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ARTICLE INFO ABSTRACT

Keywords: Accurate forecasts could enable more informed public health decisions. Since 2013, CDC has worked with ex-
Influenza ternal researchers to improve influenza forecasts by coordinating seasonal challenges for the United States and
EPidemi?S the 10 Health and Human Service Regions. Forecasted targets for the 2014-15 challenge were the onset week,
Forecasting peak week, and peak intensity of the season and the weekly percent of outpatient visits due to influenza-like
erzggit;Ugn illness (ILI) 1-4 weeks in advance. We used a logarithmic scoring rule to score the weekly forecasts, averaged the

scores over an evaluation period, and then exponentiated the resulting logarithmic score. Poor forecasts had a
score near 0, and perfect forecasts a score of 1.

Five teams submitted forecasts from seven different models. At the national level, the team scores for onset
week ranged from < 0.01 to 0.41, peak week ranged from 0.08 to 0.49, and peak intensity ranged from < 0.01
to 0.17. The scores for predictions of ILI 1-4 weeks in advance ranged from 0.02-0.38 and was highest 1 week
ahead. Forecast skill varied by HHS region.

Forecasts can predict epidemic characteristics that inform public health actions. CDC, state and local health
officials, and researchers are working together to improve forecasts.

1. Introduction experiences, these data are used for situational awareness and assessing

needs for the near future. However, these data lag behind real-time flu

Preparing for and responding to influenza epidemics and pandemics
are critical functions of public health agencies. The Centers for Disease
Control and Prevention (CDC) currently tracks influenza activity
through a nationwide influenza surveillance system (Centers for Disease
Control and Prevention, 2014a). Together with information on historic

activity and give no direct insight on what might happen next. Accu-
rate, timely, and reliable influenza forecasts could enable more in-
formed public health and emergency response decisions during both
influenza seasons and pandemics, including the development and use of
pharmaceutical (e.g., vaccine and influenza antivirals) and non-
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pharmaceutical (e.g., school closures and social distancing, travel re-
strictions) countermeasures, communication, deployment of Strategic
National Stockpile assets (e.g., ventilators), and hospital resource
management (e.g., inventory and staff management) (Chretien et al.,
2014).

CDC’s Influenza Division began working in 2013 to advance influ-
enza forecasting efforts by engaging with members of the scientific
community who were developing innovative methods to predict influ-
enza activity (Brooks et al., 2015; Shaman et al., 2009; Shaman and
Karspeck, 2012; Kandula et al., 2017; Tizzoni et al., 2012; Balcan et al.,
2009; Nsoesie et al., 2014). This effort launched with the “Predict the
Influenza Season Challenge,” a contest which encouraged participants
to predict the timing, peak, and intensity of the 2013-14 influenza
season using social media data (e.g., Twitter, internet search data, web
surveys, etc.) along with data from CDC’s routine flu surveillance sys-
tems (Centers for Disease Control and Prevention, 2013). Eleven teams
participated in the original CDC competition, and team members de-
veloped their own models to predict flu activity based on a variety of
data sources (Biggerstaff et al., 2016). This challenge identified a
number of research gaps limiting forecasting model development,
evaluation, and adoption by decision-makers, including the need to
develop standardized metrics to assess forecast accuracy and standar-
dized ways to communicate forecasts and their uncertainty.

To address these gaps, CDC and original challenge participants
worked together through a collaborative challenge to forecast the
2014-15 influenza season. The objectives of this challenge were to
continue to improve the accuracy of influenza forecasts, develop stan-
dardized metrics to assess and communicate forecast accuracy and
uncertainty, and to identify the types of decisions best aided by fore-
casts. Challenge participants were asked to forecast seasonal milestones
(the onset, peak, and intensity) and short-term activity during the
2014-15 influenza season for the United States as a country and for
each of the 10 Health and Human Services (HHS) regions. In this report,
we present the results and lessons learned from the challenge.

2. Methods

Teams that participated in CDC’s 2013-14 Predict the Influenza
Season Challenge were invited to continue to work with CDC to provide
forecasts for the 2014-15 influenza season in the United States. This
group of teams and CDC collaboratively defined a set of forecast targets
and established evaluation metrics to assess accuracy prior to the
challenge. Participating groups then submitted weekly forecasts for the
2014-2015 influenza season beginning October 20, 2014, and ending
May 25, 2015. Forecasting targets were selected to ensure they were
feasible for forecasting models and provided information for public
health decision making.

All forecasting targets were based on data from the U.S. Outpatient
Influenza-like Illness (ILI) Surveillance Network (ILINet). ILINet pro-
vides accurate information on the timing and impact of influenza ac-
tivity each season and consists of more than 2000 outpatient healthcare
providers around the country who report data to CDC weekly on the
number of patients with ILI and the total number of patients seen in
their practices (Centers for Disease Control and Prevention, 2014a;
Brammer et al., 2011). ILINet data are based on a Morbidity and
Mortality Weekly Report (MMWR) surveillance week that starts on
Sunday and ends on Saturday; data are reported online through CDC’s
FluView surveillance report the following Friday (or Monday if federal
holidays delay publication) (Centers for Disease Control and
Prevention, 2014b). Further information on ILINet is available else-
where (Centers for Disease Control and Prevention, 2014a; Brammer
et al., 2011). Teams could use any other data sources available to them,
including digital (e.g., Twitter data, mining internet search term data,
Internet-based surveys), meteorological, and traditional surveillance.

The minimum set of forecasts required of all participants were na-
tional-level forecasts of the onset week, peak week, and peak intensity
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of the influenza season (collectively referred to in the paper as seasonal
targets), and short-term forecasts of the weekly percentage of out-
patient ILINet visits due to ILI one, two, three, and four weeks after the
week most recently reported by ILINet in FluView (collectively referred
to in the paper as short-term targets). Participants also had the option of
submitting forecasts of the same targets for each of the 10 HHS regions.
We defined the onset of the season as the first surveillance week in
ILINet where the ILINet percentage was at or above the baseline value
(which is developed by calculating the mean percentage of patient visits
for ILI during non-influenza weeks for the previous three seasons and
adding two standard deviations (Centers for Disease Control and
Prevention, 2014a) and remained there for at least two additional
weeks. We defined the peak week of the season as the surveillance week
that the ILINet percentage was the highest; if more than one week
achieved the highest value, all such weeks were considered peak weeks.
We defined the peak value as the highest numeric value that the ILINet
percentage reached (Centers for Disease Control and Prevention,
2014b).

Each forecast included a point estimate and a probability distribu-
tion within pre-defined bins for each target. For onset and peak weeks,
each bin represented a single week (e.g., week 1, week 2). For start
week, an additional bin was used for the probability that the onset week
definition would not be met during the influenza season. For the peak
percentage of outpatient visits due to ILI and the weekly percentage of
ILI one to four weeks in advance, 11 bins were used; 10 bins re-
presented semi-open 1% intervals (e.g., 3% < = ILI peak value <
4.0%) from 0% to 10% while the final bin represented all values
greater than or equal to 10%. Teams were also required to submit a
narrative describing the methodology of the forecasting model. The
forecasting methodology could be changed during the course of the
season if an updated narrative describing the changes was provided; no
team indicated that they changed their methodology during the
2014-15 season.

We used the logarithmic scoring rule to measure the accuracy of the
probability distribution of a forecast (Gneiting and Raftery, 2007;
Rosenfeld et al., 2018). If p is the set of probabilities across all bins for a
given forecast, and p; is the probability assigned to the observed out-
come, i, the logarithmic score is S(p,i) = In(p;). For example, a forecast
that assigned a probability of 0.6 to the correct influenza season onset
week would receive a score of In(0.6) = — 0.51. Undefined natural logs
(which occur when the probability assigned to the observed outcomes
was 0), missing forecasts, and forecasts that summed to probabilities
less than 0.9 or greater than 1.1 were assigned a value of —10. Loga-
rithmic scores were averaged across different combinations of seasonal
and short-term targets, geographic locations, and time periods. For the
seasonal targets, the evaluation period was chosen post hoc to represent
periods when the forecasts would be most useful and began with the
first forecast submission on October 20, 2014, while the end of the
evaluation period varied by seasonal target. The evaluation period end
for the onset target was the forecast received after the week in which
peak occurred in the final ILINet data, and the evaluation period end for
the peak week and peak percent targets was the forecast received after
the final week ILINet was above baseline (Table 1 and Supplemental
Tables 1-10). For the short-term forecasts, time periods were chosen to
represent forecasts that were received during the weeks that ILINet was
above baseline (Table 1 and Supplemental Tables 1-10). Evaluation
results for national- and regional-level targets using forecasts from the
entire forecast period (October 20, 2014 to May 25, 2015) are found in
Supplemental Table 11. Because ILINet data for past weeks may change
as more reports are received, we used the ILINet data weighted on the
basis of state population reported on week 34 of 2015 (the week ending
August 29) for forecast evaluation.

To aid in interpretation, we exponentiated the mean log score to
indicate forecast skill on a 0-1 scale. Perfect forecasts (i.e. forecasted
probability of 1.0 for the observed outcome across all forecasts) have a
log score of 0 and a forecast skill of 1. For forecasts with low
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Table 1
Onset week, peak week, peak percent, and the forecast evaluation period, as calculated
from ILINet during the 2014-15 influenza season, United States.

Baseline value 2.0%
Onset week WK 47 (week ending Nov. 22)

Publish date December 1, 2014
Peak week WK 52 (week ending December 27)
Peak percentage 5.99

Publish date
Last week above baseline
Publish date
Evaluation period for onset forecasts
Evaluation period for peak week and
percent
Evaluation period for 4-wk ahead forecasts
(in season)

January 5, 2015

WK 13 (week ending April 4)
April 10, 2015

October 20, 2014-January 5, 2015
October 20, 2014-April 13, 2015

December 1, 2014-April 13, 2015

probabilities for the observed outcome, the log score is a low negative
number and forecast skill is approximately 0. For example, an average
log score of —10 gives a skill of approximately 0.00005.

For comparison purposes, we created a historical average forecast.
For peak week, the peak percentage, and the short-term targets, we
used ILINet data from the 1997-98 influenza season through the 2013-
14 influenza season (excluding the 2009 pandemic) while for the onset
week target, we used ILINet data from the 2007-08 influenza season
through the 2014-15 flu season (excluding the 2009 pandemic). For
each MMWR week that would be predicted by the model, a Gaussian
kernel density estimate using bandwidths estimated by the Sheather-
Jones method (Sheather and Jones, 1991) was fit to that week’s pre-
vious observed ILINet values. Approximate probabilities for observing
each of the prediction bins were calculated by integrating the kernel
density using the bin boundaries, and the point estimate was generated
using the median of the estimated distribution. For the onset week
target, the probability of no start week (i.e. ILINet never went above
baseline for three or more weeks in a season) was calculated as the
percentage of seasons in which the criteria for season onset was not
met. A Gaussian kernel density estimate was fit to observed onset weeks
and probabilistic estimates for each week were calculated as described
above and then normalized to reflect the previously calculated prob-
ability of no start week. These methods were repeated for each HHS
region as well as the United States as a whole.

This study did not involve human participants, and institutional
review board approval was not required.

3. Results

Five teams predicted three seasonal targets and four short-term
targets at 32 weekly intervals over the influenza season. Teams used
Google Flu Trends (n = 4 teams), Twitter (n = 2), and weather data
(n = 2) to inform their forecasting models (Table 2). Four (57%) fore-
casts employed statistical methods, and three (43%) employed me-
chanistic models that incorporated compartmental modeling (e.g.,
Susceptible-Exposed-Infected-Recovered [SEIR] models) (Table 2). Four
out of 5 teams made forecasts for the HHS regions (Table 2). One team
provided the results of three separate forecast models for the United
States and the 10 HHS Regions. A total of 7 forecasts for the United
States and 6 forecasts for the 10 HHS regions were evaluated.

3.1. National level forecasts

Different forecast models achieved the best average skill for each
national-level seasonal target: Forecast E had the highest average
forecast skill for season onset, Forecast B had the highest forecast skill
for peak week and the highest forecast skill for the seasonal targets
combined, and Forecast A had the highest skill for peak ILINet percent.
In contrast, for the short-term targets, Forecast E had the highest
forecast skill for ILINet forecasts 1-4 weeks in advance and the highest
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Table 2

Characteristics of nine forecasts that competed in the Predict the 2014-15 Influenza Season Challenge.

Brief description

Regional forecast

Model type

Data source

Forecast

Susceptible-Infected-Recovered-Susceptible (SIRS) using Bayesian data assimilation to drive a prediction ensemble

Mechanistic

Google Flu Trends, Healthmap, Wikipedia, weather

data, ILINet

Yes SIR, SIRS, Susceptible-Exposed-Infectious-Recovered (SEIR), SEIRS models combined with three different ensemble filter algorithms
(12 model-filter combinations)

Mechanistic

ILINet, specific humidity data

Spline-basis regression to match current observations with typical futures. Bootstrap to generate forecast distribution.

Extrapolation of correlation between Google Flu Trends and Twitter with ILINet data

Yes

Statistical
Statistical
Statistical

ILINet

Yes

Google Flu Trends, Twitter, ILINet
ILINet, crowd-sourced forecasts
Google Flu Trends, ILINet
Twitter, ILINet data

Crowdsourcing to collect many different influenza forecasts and generate an aggregate forecast
An empirical Bayes model of ILI trajectories, with iid Gaussian noise and importance sampling
Combines Twitter data, historical ILINet data and an epidemic stochastic generative model

Yes

Yes

Yes

Statistical

Mechanistic

* Yes denotes forecast for =1 region (for all weeks).

** Includes models that incorporate compartmental modeling like Susceptible-Exposed-Infected-Recovered [SEIR] models.

*** Includes models like time series analysis and generalized linear models.

Epidemics 24 (2018) 26-33
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Table 3a
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The average forecast skill score” over the evaluation period for onset week, peak week, peak percent, the ILINet value 1-4 week(s) ahead, by forecast team, United States.

Onset Peak Week Peak% Seasonal target (ST) averageb 1 week 2 week 3 week 4 week Short-term target (STT) average®
Forecast A < 0.01 0.20 0.17 0.02 0.14 0.13 0.13 0.13 0.13
Forecast B! 0.30 0.49 0.07 0.21 0.07 0.04 0.05 0.04 0.05
Forecast C 0.27 0.08 < 0.01 0.04 0.17 0.10 0.05 0.13 0.10
Forecast D 0.01 0.48 0.09 0.07 0.14 0.17 0.12 0.13 0.14
Forecast E” 0.41 0.31 < 0.01 0.08 0.43 0.36 0.37 0.35 0.38
Forecast F 0.15 0.32 0.06 0.14 0.35 0.27 0.24 0.33 0.29
Forecast G 0.03 0.18 < 0.01 0.01 0.03 0.02 0.01 0.01 0.02
Best score 0.41 0.49 0.17 0.21 0.43 0.36 0.37 0.35 0.38
Historic avg. 0.07 0.12 0.14 0.12 0.12 0.14 0.15 0.18 0.15
Avg. score 0.04 0.25 0.02 0.06 0.14 0.11 0.08 0.10 0.11

2 Skill scores range from O to 1 with 1 indicating a perfect forecast.

b Seasonal-targets (ST) average (average of the skill score for onset week, peak week, and peak percent forecasts).
¢ Short-term-targets (STT) average (average of the skill score for 1-4 week ahead ILINet forecasts).

4 Winner of the 2014-15 forecasting challenge.
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Fig. 1. WeeKkly forecast skill score® for A) onset week, B) peak week, and C) peak percent, as calculated from ILINet data during the 2014-15 influenza season, by the date of forecast, for

the evaluation period, United States (n = 7 forecasts).

A forecast skill score of 0 indicates that the forecast assigned a 0% chance of occurrence to the correct outcome while a forecast confidence of 1 indicates that the forecast assigned a

100% chance of occurrence.

short-term forecast skill combined (Table 3a). When compared to the
historic average model, four models had higher skill scores for season
onset forecasts, six for season peak, one for season intensity, and two for
the seasonal milestones combined while five models had higher skill
scores for 1-week ahead forecasts, three for 2-week ahead, and two each
for 3- and 4-week ahead forecasts and the short-term targets combined.
Forecasts with the best skill scores outperformed the historical average
model for all national-level forecast targets (Table 3a). The weekly
forecast skill score for seasonal targets was generally low for all fore-
casts in October, November, and December. Large increases in con-
fidence for several season onset forecasts occurred after the publication
of the first FluView showing ILINet above the national baseline and for
peak week forecasts after the publication of the first FluView showing
ILINet decreasing after reaching 6.0% (Fig. 1).
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Other forecasts (e.g. Teams B and E for season onset and Teams B
and D for peak week) more consistently placed a high confidence on the
correct onset or peak week prior to the publication of these data. The
skill scores for predictions of ILI 1-4 weeks in advance and the accuracy
of point forecasts were highest 1 week ahead and declined for the 2-4
weeks ahead forecasts (Table 3a; Figs. 2 and 3). Short-term forecasts
had higher skill scores outside the influenza season than during the
influenza season (Fig. 2).

3.2. Regional level forecasts

Average forecast skill scores for the seasonal and short-term targets
for the 10 HHS regions are presented in Table 3b. Forecast score varied
by region and by forecast model. Forecast B had the highest average
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two weeks in the future. They were included because they bridge the
gap between surveillance data, which describe activity that has oc-
curred in the past, and the seasonal targets, which describe one-time
annual events that can be weeks to months away or already have
passed. Therefore, short-term forecasts are an important tool for si-
tuational awareness because they provide the likelihood that influenza
activity will be increasing, decreasing, or staying constant in the near
future, which can help inform influenza-associated healthcare surge
management and communication efforts.

Another factor identified to make forecasts more useful for decision
making was to provide a measure of forecast confidence. During the
2013-14 influenza season challenge, we did not require forecasters to
provide any metric of forecast confidence. Some teams provided no
metric, others provided a qualitative metric (e.g. high, medium, low) or
a confidence interval, while others provided a probability of the fore-
casted outcome occurring. The lack of a standardized way of commu-
nicating forecast uncertainty reduced the utility of the 2013-14 fore-
casts (Annon, 2013). Therefore, we collectively decided to standardize
how forecast confidence was reported by having teams report forecasts
as probability distributions in pre-defined bins across the range of po-
tential target values. Much like a weather forecast provides the prob-
ability that rain will occur on a given day and allows a person to decide
to carry an umbrella, the probability of an influenza outcome occurring
communicates both the most likely outcome and the forecast con-
fidence to decision makers and can inform calculations about the po-
tential cost and benefit of a decision against the likelihood of the out-
come occurring.

The probabilistic forecast distributions also allow for a quantitative
evaluation of accuracy, which can be used to compare and commu-
nicate forecast performance. The forecast skill for the 2014-15 influ-
enza season showed wide variation in the accuracy among the forecasts
received, with Forecast B and E generally being the most accurate
forecasts for both the United States and the 10 HHS regions. A major
concern with forecasting is the use of an inaccurate forecast to inform a
high consequence or high cost decision, which can have wide ranging
consequences like wasted and misdirected resources, increases in
morbidity or mortality, and the loss of credibility. In addition, because
forecasts that assign little chance to the correct outcome occurring can
be especially problematic for decision making, we utilized a skill score
that averaged the weekly logarithmic scores before exponentiating in-
stead of averaging the forecast probabilities before exponentiating. This
approach penalizes teams more for forecasts that assign very low
probabilities to the correct outcome. The goal of adding a standardized
measure of forecast confidence and accuracy is to make decision makers
as informed as possible when they use forecasts, and decision makers
and other public health officials had access to the 2014-15 accuracy
information during the 2015-16 and 2016-17 influenza seasons to
understand which teams had previously provided the most accurate
forecasts.

The use of a standardized metric for forecast accuracy also aids in
the comparison of forecast performance among geographic regions and
influenza seasons. For example, the highest average skill score for the
short-term targets for HHS Regions 3 and 6 were below the highest
average skill score for the remaining HHS regions (Tables 3a and 3b).
These findings may indicate that certain forecasting targets and geo-
graphic regions may be more challenging to forecast and that future
forecasts for these targets or geographic regions should be interpreted
accordingly until accuracy data from more influenza seasons are
available to confirm if this finding is consistent or due to chance. A
standardized accuracy metric also provides a benchmark to measure
year-to-year changes in forecast accuracy, which can inform broader
discussions around the consistency of the most accurate forecasts from
season to season, overall accuracy trends, model performance in in-
fluenza seasons with certain characteristics (e.g., late seasons vs. early
seasons; high severity seasons vs. low severity seasons), the accuracy of
forecasts for influenza compared with other infectious diseases, and
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identifying model and data characteristics associated with more accu-
rate forecasts. These analyses are being conducted as part of future
forecasting challenges.

Because of the success of the 2013-14 and 2014-15 forecasting
challenges, CDC and forecasting teams continued to work together to
forecast subsequent influenza seasons. In January of 2016, CDC re-
leased a provisional public website where seasonal influenza forecasts
from multiple teams could be accessed in real time (Centers for Disease
Control and Prevention, 2016). CDC and forecasting teams published
forecasts for the 2016-17 influenza season, and CDC plans to make a
number of improvements to the website, including the addition of ac-
curacy information from previous seasons, interactive graphs, and ad-
ditional data sources that may be helpful for forecasting efforts. CDC
and forecasting teams will also continue to engage federal, state, and
local health officials to understand how forecasts are being used to
inform public health decisions and how forecast accuracy and un-
certainty are understood and incorporated by decision makers, which
may lead to further refinement of the targets or the presentation of the
forecasts.

5. Conclusion

Preparing for and responding to influenza epidemics and pandemics
are critical functions of public health. Infectious disease forecasting
holds the potential to change the way that public health responds to
epidemics and pandemics by providing accurate and timely forecasts,
which could be used to make earlier and better decisions on pharma-
ceutical and non-pharmaceutical countermeasures, communication
strategies, and hospital resource management. CDC has collaborated
with a group of external researchers to identify actionable forecast
targets and better measure forecast accuracy. The results of the 2014-15
influenza season challenge indicated that forecast accuracy varied by
model and geographic location but that even in the best models, im-
provements in forecast accuracy were needed. Infectious disease fore-
casting is in its early years of development, and work continues be-
tween CDC and forecasting teams to fully incorporate it into public
health decision making.
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