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Today, multi-electrode arrays (MEAs) capture neuronal spike streams in real
time, thus providing dynamic perspectives into brain function. Mining such
spike streams from these MEAs is critical towards understanding the firing
patterns of neurons and gaining insight into the underlying cellular activity.
However, the acquisition rate of neuronal data places a tremendous computa-
tional burden on the subsequent temporal data mining of these spike streams.
Thus, computational neuroscience seeks innovative approaches towards tack-
ling this problem and eventually solving it efficiently and in real time.

In this chapter, we present a solution that uses graphics processing units
(GPUs) to mine spike train datasets. Specifically, our solution delivers a novel
mapping of a “finite state machine for data mining” onto the GPU while
simultaneously addressing a wide range of neuronal input characteristics. This
solution ultimately transforms the task of temporal data mining of spike trains
from a batch-oriented process towards a real-time one.

1.1 Introduction

Brain-computer interfaces have made massive strides in recent years [1]. Scien-
tists are now able to analyze neuronal activity in living organisms, understand
the intent implicit in these signals and, more importantly, use this informa-
tion as control directives to operate external devices. Technologies for mod-
eling and recording neuronal activity include functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), and multi-electrode arrays
(MEAs).

Here we focus on event streams gathered through MEA chips for study-
ing neuronal function. As shown in Figure 1.1, a MEA records spiking action
potentials from an ensemble of neurons which, after various pre-processing
steps, yields a spike train dataset that provides a real-time dynamic perspec-
tive into brain function. Key problems of interest include identifying sequences
of firing neurons, determining their characteristic delays, and reconstructing
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Fig. 1.1. Spike trains recorded from a multi-electrode array (MEA) are mined by
a GPU to yield frequent episodes, which can be summarized to reconstruct the
underlying neuronal circuitry.

the functional connectivity of neuronal circuits. Addressing these problems
can provide critical insights into the cellular activity recorded in the neuronal
tissue.

In only a few minutes of cortical recording, a 64-channel MEA can easily
capture millions of neuronal spikes. In practice, such MEA experiments run for
days or even months [8] and can result in trillions to quadrillions of neuronal
spikes. From these neuronal spike streams, we seek to identify (or mine for)
frequent episodes of repetitive patterns that are associated with higher-order
brain function. The mining algorithms of these patterns are usually based on
finite state machines [3, 5] and can handle temporal constraints [6]. The tem-
poral constraints add significant complexity to the state machine algorithms
as they must now keep track of what part of an episode has been seen, which
event is expected next, and when episodes interleave. Then, they must make
a decision of which events to be used in the formation of an episode.

1.2 Core Methodology

We model a spike train dataset as an event stream, where each symbol/event
type corresponds to a specific neuron (or clump of neurons). In addition, the
dataset encodes the occurrence times of these events.

Temporal data mining of event streams aims to discover interesting pat-
terns that occur frequently in the event stream, subject to certain timing
constraints. More formally, each pattern, i.e., episode, is an ordered tuple of
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event types with temporal constraints. For example, the episode shown below
describes a pattern where event B must occur at least t1low after event A and
at most t1high after event A and event C must occur at least t2low after event

B and at most t2high after event B.

(A
(t1low ,t1high]
−−−−−−−−→B

(t2low ,t2high]
−−−−−−−−→C),

The above is a size-3 episode since it contains 3 events in the episode.
Episodes are mined by a generate-and-test approach, i.e., we generate nu-

merous candidate episodes which are counted to ascertain their frequencies.
This process happens levelwise: search for 1-node episodes (single symbols)
first, followed by 2-node episodes, and so on. At each level, size-N candidates
are generated from size-(N -1) frequent episodes, and their frequencies (i.e.,
counts) are determined by making a pass over the event sequence. Only those
candidate episodes whose count is greater than a user-defined threshold are
retained. The most computationally expensive step in each level is the count-
ing of all candidate episodes for that level. At the initial levels, there are a
large number of candidate episodes to be counted in parallel; the later levels
only have increasingly fewer candidate episodes.

The frequency of an episode is a measure that is open to multiple inter-
pretations. Note that episodes can have “junk” symbols interspersed, e.g.,
an occurrence of event A followed by B followed by C might have symbol D
interspersed whereas a different occurrence of the same episode might have
symbol F interspersed. Example ways to define frequency include counting all
occurrences, counting only non-overlapped occurrences, and so on. We utilize
the non-overlapped count, which is defined as the maximum number of non-
overlapped instances of the given episode. This measure has the advantageous
property of anti-monotonicity, i.e., the frequency of a sub-episode cannot be
less than the frequency of the given episode. Anti-monotonicty allows us to
use level-wise pruning algorithms in our search for frequent episodes.

Our approach is based on a state machine algorithm with inter-event con-
straints [6]. Algorithm 1 shows our serial counting procedure for a single
episode α. The algorithm maintains a data structure s, which is a list of
lists. Each list s[k] in s corresponds to an event type E(k) ∈ α and stores
the times of occurrences of those events with event type E(k) that satisfy the

inter-event constraint (t
(k−1)
low , t

(k−1)
high ] with at least one entry tj ∈ s[k−1]. This

requirement is relaxed for s[0], thus every time an event E(0) is seen in the
data, its occurrence time is pushed into s[0].

When an event of type E(k), 2 ≤ k ≤ N at time t is seen, we look for an

entry tj ∈ s[k−1] such that t−tj ∈ (t
(k−1)
low , t

(k−1)
high ]. Therefore, if we are able to

add the event to the list s[k], it implies that there exists at least one previous
event with event type E(k−1) in the data stream for the current event that
satisfies the inter-event constraint between E(k−1) and E(k). Applying this
argument recursively, if we can add an event with event type E(|α|) to its
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Algorithm 1 Serial Episode Mining

Input: Candidate N-node episode α = 〈E(1)

(t
(1)
low

,t
(1)
high

]

−→ . . . E(N)〉 and event se-
quence S = {(Ei, ti)|i = 1 . . . n}.

Output: Count of non-overlapped occurrences of α satisfying inter-event con-
straints

1: count = 0; s = [[], . . . , []] //List of |α| lists
2: for all (E, t) ∈ S do

3: for i = |α| down to 1 do

4: E(i) = ith event type of α

5: if E = E(i) then

6: iprev = i − 1
7: if i > 1 then

8: k = |s[iprev ]|
9: while k > 0 do

10: tprev = s[iprev, k]

11: if t
(iprev)

low < t − tprev ≤ t
(iprev)

high then

12: if i = |α| − 1 then

13: count + +; s = [[], . . . , []]; break Line: 3
14: else

15: s[i] = s[i] ∪ t

16: break Line: 9
17: k = k − 1
18: else

19: s[i] = s[i] ∪ t

20: RETURN count

corresponding list in s, then there exists a sequence of events corresponding
to each event type in α satisfying the respective inter-event constraints. Such
an event marks the end of an occurrence, after which the count for α is
incremented and the data structure s is reinitialized. Figure 1.2 illustrates the

data structure s for counting A
(5,10]
→ B

(10,15]
→ C.

A
(5,10]

B C
(10,15]

Events:

Times:

A A B A A C B C

1 2 5 8 10 13 15 18 20

B

s[A] s[B] s[C]

1

2

10

13

8

18

20

Fig. 1.2. Illustration of the data structure s for counting A
(5,10]
→ B

(10,15]
→ C



1 Temporal Data Mining for Neuroscience 5

1.3 GPU Parallelization: Algorithms and

Implementations

To parallelize the above sequential counting approach on a GPU, we seg-
ment the overall computation into independent units that can be mapped
onto GPU cores and executed in parallel to fully utilize GPU resources. Dif-
ferent computation-to-core mapping schemes can result in different levels of
parallelism, which are suitable for different inputs for the episode counting al-
gorithm. Next, we present two computation-to-core mapping strategies, which
are suitable for different scenarios with different sizes of input episodes. The
first strategy, one thread per occurrence of an episode, is used for mining a
very few number of episodes. The second strategy is used for counting a large
number of episodes.

1.3.1 Strategy 1: One Thread per Occurrence

Problem Context

This mapping strategy handles the case when we have a few input episodes to
count. In the limit, mining one episode with one thread severely under-utilizes
the GPU. Thus, we seek an approach to increase the level of parallelism. The
original sequential version of the mining algorithm uses a state-machine ap-
proach with a substantial amount of data dependencies. Hence, it is difficult
to increase the degree of parallelism by optimizing this algorithm directly. In-
stead, we transform the algorithm by discarding the state-machine approach
and decomposing the problem into two sub-problems that can be easily par-
allelized using known computing primitives. The mining of an episode entails
counting the frequency of non-overlapped neuronal patterns of event symbols.
It represents the size of the largest set of non-overlapped occurrences. Based
on this definition, we design a more data-parallel solution.

Basic Idea

In our new approach, we find a superset of the non-overlapped occurrences
that could potentially be overlapping. Each occurrence of an episode has a
start time and an end time. If each episode occurrence in this superset is
viewed as a task/job with fixed start and end times, then the problem of
finding the largest set of non-overlapped occurrences transforms itself into
a job scheduling problem, where the goal is to maximize number of jobs or
tasks while avoiding conflicts. A greedy O(n) algorithm solves this problem
optimally where n is the number of jobs. The original problem now decomposes
into the following two sub-problems:

1. Find a superset of non-overlapped occurrences of an episode.
2. Find the size of the largest set of non-overlapped occurrences from the

above set of occurrences.
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The first sub-problem can be solved with a high degree of parallelism as
will be shown below. We design a solution where one GPU thread can mine
one occurrence of an episode. To pre-process the data, however, we perform an
important compaction step between the searches of the next query event in the
episode. This entailed us to investigate both a lock-based compaction method
using atomic operations in CUDA as well as a lock-free approach with the
CUDPP library. However, the performance of both compaction methods was
unsatisfactory. Thus, in order to further improve performance, we adopted a
counter-intuitive approach that divided the counting process into three parts.
First, each thread looks up the event sequence for suitable next events but
instead of recording the events found, it merely counts and writes the count to
global memory. Second, an exclusive scan is performed on the recorded counts.
This gives the offset into the global memory where each thread can write its
‘next events’ list. The actual writing is done as the third step. Although each
thread looks up the event sequence twice (first to count and second to write),
we show that we nevertheless achieve better performance.

The second sub-problem is the same as the task or interval scheduling
problem where tasks have fixed times. A fast greedy algorithm is well known
to solve the problem optimally.

Algorithmic Improvements

We first pre-process the entire event stream noting the positions of events of
each event type. Then for a given episode, beginning with the list of occur-
rences of the start event-type in the episode, we find occurrences satisfying
the temporal constraints in parallel. Finally, we collect and remove overlapped
occurrences in one pass. The greedy algorithm for removing overlaps requires
the occurrences to be sorted by end time, and the algorithm proceeds as
shown in Algorithm 2. Here, for every set of consecutive occurrences, if the
start time is after the end time of the last selected occurrence, then we select
this occurrence, otherwise we skip it and go to the next occurrence.

Algorithm 2 Obtaining the largest set of non-overlapped occurrences

Input: List C of occurrences with start and end times (si, ei) sorted by end time,
ei.

Output: Size of the largest set of non-overlapped occurrences
Initialize count = 0
preve = 0
for all (si, ei) ∈ C do

if preve < si then

preve = ei; count = count + 1
return count

Next we explore different approaches of solving the first sub-problem, as
presented earlier. The aim here is to find a super-set of non-overlapped oc-
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currences in parallel. The basic idea is to start with all events of the first
event-type in parallel for a given episode and find occurrences of the episode
starting at each of these events. There can be several different ways in which
this can be done. We shall present two approaches that gave us the most

performance improvement. We shall use the episode A
(5−10]
−→ B

(5−10]
−→ C as

our running example and explain each of the counting strategies using this
example. This example episode specifies event occurrences where an event A
is to be followed by an event B within 5-10 ms and event B is to be followed
by an event C within 5-10 ms delay. Note again that the delays have both a
lower and an upper bound.

Parallel local tracking

In the pre-processing step, we have noted the locations of each of the event-
types in the data. In the counting step, we launch as many threads as there
are events in the event stream of the start event-type (of the episode). In our
running example these are all events of type A. Each thread searches the event
stream starting at one of these events of type A and looks for an event of type
B that satisfies the inter-event time constraint (5−10] i.e., 5 < tBj

− tAi
≤ 10

where i, j are the indices of the events of type A and B. One thread can
find multiple B’s for the same A. These are recorded in a preallocated array
assigned to each thread. Once all the events of type B (with an A before
them) have been collected by the threads (in parallel), we need to compact
these newfound events into a contiguous array/list. This is necessary as in
the next kernel launch we will find all the events of type C that satisfy the
inter-event constraints with this set of B’s. This is illustrated in Figure 1.3.

Algorithm 3 Kernel for Parallel Local Tracking

Input: Iteration number i, Episode α, α[i]: ith event-type in α, Index list Iα[i], Data
sequence S.

Output: Iα[i+1]: Indices of events of type α[i + 1].
for all threads with distinct identifiers tid do

Scan S starting at event Iα[i][tid] for event-type α[i + 1] satisfying inter-event

constraint (t
(i)
low, t

(i)
high].

Record all such events of type α[i + 1].
Compact all found events into the list Iα[i+1].
return Iα[i+1]

Algorithm 3 presents the work done in each kernel launch. In order to
obtain the complete set of occurrences of an episode, we need to launch the
kernel N − 1 times where N is the size of an episode. The list of qualifying
events found in the ith iteration is passed as input to the next iteration. Some
amount of bookkeeping is also done to keep track of the start and end times
of an occurrence. After this phase of parallel local tracking is completed, the
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Fig. 1.3. Illustration of the parallel local tracking algorithm (i.e., Algorithm 3),
showing 2 iterations for the episode A → B → C with implicit inter-event con-
straints. Note that each thread can find multiple next-events. Further, a thread
stops scanning the event sequence when event-times go past the upper bound of the
inter-event constraint.

non-overlapped count is obtained using Algorithm 2. The compaction step
in Algorithm 3 presents a challenge as it requires concurrent updates into a
global array.

Implementation Notes

Lock-based compaction

NVIDIA graphics cards with CUDA compute capability 1.3 support atomic
operations on shared and global memory. Here we use atomic operations to
perform compaction of the output array into the global memory. After the
counting step, each thread has a list of next-events. Subsequently, each thread
adds the size of its next-events list to the block-level counter using an atomic
add operation and, in return, obtains a local offset (which is the previous value
of the block-level counter). After all threads in a block have updated the block-
level counter, one thread from a block updates the global counter by adding
the value of the block-level counter to it and, as before, obtains the offset into
global memory. Now all threads in the block can collaboratively write into
the correct position in the global memory (resulting in overall compaction). A
schematic for this operation is shown for 2-blocks in Figure 1.4. In the results
section, we refer to this method as AtomicCompact.

Since there is no guarantee for the order of atomic operations, this pro-
cedure requires sorting. The complete occurrences need to be sorted by end
time for Algorithm 2 to produce the correct result.
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Block-1
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Block-2
Atomic-Counter Atomic-Counter
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Thread-1

Thread-N
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Thread-1

Thread-N

…

Fig. 1.4. Illustration of output compaction using AtomicAdd operations. Note that
we use atomic operations at both block and global level. These operations return
the correct offset into global memory for each thread to write its next-event list into.

Lock-free compaction

Prefix scan is known to be a general-purpose, data-parallel primitive that is
a useful building block for algorithms in a broad range of applications. Given
a vector of data elements [x0, x1, x2, . . .], an associative binary function ⊕
and an identity element i, exclusive prefix scan returns [i, x0, x0 ⊕ x1, x0 ⊕
x1 ⊕x2, . . .]. The first parallel prefix-scan algorithm was proposed in 1962 [4].
With increasing interest in general-purpose computing on the GPU (GPGPU),
several implementations of scan have been proposed for GPU, the most recent
ones being [2] and [7]. The latter implementation is available as the CUDPP:

CUDA Data Parallel Primitives Library and forms part of the CUDA SDK
distribution.

Our lock-free compaction is based on prefix sum, and we reuse the imple-
mentation from CUDPP library. Since the scan-based operation guarantees
ordering, we modify our counting procedure to count occurrences backwards
starting from the last event. This results in the final set of occurrences to be
automatically ordered by end time and therefore completely eliminates the
need for sorting (as required by the approach based on atomic operations).

The CUDPP library provides a compact function which takes an array din,
an array of 1/0 flags, and returns a compacted array dout of corresponding
only the “valid” values from din (it internally uses cudppScan). In order to
use this, our counting kernel is now split into three kernel calls. Each thread is
allocated a fixed portion of a larger array in global memory for its next-events
list. In the first kernel, each thread finds its events and fills up its next-events
list in global memory. The cudppCompact function, implemented as two GPU
kernel calls, compacts the large array to obtain the global list of next-events. A
difficulty of this approach is that the array on which cudppCompact operates
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Fig. 1.5. Illustration of output compaction using the scan primitive. Each iteration
is broken into 3 kernel calls: Counting the number of next events, Using scan to
compute offset into global memory, finally launching count-procedure again but this
time allowing write operations to the global memory

is very large resulting in a scattered memory access pattern. We refer to this
method as CudppCompact.

In order to further improve performance, we adopt a counterintuitive ap-
proach. We again divide the counting process into three parts. First, each
thread looks up the event sequence for suitable next-events but instead of
recording the events found, it merely counts and writes the count to global
memory. Then an exclusive scan is performed on the recorded counts. This
gives the offset into the global memory where each thread can write its next-
events list. The actual writing is done as the third step. Although each thread
looks up the event sequence twice (first to count, and second to write), we
show that we nevertheless achieve better performance. This entire procedure is
illustrated in Figure 1.5. We refer to this method of compaction as CountScan-

Write in the ensuing results section.
Note that prefix scan is essentially a sequential operator applied from left

to right to an array. Hence, the memory writes operations into memory loca-
tions generated by prefix scan preserve order. The sorting step (i.e., sorting
occurrences by end time) required in the lock-based compaction can be com-
pletely avoided by counting occurrences backwards, starting from the last
event-type in the episode.

1.3.2 Strategy 2: A Two-Pass Elimination Approach

Problem Context

When mining a large number of input episodes, we can simply assign one
GPU thread for each episode. Since there are enough episodes, the GPU com-
puting resource will be fully utilized. The state-machine based algorithm is
very complex and requires of a large amount of shared memory and large
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number of GPU registers for each GPU thread. For example, if the length
of the query is 5, each thread requires 220 bytes of shared memory and 97
bytes of register file. It means that only 32 threads can be allocated on a GPU
multiprocessor, which has 16K bytes of shared memory and register file. As
each thread requires more resources, fewer threads can run on GPU at the
same time, resulting in longer execution time for each thread.

Basic Idea

To address this problem, we sought to reduce the complexity of the algorithm
without losing correctness. Our idea was to use a simpler algorithm that we
call PreElim to eliminate most of non-supported episodes, and only use the
more complex algorithm to determine if the rest of the episode is supported or
not. To introduce the algorithm PreElim, we consider the solution to a slightly
relaxed problem, which plays an important role in our two-pass elimination
approach. In this approach, algorithm PreElim is simpler and runs faster
than the more complex algorithm, because it reduces the time complexity of
the inter-event constraint. As a result, when the number of episodes is very
large and the number of episodes culled in the first pass is also large, the
performance of our two-pass elimination algorithm is significantly better than
the more complex, original algorithm.

Algorithmic improvements

Less-Constrained Mining: Algorithm PreElim.

Let us consider a constrained version of Problem 1. Instead of enforcing both
lower-limits and upper-limits on inter-event constraints, we design a counting
solution that enforces only upper limits.

Let α′ be an episode with the same event types as in α, where α uses the
original episode definition from Problem 1. The lower bounds on the inter-
event constraints in α are relaxed for α′ as shown below.

α′ = 〈E
(0,t

(1)
high

]
−−−−−→
(1) E(2) . . .

(0,t
(N−1)
high

]
−−−−−−−→ E(N)〉

Observation 1.3.1 In Algorithm 1, if lower-bounds of inter-event constraints

in episode α are relaxed as α′, the list size of s[k], 1 ≤ k ≤ N can be reduced

to 1.

Proof. In Algorithm 1, when an event of type E(k) is seen at time t while

going down the event sequence, s[E(k−1)] is looked up for at least one tk−1
i ,

such that t − tk−1
i ∈ (0, t

(k−1)
high ]. Note that tk−1

i represents the ith entry of

s[E(k−1)] corresponding the (k − 1)th event-type in α.
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Algorithm 4 Less-Constrained Mining: PreElim

Input: Candidate episode α = 〈E(1)

(0,t
(1)
high

]

−→ . . . E(N)〉 is a N-node episode, event
sequence S = {(Ei, ti)}, i ∈ {1 . . . n}.

Output: Count of non-overlapped occurrences of α

1: count = 0; s = [] //List of |α| time stamps
2: for all (E, t) ∈ S do

3: for i = |α| to 1 do

4: E(i) = ith event type ∈ α

5: if E = E(i) then

6: iprev = i − 1
7: if i > 1 then

8: if t − s[iprev] ≤ t
(iprev)

high then

9: if i = |α| then

10: count + +; s = []; break Line: 3
11: else

12: s[i] = t

13: else

14: s[i] = t

15: Output: count

Let s[E(k−1)] = {tk−1
1 . . . tk−1

m } and tk−1
i be the first entry which satisfies

the inter-event constraint (0, t
(k−1)
high ], i.e.,

0 < t − tk−1
i ≤ t

(k−1)
high (1.1)

Also Equation 1.2 below follows from the fact that tk−1
i is the first entry in

s[E(k−1)] matching the time constraint.

tk−1
i < tk−1

j ≤ t, ∀j ∈ {i + 1 . . .m} (1.2)

From Equation 1.1 and 1.2, Equation 1.3 follows.

0 < t − tk−1
j ≤ t

(k−1)
high , ∀j ∈ {i + 1 . . .m} (1.3)

This shows that every entry in s[E(k−1)] following tk−1
i also satisfies the inter-

event constraint. This follows from the relaxation of the lower-bound. There-
fore it is sufficient to keep only the latest time stamp tk−1

m only in s[E(k−1)]
since it can serve the purpose for itself and all entries above/before it, thus
reducing s[E(k−1)] to a single time stamp rather than a list (as in Algorithm
1).

Combined Algorithm: Two-Pass Elimination. Now, we can return to
the original mining problem (with both upper and lower bounds). By combin-
ing Algorithm PreElim with our hybrid algorithm, we can develop a two-pass
elimination approach that can deal with the cases on which the hybrid algo-
rithm cannot be executed. The two-pass elimination algorithm is as follows:
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Algorithm 5 Two-Pass Elimination Algorithm

1: (First pass) For each episode α, run PreElim on its less-constrained counterpart,
α′.

2: Eliminate every episode α, if count(α′) < CTh, where CTh is the support count
threshold.

3: (Second Pass) Run the hybrid algorithm on each remaining episode, α, with
both inter-event constraints enforced.

The two-pass elimination algorithm yields the correct solution for Prob-
lem 1. Although the set of episodes mined under the less constrained version
are not a superset of those mined under the original problem definition, we
can show the following result:

Theorem 1. count(α′) ≥ count(α), i.e., the count obtained from Algorithm

PreElim is an upper-bound on the count obtained from the hybrid algorithm.

Proof. Let h be an occurrence of α. Note that h is a map from event types in
α to events in the data sequence S. Let the time stamps for each event type
in h be {t(1) . . . t(k)}. Since h is an occurrence of α, it follows that

tilow < t(i) − t(i−1) ≤ tihigh, ∀i ∈ {1 . . . k − 1} (1.4)

Note that tilow > 0. The inequality in Equation 1.4 still holds after we replace
tilow with 0 to get Eqn.1.5.

0 < t(i) − t(i−1) ≤ tihigh, ∀i ∈ {1 . . . k − 1} (1.5)

The above corresponds to the relaxed inter-event constraint in α′. Therefore
every occurrence of α is also an occurrence of α′ but the opposite may not be
true. Hence we have that count(α′) ≥ count(α).

In our two-pass elimination approach, algorithm PreElim is less complex
and runs faster than the hybrid algorithm because it reduces the time complex-
ity of the inter-event constraint check from O(|s[E(k−1)]|) to O(1). Therefore,
the performance of the two-pass elimination algorithm is significantly better
than the hybrid algorithm when the number of episodes is very large and
the number of episodes culled in the first pass is also large, as shown by our
experimental results described next.

1.4 Experimental Results

1.4.1 Datasets and Testbed

Our datasets are drawn from both mathematical models of spiking neurons
as well as real datasets gathered by Wagenar et al. [8] in their analysis of
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cortical cultures. Both these sources of data are described in detail in [6].
The mathematical model involves 26 neurons (event types) whose activity is
modeled via inhomogeneous Poisson processes. Each neuron has a basal firing
rate of 20Hz and two causal chains of connections—one short and one long—
are embedded in the data. This dataset (Sym26) involves 60 seconds with
50,000 events. The real datasets (2-1-33, 2-1-34, 2-1-35) observe dissociated
cultures on days 33, 34, and 35 from over five weeks of development. The
original goal of this study was to characterize bursty behavior of neurons
during development.

We evaluated the performance of our GPU algorithms on a machine
equipped with Intel Core 2 Quad 2.33 GHz and 4GB system memory. We
used a NVIDIA GTX280 GPU, which has 240 processor cores with 1.3 GHz
clock for each core, and 1GB of device memory.

1.4.2 Performance of the One Thread per Occurrence

The best GPU implementation is compared to the CPU by counting a single
episode. This is the case where the GPU was weakest in previous attempts,
due to the lack of parallelization when the episodes are few. In terms of the
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Fig. 1.6. Performance comparison of the CPU and best GPU implementation,
counting a single episode in Datasets 1 through 8.

performance of our best GPU method, we achieve a 6x speedup over the CPU
implementation on the largest dataset, as shown in Figure 1.6.

Figure 1.7 contains the timing information of three compaction methods
of our redesigned GPU algorithm with varying episode length. Compaction
using CUDPP is the slowest of the GPU implementations, due to its method
of compaction. It requires each data element to be either in or out of the final
compaction and does not allow for compaction of groups of elements. For small
episode lengths, the CountScanWrite approach is best because sorting can be
completely avoided. However, with longer episode lengths, compaction using
lock-based operators shows the best performance. This method of compaction
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Fig. 1.7. Performance of algorithms with varying episode length in Dataset 1.

avoids the need to perform a scan and a write at each iteration, at the cost
of sorting the elements at the end. The execution time of the AtomicCompact

is nearly unaffected by episode length, which seems counterintuitive because
each level requires a kernel launch. However, each iteration also decreases the
total number of episodes to sort and schedule at the end of the algorithm.
Therefore, the cost of extra kernel invocations is offset by the final number of
potential episodes to sort and schedule.
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Fig. 1.8. Performance of algorithms with varying episode frequency in Dataset 1.

We find that counting time is related to episode frequency as shown in Fig-
ure 1.8. There is a linear trend, with episodes of higher frequency require more
counting time. The lock-free compaction methods follow an expected trend of
slowly increasing running time because there are more potential episodes to
track. The method that exhibits an odd trend is the lock-based compaction,
AtomicCompact. As the frequency of the episode increases, there are more po-
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tential episodes to sort and schedule. The running time of the method becomes
dominated by the sorting time as the episode frequency increases.

Another feature of Figure 1.8 that requires explanation is the bump where
the episode frequency is slightly greater than 80,000. This is because it is
not the final non-overlapped count that affects the running time, it is the
total number of overlapped episodes found before the scheduling algorithm is
applied to remove overlaps. The x-axis is displaying non-overlapped episode
frequency, where the run-time is actually affected more by the overlapped
episode frequency.

We used the CUDA Visual Profiler on the other GPU methods. They had
similar profiler results as the CountScanWrite method. The reason is that
the only bad behavior exhibited by the method is divergent branching, which
comes from the tracking step. This tracking step is common to all of the GPU
methods of the redesigned algorithm.

1.4.3 Performance of the Two-Pass Elimination Algorithm

The performance of the hybrid algorithm suffers from the requirement of large
shared memory and large register file, especially when the episode size is
big. So, we introduce algorithm PreElim that can eliminate most of the non-
supported episodes and requires much less shared memory and register file,
then the complex hybrid algorithm can be executed on much fewer number
of episodes, resulting in performance gains. The amount of elimination that
PreElim conducts can greatly affect the execution time at different episode
sizes. In Figure 9(a), the PreElim algorithm eliminates over 99.9% (43634 out
of 43656) of the episodes of size four. The end result is a speedup of 3.6X
over the hybrid algorithm for this episode size and an overall speedup for this
support threshold of 2.53X. Speedups for three different datasets at different
support thresholds are shown in Figure 9(b) where in every case, the two-
pass elimination algorithm outperforms the hybrid algorithm with speedups
ranging from 1.2X to 2.8X.

We also use CUDA Visual Profiler to analyze the execution of the hy-
brid algorithm and PreElim algorithm to give a quantitative measurement of
how PreElim outperforms the hybrid algorithm on the GPU. We have ana-
lyzed various GPU performance factors, such as GPU occupancy, coalesced
global memory access, shared memory bank conflict, divergent branching,
and local memory loads and stores. We find the last two factors are primar-
ily attributed to the performance difference between the hybrid algorithm
and PreElim, which are shown in Figure 1.10. The hybrid algorithm requires
17 registers and 80 bytes of local memory for each counting thread, while
PreElim algorithm only requires 13 registers and no local memory. Since local
memory is used as supplement for registers and mapped onto global memory
space, it is accessed very frequently and has the same high memory latency as
global memory. In Figure 1.10 (a), the total amount of local memory access of
both two-pass elimination algorithm and the hybrid algorithm comes from the
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(a) Execution time of Two-Pass Elimination and Hybrid algorithms for Sup-
port=3600 on Dataset 2-1-35 at different episode sizes.

(b) Speedup of Two-Pass Elimination over Hybrid Algorithm for multiple support
thresholds on multiple datasets.

Fig. 1.9. Execution time and speedup comparison of the Hybrid algorithm versus
Two-Pass Elimination algorithm.

hybrid algorithm. Since the PreElim algorithm eliminates most of the non-
supported episodes and requires no local memory access, the local memory
access of two-pass approach is much less than one-pass approach when the
size of episode increases. At the size of 4, the PreElim algorithm eliminates all
episode candidates, thus there is no execution for the hybrid algorithm and no
local memory access, resulting in a large performance gain for two-pass elim-
ination algorithm over the hybrid algorithm. As shown in Figure 1.10(b), the
amount of divergent branching also affects the GPU performance difference
between the two-pass elimination algorithm and the hybrid algorithm.

1.5 Discussion

We have presented a powerful and non-trivial framework for conducting fre-
quent episode mining on GPUs and shown its capabilities for mining neuronal
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Fig. 1.10. Comparison between the hybrid algorithm and two-pass elimination
algorithm for support threshold 1650 on dataset 2-1-33. (a) Total number of loads
and stores of local memory. (b) Total number of divergent branches.

circuits in spike train datasets. For the first time, neuroscientists can enjoy the
benefits of data mining algorithms without needing access to costly and spe-
cialized clusters of workstations. Our supplementary website (http://neural-
code.cs.vt.edu/gpgpu) provides auxiliary plots and videos demonstrating how
we can track evolving cultures to reveal the progression of neural development
in real-time.

Our future work is in four areas. First, our experiences with the neuro-
science application have opened up the interesting topic of mapping finite
state machine algorithms onto the GPU. A general framework to map any fi-
nite state machine algorithm for counting will be extremely powerful not just
for neuroscience but for many other areas such as (massive) sequence analy-
sis in bioinformatics and linguistics. Second, the development of the hybrid
algorithm highlights the importance of developing new programming abstrac-
tions specifically geared toward data mining on GPUs. Third, we found that
the two-pass approach performs significantly better than running the complex
counting algorithm over the entire input. The first pass generates an upper
bound that helps reduce the input size for the complex second pass, speeding
up the entire process. We seek to develop tighter bounds that incorporate
more domain-specific information about neuronal firing rates and connectiv-
ities. Finally, we wish to integrate more aspects of the application context
into our algorithmic pipeline, such as candidate generation, streaming anal-
ysis, and rapid “fast-forward” and “slow-play” facilities for visualizing the
development of neuronal circuits.
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