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Special Collection: Fragile Families Challenge

The Fragile Families Challenge (FFC) was a predictive mod-
eling challenge to identify promising predictors for six mea-
surable outcomes for children and their families. Participants 
in the FFC were provided data collected from the Fragile 
Families and Child Wellbeing Study (cf. Reichman et al. 
2001; Salganik et al. 2019). This longitudinal data set con-
tains deidentified data for 4,242 children and their families in 
cities located around the United States. Survey and observa-
tional data were collected at the children’s birth, and follow-
up studies were conducted at ages 1, 3, 5, 9, and 15, for a 
total of six collection waves. Using the data from birth to age 
9, FFC participants were tasked with creating predictive 
models for six outcome variables at age 15. The outcome 
variables were grade point average (GPA), grit, material 
hardship, layoff, eviction, and job training.

A substantial portion of the work in our submission was 
the preparation and preprocessing of the data for model train-
ing. In this article we discuss semiautomated methods to 
identify related questions among the survey instruments and 
use this information to impute missing data. We decided on 
our approach because we wanted to use the structure of data 
collection and survey process as much as possible to reason 
about missing values. Many surveys were conducted, and 
respondents include parents, teachers, primary caregivers, 

children, and others. Our primary focus was on surveys 
administered to the mother and father because these con-
tained relevant responses for household income, relation-
ships, and how time is spent with the child (cf. Reichman 
et al. 2001). Furthermore, these surveys were administered 
each collection wave and were the basis for the outcome 
variables to be predicted. We searched for related questions 
within individual surveys, between parent surveys, and 
across collection waves. We found that the results of the 
effort are inconclusive with respect to predictive perfor-
mance, but it is a first step in forming a structured approach 
to imputing missing data in the FFC.

We proceed by first discussing the data set and providing 
the necessary details to understand our approach. We then 
discuss our imputation and modeling strategy. We describe 
the specific types of imputation that were performed on the 
surveys. Finally, we present the results of our data and mod-
eling work framed in the context of the entire FFC.
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Abstract
The Fragile Families Challenge charged participants to predict six outcomes for 4,242 children and their families 
interviewed in the Fragile Families and Child Wellbeing Study. These outcome variables are grade point average, grit, 
material hardship, eviction, layoff and job training. The data set provided contained longitudinal survey and observational 
data collected on families and their children from birth to age 9. The authors used these data to create models to make 
predictions at age 15. The authors describe the imputation and modeling strategies that led them to make predictions 
ranked fifth and ninth in the material hardship and layoff categories, respectively. However, the results of the study 
are inconclusive with respect to increased predictive performance. The authors view this work as a first step toward 
organizing the Fragile Families missing data by exploiting the structure of the survey instruments.

Keywords
machine learning, predictive modeling, feature engineering

https://us.sagepub.com/en-us/journals-permissions
https://srd.sagepub.com
mailto:bjgoode@vt.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2378023118822647&domain=pdf&date_stamp=2019-09-10


2 Socius: Sociological Research for a Dynamic World 

Data and Preprocessing

The data in the FFC were split into three categories: training, 
leaderboard, and holdout data. All of our trials on imputation 
and model-training operations were performed on the train-
ing data set. The remaining data sets were used for interme-
diate and final model validations. The data from the first five 
collection waves (birth to age 9) were used as input variables 
and contained a total 12,942 columns. We refer to these as 
features. The last wave (age 15) was used as test data for 
evaluating the model predictions and had six columns of 
“true” outcomes to be used for comparison. Details of how 
the outcomes are formed in the challenge are given in 
Appendix A2. All waves of data contained 4,242 rows, one 
for each family included in the study.

Missing data were a major obstacle in the FFC. We wanted 
to have a data set that could be quickly tested with a variety 
of models, which meant that our specific requirements were 
to impute all missing data and convert to numeric form. 
Table 1 shows both the steps taken to impute missing data 
and the amount of missing data before and after each pro-
cessing step.

Step 0: Initial Data Preparation

Two major steps were taken to prepare the data for the 
subsequent imputation steps. First, all data that could be 
cast as numeric float values were converted from text to 
those numeric values. Similarly, categorical (multiple-
choice) variables were cast as integer representations 
when possible. Features that could not be placed into 
either data type were removed. Second, we removed col-
umns that contained zero variation in the data (were all 
one value) or were all null valued. As a result of these two 
operations, 2,519 features were removed from the original 
training data.

Step 1: Cross-Path Imputation

We refer to a path in the survey as a result of a particular 
skip pattern. It is a sequence of questions that depends on 
answers to prior questions or criteria identified during the 
interview. For example, mothers being surveyed will 
answer a different set of questions on the basis of their cur-
rent relationships with their children’s fathers. An inspec-
tion of the Fragile Families surveys showed a number of 
either same or similar questions asked in separate and 
exclusive paths. This means that a null value appearing for 
one question in the survey is actually answered in a differ-
ently labeled question in the same survey that has either 
the same or similar question text. For example, in the 
mother baseline survey, questions B5, B11, and B22, are 
all the same: “I’m going to read you some things that cou-
ples often do together. Tell me which ones you and [baby’s 
father] did during the last month you were together.” In 
any given survey, only one of these questions would be 
answered depending on the path the interview took follow-
ing these criteria:

1. questions for mothers who are not romantically 
involved with baby’s father;

2. questions for mothers who are in romantic or “on 
again, off again” relationships; and

3. questions for married mothers only.

Cross-path imputation is a method to replace question 
responses that were skipped or not answered by using 
response values from the same or similar questions else-
where in the survey but within the same section of questions. 
This automated algorithm was applied to all surveys, regard-
less of respondent. Sections of a particular survey are orga-
nized to cover major topics such as “income” and “current 
partner.” Similarity is measured using the Levenshtein edit 

Table 1. Data and Preprocessing Broken Down by Step.

Step Name

Number of 
Features Before 

and After

Percentage of Data 
Set Missing Before 

and After

Number of 
Features 
Affected

Number of 
Rows Affected

Implementation 
Type

0 Initial preparation 12,942 → 10,423 NA → 54.63 2,519 4,242 —
1 Cross-path imputation 10,423 → 10,423 54.63 → 51.46 1,692 4,242 Automated
2 Cross-caregiver 

imputation
10,423 → 10,423 51.46 → 45.43 5,169 4,242 Manual

3 Cross-year imputation 10,423 → 10,423 45.43 → 39.33 2,986 4,242 Semiautomated
4 Cross-caregiver 

imputation (second)
10,423 → 10,423 39.33 → 37.66 1,227 4,242 Manual

5 Mode imputation and 
and finalization

10,423 → 10,369 37.66 → 0 9,241 4,242 —

Note: This table summarizes each step of the imputation process. The number of features before and after shows how many features were removed 
during each step. The impact of each step is quantified by the total percentage of missing data imputed. This is further qualified by the number of features 
imputed and rows affected by each step. Imputation summaries by survey instrument and feature are given in Appendices A7 and A8, respectively.
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distance1 (Bird, Klein, and Looper 2009) between variable 
labels of survey questions in the same section. These variable 
labels were encoded by the FFC. Labels with an edit distance 
of less than 10 were identified and placed into a set. The 
mean value, in the case of multiple related responses, was 
then used to replace the original null value. Although a sam-
ple of questions were validated by hand and found to be cor-
rect, we did observe that there were false positives (see 
Appendix A3).

Steps 2 and 4: Cross-Caregiver Imputation

In each survey wave (birth, year 1, year 3, etc.), there were a 
number of same or similar questions when comparing across 
caregivers. For example, there were questions appearing in 
the mother survey for a given wave that also appeared in the 
father survey or the primary caregiver survey. If only one 
parent was interviewed, the corresponding questions on the 
other surveys would be null. Two assistants manually identi-
fied these questions in each wave. A third person checked the 
results for validation. Once the related questions were deter-
mined, if a question was missing a value, the corresponding 
survey value was substituted.

Cross-caregiver imputation was performed twice, before 
and after cross-year imputation. The strategy was to impute 
within a particular wave in the first iteration of cross-care-
giver imputation. The remaining data were imputed after 
cross-year imputation to capture cases in which only one or 
no parents would respond after a given wave in the survey.

Step 3: Cross-Year Imputation

Both the mother and father surveys showed monotonic 
increases in missing values with each successive wave. 

Although the mother, father, and primary caregiver surveys 
varied the questions in each wave, there were many similari-
ties. One option was to carry the last completed survey data 
forward; however, this potentially overrepresents the par-
ticular value of the last recorded year, resulting in skewing 
of the imputed data set. Mode imputation was another 
option, but we wanted to capture the variation in recorded 
values across survey waves in the imputation that would 
otherwise be lost by choosing the most common value. For 
example, if an eviction was recorded in an earlier survey, we 
wanted to make sure that it had some influence on the value 
of the imputed surveys. Although no option is perfect, we 
chose to take the mean value for a given feature across all of 
the surveys that were completed. We term this “cross-year” 
imputation.

Question labels could have different text yet essentially 
ask for the same information, as shown in Figure 1. The 
Levenshtein edit distance and simple thresholding produced 
unreliable matches. Therefore, an algorithm was designed to 
suggest groups of related questions to a user in each of the 
survey waves. The algorithm output used the same 
Levenshtein edit distance from the NLTK toolbox (Bird et al. 
2009), and two thresholds were used to identify candidate 
questions. The first threshold was a hard threshold that deter-
mined the preliminary admittance into the set of potential 
candidates. The user would not see any questions outside of 
the set. To reduce the chances of false negatives, this primary 
threshold was set high so that less similar question text would 
be admitted. However, if the user had to manually remove 
these entries, that would take more time, which was limited. 
Therefore, a second lower threshold marked suspect question 
text with an asterisk. The user need only remove the asterisk 
for questions that are to be included and put an x next to ques-
tions that should not be included. This made it more efficient 
to scan the sets of question labels and have the user validate. 
An example of this process is shown in Figure 1. Once com-
pleted, the imputation process was conducted sequentially 
across waves starting with the first two collection waves.

Figure 1. Two examples of candidate groups of related questions identified by our algorithm. Questions without markers will be 
clustered, and their values will be averaged to fill in missing data. Questions denoted with an asterisk were labeled as not part of the 
set automatically, and questions with an x were manually labeled. This procedure was a simple way to find related questions without 
resorting to much manual effort writing code or comparing surveys.

1The Levenshtein edit distance counts the number of changes needed 
to be made in one text string to become identical to another.
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Step 5: Mode Imputation and Finalization

Our final step was simply to fill in the remaining missing 
data with most frequent values appearing for a given feature: 
mode imputation. We did this because most of the input fea-
tures were interpreted by us to be either categorical or ordi-
nal. This is evidenced by the number of unique values shown 
in Appendix A4. In retrospect, we would have handled this 
better by giving different simple imputation assignments to 
the different continuous or categorical variables. Last, a final 
pass at removing any columns that displayed zero variation 
in the data was performed as outlined in step 0.

Feature Engineering

After preparing and imputing the training data set, we cre-
ated features on the basis of outcome variables using the 
questions from which they are derived (see Appendix A2). 
Questions were manually identified and imputed using the 
steps outlined in Table 1. In addition, grit and material hard-
ship are outcome variables composed of multiple survey 
questions. The questions that are used to form the grit and 
material hardship outcomes were summed. This is important 
because these new features are related to the actual defini-
tions of the outcome variables. For example, material hard-
ship is calculated by taking the average number of “true” 
responses from 11 binary questions. There is a many-to-one 
relationship between survey responses and the material hard-
ship outcome that is now captured in these new features.

The last feature-engineering step is to encode integer 
labels to the categorical data labels. We noticed that many of 
the survey questions of interest to us had an order to their 
responses. Therefore, we chose to use the integer labels in 
some models as continuous input variables. With more time, 
we would have applied vector (“one-hot”) encoding to truly 
categorical variables.

Modeling Approach

Model Selection

After completing preprocessing and feature engineering, the 
result was an imputed set of training data that could be 
applied to multiple types of models. Because of time and 
resource constraints, we wanted to quickly test numerous 
types of models. Therefore, we imposed a self-limited set of 
models that were easily implementable and available in well-
tested packages. We chose the scikit-learn package 
(Pedregosa et al. 2011) written in Python. With more time, 
our modeling efforts would have explored relevant social 
science theories and created heterogeneous models to 
account for different data types. One model was trained for 
each outcome variable separately. We experimented with 
several types of models, both classifiers and regression mod-
els. Validating using training data, we found that the linear 
and logistic regression models tended to perform the best 

with respect to mean square error (MSE) and were chosen 
for the final submission. Our final choice of models for the 
Challenge is listed in Table 2. We found that the L1 regular-
ized linear regression (i.e., least absolute shrinkage and 
selection operator; Tibshirani 1996) produced the best results 
using K-fold (10 folds) cross-validation for the GPA, grit, 
and material hardship outcomes. For the binary variables, 
eviction, job training, and layoff, we used logistic regression 
with L1 regularization of the weights.

Variable Selection

We used both manual and automated methods for variable 
selection, as summarized in Table 2. For some outcome vari-
ables, we manually identified potentially relevant survey 
questions and data sources. These manually identified fea-
tures mostly consisted of the features used to form the out-
come variable discussed in the “Feature Engineering” 
section. If the manually selected subset did not perform well, 
we used the entire imputed data set for variable selection 
using L1 regularization. GPA and grit fell into this category. 
For these models, we selected a subset features that had 
effectively nonzero weights (i.e., >.00001) in the initial L1 
regularized model. A full accounting of the features chosen 
for each outcome variable is given in Appendix A6.

Challenge Performance Results

The prediction results are summarized in Table 3. Overall, the 
models in our submission performed better when predicting 
the material hardship and layoff outcome variables in terms of 
MSE. These categories both performed better than a mean cal-
culated baseline model and were ranked fifth and ninth, 
respectively, in the FFC. Distributions comparing our results 
with the rest of the submissions in the challenge are presented 
in Appendix A5.

Despite FFC rankings, the results of our models and 
those of the challenge do not indicate particularly predic-
tive models when applied to individual circumstances. This 
is because error tolerances on individual predictions are not 
guaranteed with aggregate error measures such as MSE. 
This is discussed in more detail in Appendix A1. Here, we 
comment only on the results of our imputation and model-
ing approach in the context of the challenge. The outcome 
variables material hardship, layoff, and GPA show improve-
ments over the baseline, and we view this work as a poten-
tial first step toward developing imputation techniques for 
Fragile Families data that exploit the structure of the survey 
instruments.

Conclusions

In this article we present a submission to the FFC with a 
focus on the imputation strategy performed. Our approach 
focused particularly on the structure both within and among 
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the parental surveys. Using a semiautomated process, we 
imputed data corresponding to related questions within sur-
veys, across survey waves, and across survey respondents. 
This imputation strategy reduced the total number of missing 
data from 55 percent to 38 percent before filling the remain-
ing missing values with mode imputation. The results showed 
mixed performance. Although some models were ranked 
high in the FFC and several models beat the mean-baseline 
model, the MSE scores are not likely to show effective model 
prediction at individual scales (see Appendix A1). The effort 
described in this article is best characterized as a first step 
toward organizing and forming model features that exploit 
the structure of the Fragile Families data.
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