based centroid of the SAZ
that weights each SPA’s contribution to a school’s total
attendance.

Achieving optimal SAZ compactness is then similar to
K-means clustering of the SPA centers using the 2-norm.
Achieving student proximity to schools uses the 1-norm,
which captures travel time better than the Euclidean
2-norm distance. Composing these two objectives, assign
SPAsσj to XnS SAZs XZi for each school levelX to
minimize

Φ(EW, MW, HW ) =
EnS
∑

i=1

∑

j∈EIi

∥

∥(xj , yj) − E(x̄i, ȳi)
∥

∥

2

2
+

M nS
∑

i=1

∑

j∈MIi

∥

∥(xj , yj) − M (x̄i, ȳi)
∥

∥

2

2
+

H
n

S
∑

i=1

∑

j∈
H
Ii

∥

∥(xj , yj) − H(x̄i, ȳi)
∥

∥

2

2
+

γ

(

E
n

S
∑

i=1

∥

∥(Exi, Eyi) − E(x̄i, ȳi)
∥

∥

1
+



M
n

S
∑

i=1

∥

∥(Mxi, Myi) − M (x̄i, ȳi)
∥

∥

1
+

HnS
∑

i=1

∥

∥(Hxi, Hyi) − H(x̄i, ȳi)
∥

∥

1

)

,

subject to the capacity, projected enrollment, connectivity,
and viability constraints. The first three terms correspond
to compactness and the last three correspond to proximity.
The parameterγ ≫ 1 weights the relative importance
of proximity to compactness. Note that the objective is
separable into three disjoint minimizations for each of the
school levels.

There are several ways of formulating the compactness
and proximity objectives. For example, promixity may be
written as the distances between SPA centers and schools
rather than the single SAZ barycenter to school distance
as above. One could also formulate a multiobjective
optimization problem with a compactness objective and
a proximity objective; however, each Pareto optimal
solution of this multiobjective formulation corresponds to
some choice ofγ in the above formulation.

The binary variables simplify the expressions and
calculations. For instance, if a population vectorEP

of length n were precomputed withjth element being
∑5

k=0 kgj, then the capacity constraint on schooli

(1 − τ)Eci ≤ EAi ≤ (1 + τ)Eci

would become simply

(1 − τ)Eci ≤ (EWEP )i ≤ (1 + τ)Eci

in terms ofEW . Similarly, takeEQ to be another vector
of lengthn with jth element beingEgj . Then, the 5-year
projected enrollment constraint on schooli becomes

(1 − τ)Eci ≤ (EWEQ)i ≤ (1 + τ)Eci.

Let XBx ∈ IRn be precomputed withjth element
being XPjxj , and XBy ∈ IRn with jth element being

XPjyj . Then the population barycenter simplifies to

X(x̄i, ȳi) =

(

(XW XBx)i

(XW XP )i

,
(XW XBy)

i

(XW XP )i

)

.

SAZ connectivity can be expressed using the Laplacian
matrix of the graph formed by the SPAs. Lete = (1,
. . ., 1) ∈ IRn and diag(Ge) be then × n diagonal degree
matrix whose diagonal elements are the degrees of the
nodes in the graphG with adjacency matrixG. The
Laplacian matrix of the graphG is defined as

Λ(G) = diag(Ge) − G,

and G is connected if and only ifG is irreducible.
Also, G is irreducible if and only if the second smallest
eigenvalue ofΛ(G) is not zero. The second smallest
eigenvalue of the graph Laplacian matrix is known as the
graph’s algebraic connectivity, or its Fiedler value[15].

With this, the SAZXZi is connected if and only if the
second smallest eigenvalue of the graph Laplacian

diag
(

G
X
Ii,XIi

e
)

− G
X
Ii,XIi

of the subgraph ofG corresponding toXZi is not
zero; e ∈ IRXmi here. The graph Laplacian matrix is
symmetric and positive semidefinite. If we order its
real-valued nonnegative eigenvalues asλ1, λ2, . . ., λ

X
mi

(smallest to largest), the connectivity constraints for the
SAZs can be taken as

0.001 − λ2

(

diag
(

G
X
Ii,XIi

e
)

− G
X
Ii,XIi

)

≤ 0

for i = 1, . . . , XnS .
In practice, the following model can be solved

separately in the binary variablesEW , MW , and HW

since the objective functionΦ is separable, and the school
districting constraints for elementary, middle, and high
schools are completely independent of each other. Having
said this, the full problem is now stated.

For convenience, define population vectorsEP , MP ,

HP of length n with jth element being
∑5

k=0 kgj ,
∑8

k=6 kgj,
∑12

k=9 kgj, respectively. Define 5-year
projected population vectorsEQ, MQ, HQ of length n

with jth element beingEgj, Mgj , Hgj , respectively. The
variables areEW ∈ {0, 1}En

S
×n, MW ∈ {0, 1}Mn

S
×n,

andHW ∈ {0, 1}HnS×n. The optimization problem is

min
EW,M W,HW

Φ
(

EW, MW, HW
)

subject to

(1 − τ)Xci ≤ (XWXP )i ≤ (1 + τ)Xci,

∀X ∈ {E, M, H}, ∀i = 1, . . . , XnS , (1)

(1 − τ)Xci ≤ (XWXQ)i ≤ (1 + τ)Xci,

∀X ∈ {E, M, H}, ∀i = 1, . . . , XnS , (2)

0.001− λ2

(

diag
(

G
X
Ii,XIi

e
)

− G
X
Ii,XIi

)

≤ 0,

∀X ∈ {E, M, H}, ∀i = 1, . . . , XnS , (3)

XnS
∑

i=1

XWij = 1,

∀X ∈ {E, M, H}, ∀j = 1, . . . , n, (4)

XWij = 1 if SPA j contains schooli,

∀X ∈ {E, M, H}, ∀i = 1, . . . , XnS , ∀j = 1, . . . , n.(5)

Equation (1) is the capacity constraint that bounds
student attendance at each of the schools. Equation
(2) is the 5-year enrollment projection constraint that
similarly bounds schools’ expected student population
in the future. Equation (3) is the SAZ connectivity
constraint that represents geographic connectivity exactly
for the SPAs in each SAZ. Equation (4) is a viability
constraint requiring that each SPA belong to exactly one
SAZ for each school level, preventing non-assignment
and multiple assignment. Lastly, equation (5) is the other



viability constraint that requires that schools are assigned
their own SPAs.

3.3. Reformulation for computability

The SAZ connectivity constraint above (equation (3))
presents computational challenges using current integer
programming solvers. There are no existing non-
commercial software that the authors know of which
explicitly support solving a model with this nonlinear,
black-box constraint.

However, some integer programming solvers support
user callback functions. These have been used by
solutions to the traveling salesman problem (TSP) to
eliminate subtours[16]. They evalute a feasibility
constraint outside of the solver at believed solution nodes
in the branch and bound tree. The user may then
append violated cutting planes lazily, updating the model.
With inspiration from the TSP, we can introduce another
connectivity formulation as the cutting planes and use the
eigenvalue constraint in the feasibility check.

The formulation for graph connectivity used by Drexl
and Haase in sales territory design has an exponential
number of linear constraints[9]. For brevity, denote the
nodes of the graphG by the student planning area indices,
and for∅ 6= S ⊂ {1, . . ., n}, define the neighborhood of
S by

N(S) = S ∪
{

m | m is adjacent to somej ∈ S
}

,

i.e., N(S) represents all student planning areas either
represented byS or adjacent to some student planning
area represented byS. Then, the SAZsXZi are
connected if∀i = 1, . . ., XnS , ∀ℓ = 1, . . ., n, ∀S ⊂ {1,
. . ., n}\N({ℓ}) 6= ∅,

∑

j∈N(S)\S

XWij −
∑

j∈S∪{ℓ}

XWij ≥ 1 − (|S| + 1),

which isO(XnSn2n) constraints.
Note that these subset-based constraints are violated

exactly when each SPA represented inS is assigned to
SAZ i, as well as another SPAl, but no neighbors of
S are also assigned to that SAZ. The formulation is the
same as written by Drexl and Haase with the exception
of adding a term forl to both sides of the inequalities,
which is more readily useful to redistricting as opposed
to routing. For example, a disconnected SPA,l, assigned
to a larger connected component of the SAZ,S, can be
explicitly formed into a violated constraint.

These linear subset-based constraints express connec-
tivity exactly if all can be incorporated into the model
directly. Taking any subset of the constraints constitutes
an approximation to connectivity, and this is indeed how
some have approached graph connectivity in past integer
programs [9]. Combining the eigenvalue constraints
with these subset constraints, we obtain an improved

optimization model with a way of achieving connected
SAZs exactly that’s more suitable to existing software.

4. Discussion

Previous districting methods of addressing compactness
include those based on sums of distances and those based
on perimeter. The compactness part ofΦ is similar to the
former class, but is based on distances between SPAs and
their “barycenter," a centroid of the SAZ. This measure
offers a variable center point rather than taking the
distances to their assigned school, allowing for globular
SAZs whose centers are not fixed. This may also be
preferable to methods based on the perimeter of an SAZ,
as those are based on the shape of SPAs. Perimeter-based
compactness is known to unfairly penalize highly irregular
boundaries when this is generally out of school planners’
immediate control[17]. This more expressive form of
compactness comes at the cost of nonlinearity, which
presents technical challenges with currently available
integer programming software.

A similar argument may be made regarding the
chosen proximity metric. Taking distances between SPAs
and schools is an equally viable option; however, the
barycenter captures part of the surrounding population
density. An unweighted metric based in SPA-school
distances favors SPA location and quantity, whereas
barycenter-school distances factor in the students.

Incorporating the eigenvalue formulation of graph
connectivity in districting is one of the main contributions
of this work. These nonlinear constraints, linear in the
number of schools, are relatively quick to compute, but
not directly viable with available integer programming
solvers. Hence, we propose a cutting planes technique
that is capable of closing off disconnected districting
plans as necessary during optimization.

This formulation of linear constraints for connectivity
leads to a natural algorithm of identifying violated SAZ
connectivity. As the objective will tend to produce
compact SAZs, any disconnected SAZ will tend to have
a connected component in the corresponding subgraph
that contains a majority of its assigned SPAs. Using the
variablesXW , choose this largest connected component
to be S. Breadth-first search can be used to construct
S in O(Xmi), linear in the number of SPAs assigned to
the school. Since the SAZ is disconnected, any other
assigned SPA not part ofS may be chosen asl. The
resulting constraint is verifiably violated and updates the
model.

There are also considerably many more ways of
selecting from the exponentially many linear constraints.
If the chosen constraint above is violated, then it is also
violated for each subset ofS too. One could just as
easily take multiple constraints for each choice ofl.



The callback must also handle an edge case of having
too few eigenvalues. Equation (5) ensures that each
SAZ has at least one assigned SPA, but a solver might
intermediately have only that single SPA assigned. The
corresponding Laplacian matrix of this SAZ only has one
eigenvalue. The trivially connected SAZ has no “second
smallest” eigenvalue.

There are still computational challenges even with this
formulation that enables exact connectivity. While some
mixed-integer nonlinear programming solvers support
specific forms of nonlinear objectives, such as Gurobi
and Couenne,Φ is not known to have one of these
supported forms, largely due to the quotient formed by
the barycenter formulation. Options for solving this
optimization problem include seeking out a solver that
meets the required conditions, developing new algorithms
to meet these conditions, or settling for heuristically
solving the problem to a local optimum instead.

The school data itself and parameters chosen can be
limitations to feasibility too. For instance, if there are
many schools, then it may be difficult or impossible
or find a feasible solution that satisfies the capacity
constraints. This arises from requiring connectivity of
SPAs, but the schools are too densely colocated. An
integer programming solver will continue to extensively
explore solutions in the case where capacity cannot
be satisfied; relaxingτ to a greater tolerance may be
necessary to find feasible solutions.

5. Conclusion

We propose a model for school redistricting that
optimizes compactness of school attendance zones (SAZs)
and proximity of students to assigned schools while
satisyfing physical and political constraints. Inspired by
the traveling salesman problem, the constraint of SAZ
connectivity can be solved exactly. The use of cutting
planes to close off disconnected solutions makes the
problem more computationally viable and is a technique
that may be extended to other geographic partitioning
problems requiring geographic connectivity.
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