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Abstract—Driver fatigue and distraction remain significant safety
issues for drivers. Despite substantial developments in driver state
detection technology, a reliable system has yet to emerge. Existing
systems tend to suffer from reliance on a single metric such as
PERCLOS estimated from single expensive in-vehicle cameras
and/or a poorly designed and tuned algorithm resulting in lack
of effectiveness (high false positive rates). It is not likely that any
single, real-time measure of driver drowsiness will be obtainable
all of the time from the entire driver population. Therefore, a
multi-variable algorithm based on sensors/variables that can be
reliably obtained in real time on modern vehicles is essential.
In this work, several algorithms for multivariate time-series
analysis are tested on the Second Strategic Highway Research
Program (SHRP2) Naturalistic Driving Study (NDS) dataset,
including a statistical feature extraction method, deep learning-
based long short-term memory, and video classification using
convolutional neural networks. Given the amount of training
and test data currently available, traditional statistical feature
extraction methods outperformed the deep learning methods
tested.
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I. INTRODUCTION

Building a robust driver monitoring system has been a chal-
lenge for many years. Although there have been significant
improvements in the inference methods with the latest deep
learning, machine learning techniques, estimating driver state
has been a challenge mainly because of the unavailability of
data collected under naturalistic driving conditions.

The Second Strategic Highway Research Program (SHRP2)
Naturalistic Driving Study (NDS) contains rich data collected
over 3 years where approximately 3,400 drivers participated in
the study across the United States. The collection of multiple
time-series sensor data and accompanying video represents
the equivalent of four millennia of driving time where around
36,000 crash, near-crash, and baseline events were identified.
This includes around 580 events flagged as driving under
drowsy conditions and 1200 crash/near-crashes (C/NCs) of
distracted drivers [1].

Building a reliable machine learning algorithm involves robust
feature selection, sensor fusion, and handling imbalanced
datasets. The major contributions of this work are as follows:
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1) Handling the imbalance in the dataset. We consider
oversampling techniques, namely SMOTE to best utilize
the total available dataset.

2) Understanding important time-series precursors for
driver state prediction.
3) Analyzing several methods for extracting robust cues

for accurate prediction of driver state. In this regard we
consider methods based on statistical feature extraction,
contemporary deep learning-based approaches such as
Long short-term memory (LSTM) for multivariate time-
series classification and deep convolutional neural net-
works (CNNs) for video classification.

II. RELATED WORK

In recent years there has been considerable research in
driver monitoring systems. There has been special focus on
prediction using video data by estimating features such as
gaze [2], [3], 3d head pose [4], [5], eye closure rate [6],
[7] etc. Although these remain highly discriminative features
for driver distraction/drowsy classification, understanding the
boundary conditions for classification is hard as quantifying
the thresholds require labeled examples for segments of video.
In addition to driver monitoring, there has also been extensive
analysis of using time-series data in an automotive setting to
predict a driver’s future maneuver or action based on video
data [8], [9], [10].

Previous work on this project [11] utilized time-series sensor
features such as lane distance, accelerometer, and several
other vehicle dynamic sensor measurements to develop a hand
crafted drowsy state detection algorithm based on a boosting
method thereby emphasizing the importance of discriminative
features present in non-video time-series data. This has given
better prospects for further research in understanding drowsy
cues from a time-series dataset given the fact that video data
collection is extremely cumbersome and involves privacy and
labeling issues.

Alongside these, there has been decades of research in analyz-
ing time-series for classification and prediction. Among these
methods, time-series prediction based on statistical features,
Hidden Markov Models, Autoregressive/ARIMA models have



been extensively studied [12], [13], [14], [15], [16], [17].
Recently, time-series classification using deep learning tech-
niques, such as with LSTMs, has been researched and has
shown promising results [18], [19], [20], [21].

LSTMs have been extremely popular and good for sequential
prediction tasks. Recently LSTMs have led to ground breaking
results in machine to machine translation, image to text transla-
tion, etc. Improved training procedure and lesser susceptibility
to the vanishing gradient problem for large sequence lengths
have been the keys for LSTM’s success.

In this work we consider several algorithms for multivariate
time-series analysis on the SHRP2 NDS dataset for driver
state prediction. First, we consider analysis with time-series
data without using video features. We give special focus for
handling imbalance in the dataset by considering oversampling
methods and understanding important discriminative features.
After this, we do analysis with the latest contemporary meth-
ods, such as with LSTM with attention mechanism for time-
series classification. Finally we attempt video classification
using CNNss.

A. Research Impact

This research uses well researched and tested machine and
deep learning techniques to identify sensors, variables, and
methods that are effective in classifying drowsy/distracted
drivers. The research lists the shortcomings of current tech-
niques when applied to solving this problem. The results
of this paper will help to drive future research in areas
that can eventually enable application of these techniques to
accomplish known problems that are impactful to society.

III. DATA
A. Data Set

Data was collected exclusively from the SHRP2 NDS
database. As the largest naturalistic driving dataset available
worldwide, the SHRP2 NDS database offers detailed and
accurate pre-crash information not available from other crash
databases. This pre-crash information serves as strong and
powerful evidence identifying the progression of critical driv-
ing behaviors, in addition to, traffic and vehicle dynamics.
These were either captured by an installed on-board Data
Acquisition System (DAS) or manually processed post-hoc
by viewing video. The DAS includes forward radar; four
video cameras, including one forward-facing, color, wide-
angle view; accelerometers; vehicle network information; Ge-
ographic Positioning System; on-board computer vision lane
tracking, plus other computer vision algorithms; and data
storage capability. [22]

Data was initially collected on the vehicle and then down-
loaded periodically by research staff to a central database (Fig-
ure 1). Multiple researchers work constantly on data quality
and control. Unique “triggers,” i.e., anomalies in the time-
series data, were used to identify and extract over 8,700 C/NC
events from the database. Additionally, 32,500 baseline events
were randomly selected for comparison. These events were
then reviewed, coded, and evaluated by data reductionists.

The coded information enables researchers to easily identify
specific events of interest (EOIs).

The initial step to building and testing classification algorithms
was to define our event classes. The three event classes of
interest are listed below along with their definition using the
coded event data in the SHRP2 NDS database.

1) A drowsy event is an event from the C/NC or baseline
dataset where the driver exhibits obvious signs of being
asleep or tired, or is actually asleep while driving,
degrading performance of the driving task.

2) A distracted event is an event from the C/NC dataset
where the driver is not maintaining acceptable attention
to the driving task due to engagement in one or more
secondary tasks. This is a subjective judgment call by
the reductionist indicating whether any secondary tasks
the driver might be involved in contributed to the C/NC.

3) An attentive event is an event from the baseline dataset
where the driver is not engaged in any secondary task.
A secondary task is defined as an observable driver
engagement not critical to the driving task such as
non-driving related glances away from the direction of
vehicle movement.

EOIs under each class were pulled from the SHRP2 NDS
database for the purposes of this research effort. 571 drowsy
events, 1,123 distracted events, and 15,378 attentive events
were identified.

B. Data Extraction

1) Quantitative Data: Once the EOIs were identified, time-
series data of the corresponding complete trips were retrieved
from the SHRP2 NDS database (Figure 1). Epochs were
created by extracting data from 65 seconds before the event
time to 5 seconds before the event time. We assumed that
the driver behavior did not change throughout this 1-minute
epoch. The event data consisted of 44 variables and video of
the driver’s face. Among these 44 variables, 28 of them were
raw data directly collected by the DAS in the SHRP2 NDS
vehicle, mainly vehicle dynamics (Table I). The rest of the
variables were calculated based off the raw variables (Table
1D).

2) Video data: Video data is captured at a frame rate of
15 fps using a RGB camera facing the driver. Similarly to
the other time-series variables, once the EOIs were identified
corresponding 30 second video epochs were extracted from the
SHRP2 NDS database. The epochs covered from 35 seconds
before the event time to 5 seconds before the event time.

C. Data Pre-processing

1) Data Cleaning: All the sensors during data collection were
synchronized with respect to the trip clock, which is the first
variable listed in Table I. Unfortunately, the timing of the data
across variables was asynchronous leading to missing variables
at each collection time point. We replaced the missing value
for each variable with the last known corresponding value.
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Fig. 1: Data collection, extraction, and pre-processing
Variable Name | Unit | Hz | Note
Timestamp | ms | | Time since the beginning of the trip
Speed | km/h | 1 | Vehicle speed
Gyro z | deg/s | 10 | Lateral angular velocity
Accel y | g | 10 | Lateral acceleration
Distance to left lane marker \ cm \ 30 \ Positive when on the left side of the marker and negative when on the right side
Distance to right lane marker \ cm \ 30 \ Positive when on the left side of the marker and negative when on the right side
Probability of left marker exist | | 30 | Probability a painted marker exists on the left side of the vehicle’s lane
Probability of right marker exist ‘ ‘ 30 ‘ Probability a painted marker exists on the right side of the vehicle’s lane
Time of Day | ms | 1 | UTC time of day
Day | | 1 | From1to3l1
Month | | 1 | From1to12
Year | | 1 | Last two digits of year
Longitudinal Distance Target 1-8 | m | 15 | Longitudinal distance to radar target 1-8
Lateral Distance Target 1-8 | m | 15 | Lateral distance to radar target 1-8
TABLE I: List of raw variables
Variable Name | Unit | Hz | Note
Timestamp | ms | | Time since the beginning of the trip
Variance of Speed | | 10 | Variance of speed of last 30 seconds
Variance of Lane Position | | 30 | Variance of left lane distance of last 30 seconds
Variance of Throttle Position | | 80 | Variance of throttle position of last 30 seconds
Low Speed | | 1 | Indicates the speed is below 30kph: binary
Hard Brake | | 10 | 1- 30 seconds after heavy deceleration (0.4g): binary
Day of Week | | | 0is Sunday, 1 is Monday, etc.
Swerve | | 10 | Indicates if within a 30-second window after a swerve: binary
Passing | | 15 | Passing a vehicle in adjacent lanes: binary
Being Passed | | 15 | Being passed in adjacent lanes: binary
Traffic Flow \ \ 15 \ Indicates if a vehicle is passed more than it is passing: binary
Traffic Level | | 15 | Number of vehicles on radar
Tire Out of Lane | | 30 | Indicates if the vehicle’s tire is outside the lane: binary
Lane Change \ \ 30 \ Indicates if within a 30-second window after a lane change: binary
Lane Bust | | 30 | Indicates if within a 30-second window after a lane bust: binary
Time to Line Crossing ‘ sec ‘ 30 ‘ The time. to cross a lane line ur.lde.r current status using lane distance and lateral speed: positive:
approaching left line and negative: approaching right line
Active Steering ‘ ‘ 10 ‘ The entire course of steering where peak value exceeds a threshold

TABLE II: List of calculated variables



Feature Name

Feature Description

Mean

Variance

Mean Absolute Change

The mean over the absolute differences between subsequent time-series values.

Number of Peaks

Number of peaks seen over last n samples

Percentage of Reoccuring Datapoints

Percentage of unique values, that are present in the time-series more than once.

Sum of Reoccuring Datapoints

Sum of all data points, that are present in the time-series more than once.

Count Above Mean

Number of values in time-series x that are higher than the mean of x

Count Below Mean

Number of values in time-series x that are lower than the mean of x

Longest Strike Above Mean

Length of the longest consecutive subsequence in time-series x that is bigger than the mean of x

Longest Strike Below Mean

Length of the longest consecutive subsequence in time-series x that is smaller than the mean of x

Last Location of Minimum

The relative last location of the minimal value of x

Last Location of Maximum

The relative last location of the maximum value of x.

Quantile

Calculates the q quantile of x.

Binned Entropy

First bin the samples in to k bins. Compute entropy based on percentage of samples in each bin

Spkt Welch Density

Cross power spectral density of the time-series x at different frequencies.

Augmented Dickey Fuller

A hypothesis test which checks whether a unit root is present in a time-series sample.

Kurtosis

The kurtosis of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2).

Fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast fourier

FFT Coefficient
transform.

CWT Coeefficient

Continuous wavelet transform for the Ricker wavelet, also known as the Mexican hat wavelet

Time Reversal Assymetry Statistic

Standard time reversal assymetry statistic

Friedrich Coefficients .
Langevin model

Coefficients of polynomial h(x), x is the time-series, which has been fitted to the deterministic dynamics of

Max Langevin Fixed Points

Largest fixed point of dynamics arg min, (h(x) = 0) estimated from polynomial h(x), which has been
fitted to the deterministic dynamics of Langevin model

TABLE III: List of extracted features. We used Tsfresh open source library for extracting these features. [23]

Since the rate of these sensor values was on the order of 10-
30hz, the above approximation was considered accurate and
reasonable.

2) Feature Extraction: For each epoch we extracted many
statistical features coming from the time and frequency do-
main. A full list of features can be found in Table III. Each
epoch was expanded from the 44 collected variables to 4,492
derived variables, or dimensions (Figure 1). Variables with
missing or constant variables were then removed resulting
in a feature vector of 3,993 variables. Additionally, some of
the frequency based statistical features had “NaN’s” and were
removed, leading to a final 3,500 dimensional feature vector.
Finally, the features were z-score normalized.

IV. RESEARCH METHODOLOGY

Below is a list of the research questions addressed by the team.

1) What data sensors are most helpful in identifying dis-
tracted and drowsy drivers? (V-A)

2) How accurate are machine learning methods at identi-
fying distracted and drowsy drivers? (V-B-1-V-D)

3) What machine learning methods are most effective at
identifying distracted and drowsy drivers? (V-B-V-D)

A. Principal Component Analysis

In order to identify the variables and sensors that best predict
the driver state we performed a Principal Component Analysis
(PCA). PCA additionally allowed us to decorrelate the data by
removing redundant features given such a long feature vector
(1713x3500).

First we determined the optimal number of useful principal
components. Prediction results were compared using varying
numbers of principal components. Once this was determined
we then summed the PCA coefficients of the optimal com-
ponents for each variable and its associated features. This
resulted in a relative rating of a variable’s overall ability to
predict driver state as compared to other variables.

B. Statistical Approach to Time-Series Classification

As noted at the end of Section III-A the EOIs were unbalanced.
One method utilized to account for this was to balance using
a random under sampling technique. However, simple under
sampling leads to underutilization of the dataset. Therefore,
we also tested a method of oversampling a minority class
based on Synthetic Minority Oversampling Technique [24].
The minority class is oversampled by creating more samples



Event EOIs Selected

Class
gz]?lgsn‘c]x Unbangnced LSTM | CNN
Dataset Dataset
Drowsy | 571 | 571 | 571 | 137
Distracted | 571 | 923 | 571 | 237
Attentive | 602 | 1998 | 571 | 780

TABLE IV: Count of EOIs selected for training and testing
classification methods.

using interpolation between the neighbors. Table IV shows the
balanced and unbalanced sample sizes utilized by class.

The training and test sets for the balanced data were chosen
randomly across classes, with an 80/20% split of samples
for training and testing, respectively. The training and test
sets for the unbalanced data were chosen uniformly across
classes, with a 70/30% split of samples for training and testing,
respectively.

Analysis was done first with the unbalanced dataset using
Naive Bayes and Support Vector Machine (SVM), one vs all
and multiclass. To see the effect of SMOTE, Naive Bayes
was then implemented using an unbalanced dataset, with and
without SMOTE. Naive Bayes was chosen because of the high
dimensionality of the data. Further clarification was added by
training a Naive Bayes algorithm with uniform priors (0.33,
0.33, 0.34).

C. Time-Series Classification with LSTM

We implemented LSTM for multivariate classification with at-
tention mechanism. Figure 2 shows our architecture of LSTM
for 3-way classification (softmax layer to obtain a probability
distribution). Each epoch’s time-series variables were first
mean normalized by considering the mean of the time-series
over the entire training dataset. The time-series data in an
entire epoch were down sampled to 1,024 steps using Fourier
decimation before feeding to the LSTM network. The 1,024
down-sampled time steps are fed to LSTM with a batch size
of 32. Initially a many to one LSTM network architecture
was tested but this resulted in suboptimal loss convergence
and accuracy. Therefore, we added a fully connected layer
to consider intermediate state features at every time step for
prediction. A fully connected layer on top of every time step
acts as an attention mechanism whereby the network learns to
concentrate on discriminative portions of the time segments.
The learning rate and number of layers were chosen based
on several empirical iterations. Only 571 instances were used
from each class to maintain balance. We used 361 samples
from each class for training (63/37% training and testing split,
respectively). The network was trained with stochastic gradient
descent with a learning rate (Ir) of 0.004, momentum of 0.9,
and an Ir decay factor of 0.1 every 10 epochs. The network
was trained for 40 epochs (iterations).

drowsy / distracted / attentive

softmax layer

i

h1 hz ...... h1024
LSTM LSTM P » LSTM
( T N\ ( T )
L l1 J L l2 ) 11024
%
Input sequence

Fig. 2: Block architecture of LSTM. The sequence length is
set to 1,024. We use a fully connected layer over all the hidden
states to get a weighted feature representation.

D. Classifying Video Epochs Using CNN

We attempted to classify video data epochs using a two
stream CNN [25] in PyTorch which employs spatio-temporal
feature extraction from static image and optical flow for a
segment of frames in a video as represented in Figure 3.
The sample dataset consisted of 1,154 total samples. For each
of the video epochs, we extracted the optical flow over the
30 second epoch window, indicative of the general movement
throughout the video. We chose optical flow as the feature
as it captures motion trajectories and a drowsy driver might
have slower reaction/movement and head bobbing in contrast
to a normal driver. We then randomly sampled 25 frames
from the video epochs and computed optical flow between
the subsequent frames, which were then fed as input features
to the CNN model. One of the issues we found while working
with the videos was the limited resolution. The optical flow
computation process sometimes introduced grainy artifacts
into generated optical flow features. Increasing sampling and
decreasing window size might reduce these effects. Addition-
ally, there were issues with optical flow extraction for some
drowsy events limiting the availability of an already limited
class.

Since our dataset sample size was small and we only extracted
a single epoch per trip, we used pre-training followed by a fine
tuning procedure for better generalization of CNNs. Initially
the two stream CNN was trained on UCF101 and SportsIM
datasets and later fine tuned on the selected SHRP2 epochs.
Deep Neural Networks perform better when transferred from



Spatial stream ConvNet

single
frame convl conv2 convs
7X7%x96 | |5x5x 256 conv3 convé4 3x3x512 fulle full7
: . 3x3x512|({3x3x512 . 4096 2048 softmax
stride 2 stride 2 A . stride 1
stride 1 stride 1 dropout dropout
norm 2 X | |norm 2 x 2 pool 2x 2 o
- o c
3.8
convl ©
7x7x96 ||5 :gr;viss conv3 conv4 3 :gr:(\l:u fulle full7
stride 2 stride 2 3x 3 x512((3x 3 x 512 stride 1 4096 2048 softmax;
. stride 1 stride 1 dropout dropout
. multl_frame norm 2 X | |norm 2 x 2 pool 2x2
Input Video . =
optical flow
Temporal stream ConvNet
Fig. 3: Model Architecture of CNN video classification
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Fig. 4: Comparison of Naive Bayes classification accuracy
varying the number of principal components used.

related domains and UCF-101 [25]. The related datasets cho-
sen for training this CNN are action recognition data sets
of realistic action video with some facial actions. The fine
tuning was completed on a highly skewed set of epochs (Table
IV) [25]. The dataset was split for training and testing, 70/30%
respectively.

V. RESULTS

This section will discuss the results for each of the methods
introduced in the previous section.

A. Principal Component Analysis/Variable Contribution

Figure 4 shows that utilizing more than 100 principal com-
ponents has an insignificant impact on the accuracy of the
prediction algorithm. Therefore, 100 components were used
for the remainder of the analysis.

Figure 5 shows the variables that had the most impact, based
on their corresponding features, summed across the top 100
components. The variables related to acceleration, speed, and
lane marking seem to be the most significant features which
makes intuitive sense.

B. Statistical Approach to Time-Series Classification

Table V shows the classification accuracy of Naive Bayes and
SVM using a balanced under-sampled dataset.

Figure 6a is the heat map confusion matrix for Naive Bayes
without SMOTE using a balanced under-sampled dataset.
Figures 6b through 6d show the confusion matrices for Naive
Bayes using the unbalanced dataset. We compare results of
this dataset with and without SMOTE as well as using uniform
priors.

Based on Figures 6b through 6d it is clear that SMOTE is
not just helping the priors but also the modeling of class
conditional density.

A summary of the Naive Bayes methods and their results is
provided in Table VI. Comparing the results of the balanced
dataset (Table VI-a) to the unbalanced dataset (Table VI-d)
we see that overall precision, recall, and accuracy improves
by leveraging an unbalanced dataset thanks to SMOTE. That
being said drowsy event identification was better with the
balanced dataset (Figure 6).

1) Validation: In addition to using the originally defined
epochs for testing the prediction algorithm we also tested the
algorithm against modified epochs to identify the robustness
of the algorithm. Modified epochs were created by shifting the
time of the data extraction constraints mentioned in Section
II-B1. For example, instead of extracting from 65 seconds
before to 5 seconds before the event time we extracted from 66
seconds before to 6 seconds before the event time. We assumed
that if someone was drowsy during the initially defined time
period they were also likely drowsy during the time period
shifted back one or two seconds.

One difficulty of creating these new events was how to accom-
plish normalization. There was a concern that the algorithm
was trained on the normalization of the training set and that
the parameters would not transfer to the new set of epochs. We
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Actual Predicted Class

Class |Drowsy |Distracted [Attentive
Drowsy - 0.02 0.04
Distracted| 0.01 0.80 0.19
attentive | 007 | o005 | 088 |

(a) NB without SMOTE using a balanced dataset
Note: percentages do not sum to one because of rounding

Actual Predicted Class

Class |Drowsy |Distracted |Attentive
Drowsy 0.51 0.03 0.46
Distracted| 0.01 0.56 0.43
Attentive | 001 | o005 [T08a ]

(b) NB without SMOTE using an unbalanced dataset

(c) NB with Uniform priors using an unbalanced dataset

Actual Predicted Class Actual Predicted Class

Class |Drowsy |Distracted |Attentive Class |Drowsy |Distracted |Attentive
Drowsy 0.70 0.02 0.27 Drowsy 0.08
Distracted| 0.01 0.65 0.34 Distracted
attentive | 0.01 | 005 [0 ] [attentive

(d) NB with SMOTE using an unbalanced dataset

Fig. 6: Heat map of the Confusion Matrix for each Naive Bayes (NB) method. Scenarios match those in Table VI.

Classification Methodology

| Recall | Precision | F1 Score | Accuracy

a) Naive Bayes without SMOTE with Balanced Dataset ‘ 0.875 ‘ 0.870 ‘ 0.873 ‘ 0.869
b) Naive Bayes without SMOTE with Unbalanced Dataset | 0673 | 0821 | 0739 | 0772
¢) Naive Bayes with Uniform Priors with Unbalanced Dataset | 0.764 | 0.855 | 0.807 | 0.824
d) Naive Bayes with SMOTE with Unbalanced Dataset | 0932 | 0954 | 0943 | 0948

TABLE VI: Summary of results for each method. Recall and precision are calculated as macro-recall and macro-precision.

tested a small number of epochs using Naive Bayes and neither
1) using the original training/test set normalization parameters
completed in Sec. III-C2 or 2) creating new normalization
parameters for our limited number of epochs was effective in
obtaining comparable performance results.

C. Time-Series Classification with LSTM

Initially the network had good learning from the data, however
after a few epochs the learning stopped. The best test accuracy
with various model configurations and learning rates was 54%.
The low accuracy is likely due to the limited dataset size.

D. Classifying Video Epochs Using CNN

The accuracy of the CNN was 70%. Comparatively a weighted
baseline prediction model that classifies all epochs as attentive
would have approximately a 67% accuracy but recall and
precision would be much lower. As mentioned earlier, the
limited data sample size was the primary reason for average
performance of CNNs. Further research into considering mul-
tiple epochs from the same trip could help to alleviate this
issue. Ensuring the labels are valid on other epochs would be
necessary.

While training the network, we used a fixed learning rate of



10-3 and trained the network for 50 epochs. Further iterations
in the hyperparameter selection might get better results.
Finally, we see that even though flow features help in the
classification, they are not strongly discriminative among
the classes. Flow features that focus on a person’s face or
track the facial keypoints would provide a better and more
discriminative feature.

VI. CONCLUSION

In this work we focus on several machine learning methods to
build a driver monitoring and classification system based on
the SHRP2 NDS dataset. Among the methods discussed, the
statistical feature extraction method achieved good results with
an F1 score of 94% after balancing the data with SMOTE. The
LSTM and the video classification CNN had promising results
from the limited available dataset, however the performance
of these deep learning approaches was not on par with the
traditional statistical feature extraction methods. The small
dataset size is the primary cause for the average performance
of these methods.

From the results it can be inferred that SMOTE helps in better
modeling of class conditional densities and improves overall
performance.

Future Research

Additional direct features (head pose, gaze, PerClos, activity
tracking) as DNN or Time-Series would greatly improve the
results. These variables are considered highly indicative of
drowsy and distracted drivers but were not currently available
in our dataset.

Solving the inconsistencies involved with normalizing addi-
tional test sets would additionally, allow for more thorough
validation of the seemingly effective statistical feature extrac-
tion methods.

To overcome issues with the small training size in LSTM, tech-
niques such as one shot/few shots, meta-learning approaches
could be employed. Another solution would be to use semi-
supervised learning with Generative Adversarial Networks
or autoencoders to learn the entire data distribution of the
SHRP?2 dataset and then fine tune for classification. Further
machine learning methods worth testing are Unsupervised
Learning using Clustering, Hidden Markov Models (HMM),
and Symbolic Aggregation.

Finally to improve CNN accuracy it would be worth testing
samples of more than 25 frames from the video epochs.
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