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ABSTRACT
Modeling the movement of information within social media
outlets, like Twitter, is key to understanding to how ideas
spread but quantifying such movement runs into several dif-
ficulties. Two specific areas that elude a clear characteriza-
tion are (i) the intrinsic random nature of individuals to po-
tentially adopt and subsequently broadcast a Twitter topic,
and (ii) the dissemination of information via non-Twitter
sources, such as news outlets and word of mouth, and its
impact on Twitter propagation. These distinct yet inter-
connected areas must be incorporated to generate a com-
prehensive model of information di↵usion. We propose a
bispace model to capture propagation in the union of (ex-
clusively) Twitter and non-Twitter environments. To quan-
tify the stochastic nature of Twitter topic propagation, we
combine principles of geometric Brownian motion and tradi-
tional network graph theory. We apply Poisson process func-
tions to model information di↵usion outside of the Twitter
mentions network. We discuss techniques to unify the two
sub-models to accurately model information dissemination.
We demonstrate the novel application of these techniques
on real Twitter datasets related to mass protest adoption in
social communities.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
Information di↵usion; social networks; protests; geometric
Brownian motion.

1. INTRODUCTION
In recent years social networking sites such as Twitter and

Facebook have provided not just a platform for communica-
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tion but also a means of mobilization and strategic interac-
tion between key players of social movements, e.g., protests.
Traditionally social movements occur within a subset of the
population and have spread through on-the-ground commu-
nities and unions. With the advent of leaner communication
technologies like Twitter, the way such movements form and
spread through modern society has changed. With Twitter,
in particular, traditional slogans have transformed into hash-
tags which can o↵er a consistent way of communicating the
reason and motivation of social movements like protests and
uprisings.

Figure 1: Mexico teacher protest events from Sep 1
to Sep 7, 2013. The blue pins denote protest cities;
the numbers in red denote the sequence of protests
as they spread across the country.

In this paper, we focus on Twitter’s user networks during
protests and similar civil unrest activities in Latin Amer-
ica. Our goals are to model the propagation and growth of
contagion-like protest waves within a social network and to
understand the social and structural dynamics underlying
such phenomena. The key problem is understanding the na-
ture of information propagation among motivated users of a
social network. We have observed that such mass protests
emerge very swiftly and sharply. In Twitterspeak, they
would be considered trending but most such trends quickly
decline on the social network even if not in the physical
world. Modeling protest-related topic propagation on net-
works involves several challenges.



First, social protest propagation through online media can
spread over large areas more quickly than traditional meth-
ods since users are geographically distributed. For example,
on September 1, 2013, the Mexican government’s education
reform bill drew the wrath of teachers country-wide who
opposed the reform (which required regular assessments of
their performance as educators). Twitter was a virtual loud-
speaker, providing a platform for organization and strate-
gization for teachers to put forth their arguments against the
bill. A series of mass teacher protests erupted and spread
from city to city. As shown in Fig. 1, we see the movement
spreading over time to di↵erent locations with no obvious
visual mobilization pattern. The second challenge is that
Twitter’s user network embodies many subgraphs based on
social ties which might a↵ord di↵erent propagation rates due
to subgraph-specific structures.

Thus identifying how the cause of a protest is adopted by
Twitter users and how mobilization happens in the under-
lying network is a di�cult task. To address this problem
we present an integrated framework with new theoretical
models as well as empirical validation on real Twitter data
for actual protests witnessed in the recent past. Our key
contributions are:

• We model the inherent heterogeneity in propagation
using a bispace model, comprised of the Twitter men-
tions network (where both globally and locally influen-
tial neighbors contribute to a user’s recruitment) and
a latent space (where external exposure to protest-
related information is captured).

• We focus on the role of community-driven informa-
tion propagation over the bispace model. We use ge-
ometric Brownian motion (GBM) over the mentions
network and Poisson processes over the latent space
to model information propagation during mass social
movements.

• We illustrate the e↵ectiveness of our approach in mod-
eling several key mass protest adoption scenarios in
multiple countries of Latin America, viz. Argentina,
Brazil, Colombia, Mexico, Uruguay, and Venezuela.

The rest of this paper is organized as follows. Section 2
covers related work in the areas of social movements, infor-
mation di↵usion in networks, external influences, and Brow-
nian motion. Section 3 proposes the geometric Brownian
motion propagation mechanism. Section 4 introduces the
bispace propagation model, especially the model of propaga-
tion in latent space. In Section 5, we present our dataset and
experimental setup, followed by initial experimental find-
ings. Section 6 discusses the evaluation results for our ap-
proach followed by a brief discussion in Section 7.

2. RELATED WORK
We briefly review related work next, which comes from

multiple areas.
Social movements: Oliver and Myers [18] develop a foun-
dation for theoretical insights of social movements and de-
scribe the limitations of simplified models. The Arab Spring
of 2010 served as a context for many researchers [6, 2, 24,
4, 20] to study the role social networking sites play in the
spread and recruitment of participants in protests. A de-
tailed anatomy of modern social protests is described by

Saad-Filho [20] with the June 2013 anti-government protests
in Brazil as a context. In this work, we study the processes
and sociological impacts of protests in the modern era, for-
tified by online social networks and the communities in and
around them.

Information di↵usion in networks: Previous studies
have approached the modeling of information propagation
and di↵usion in social networks through several means, e.g.,
contagion models (SIR [3] SISa [10]), di↵usion based thresh-
old and cascade models [12], rise-and-fall patterns [13], cov-
erage models [22], and survival theory [19]. A good survey of
di↵erent models of information di↵usion is presented in [7].

External influences: We believe that the e↵ects of influ-
ences that originate external to the observed di↵usion net-
work, such as mass media and o✏ine spread of information,
can impact the way in which information flows within the on-
line network. Myers et al. [14] study the emergence of URLs
on Twitter with a probabilistic generative process using both
internal and external exposure curves in a contagion-like
model. Similar attention to the role of external factors is
paid by Crane and Sornette [5] for tracking the popularity
of YouTube videos using a di↵usion model. Iwata et al. [11]
use a shared cascade Poisson process model to discover la-
tent influences in social activities such as item adoption.
Using shared parameters among multiple Poisson processes,
they were able to simulate sequences of item adoption events.

Brownian motion: Zhou and colleagues (e.g., [26, 8, 27])
develop the notion of Brownian motion on networks which
they use to discover communities of hierarchical structure
both locally and globally. We extend this approach in this
paper to formulate a propagation algorithm based on geo-
metric Brownian motion (GBM). Borrowed from statistical
physics, GBM has been used heavily in finance to model
stock price movements. Scale invariance and the ability to
model abrupt bumps along propagation paths are the pri-
mary motivations for using GBMs to model stochastic pro-
cesses [23].

Our work builds on the concepts introduced in [8, 11, 26, 27]
but di↵ers from the other di↵usion models described earlier
by considering both the role of communities of users and the
abrupt nature of propagation of volatile information such
as mass social protests. We include the notion of bispace
where both latent (attributed to external influences) and
observed user network influences are considered. We infer
propagation rates for communities in the observed network
and allow implicit recruitment of users into protest actions
through a Poisson process.

3. FORMALISMS

3.1 Basics
We model Twitter activity as a network G(V,E) of men-

tions. Here, each vertex v 2 V represents a Twitter user.
There is a directed edge from user vi to user vj if vi mentions
vj in a tweet. We define !ij to be the number of tweets in
which user vi mentions user vj . Note that !ij is not nec-
essarily equal to !ji. Key players such as celebrities and
politicians are more likely to be mentioned by other users,
rather than the other way around. As can be seen in Fig. 2,
the mentions network is a directed graph. Weight w14 is the
number of times Twitter user v1 mentions user v4, which is



Figure 2: An example mentions network. Nodes de-
note Twitter users, directed edges denote direction
of mentions between users, and edges are labeled
with mention frequency.

1, while w41 is 6. Note that w21 is 5, while w12 is 0 (not
shown).

We define the neighborhood N(vi) of a user vi as the set
of all users mentioned by vi, i.e., those for whom there is a
directed edge from vi. For each user vj 2 N(vi), we define
the Brownian distance from user vi to vj to be

dij =
1

(!ij + 1)(!ji + 1)�(⌘ij + 1)�
(1)

Here, ⌘ij is the number of common direct neighbors shared
by user vi and user vj [27]. In Fig. 2, node v1 and v4 share
two common direct neighbors—v3 and v5—and hence ⌘14 is
2.

We use the bias coe�cient � � 1 to heuristically weigh
mentions that carry more impact. If vi mentions vj , mean-
ing that !ij > 0, we believe this expresses vi’s intention to
propagate information to vj . Since vj may not know or care
about vi and consequently may seldom or never mention vi,
the return mentions, measured by !ji, are (up)weighted by
�. Furthermore, if vi and vj share neighbors in the mentions
network, the two users may have a closer relationship than
other users with no shared mentioned Twitter users, and
thus this component is weighted by � as well. A Laplacian-
style (+1) correction is used when there are no counter men-
tions or no mutual mentions. Note that for � = 1, dij is an
unbiased Brownian distance since !ij , !ji, and ⌘ij will have
the same weight.

3.2 Trust functions and GBM

Figure 3: Trust function. A threshold defines the
transition between the pre-trust and trusted period.

Next we introduce the notion of a trust function St which
we use to model an individual user’s agreement with an idea
as expressed in tweets. (The trust function St is a function of

the two entities between whom trust is modeled, but in this
section we simplify the notation for ease of exposition.) We
divide the trust process into a pre-trust period and a trusted
period. In the pre-trust period, as a user receives new infor-
mation, that user’s trust, St, increases exponentially until
St reaches the trust threshold at time Tth and enters the
trusted period. In the trusted period, new information in-
creases St linearly. For simplicity, an individual user cannot
revoke trust once this threshold has been crossed. In our
Twitter mentions network, a user’s trust in a topic crosses
the threshold when they have tweeted about it. During the
pre-trust period, we model the trust function as follows (the
coe�cient µ accounts for change in the average value of this
stochastic process):

dSt

St
= µdt (2)

We then add a Wiener process Wt to account for stochas-
ticity. According to the properties of a Wiener process [17],
dWt is essentially Gaussian white noise and contributes to
our equation as:

dSt

St
= µdt+ �dWt (3)

In this way, we modeled the trust function St as a geomet-
ric Brownian motion (GBM) process which is a continuous-
time stochastic process [17]. Per convention, we call µ the
drift and � the volatility. The drift represents deterministic
trends while the volatility refers to the influence of unpre-
dictable events in this model [25]. For simplicity, we consider
µ and � to be constant during the pre-trust period in this
paper. (Our concern here primarily is with this period.)

According to Itō’s theorem [17], given the initial value S0,
the above stochastic di↵erential equation has the following
analytic solution:

St = S0 exp

✓✓
µ� �

2

2

◆
t+ �Wt

◆
(4)

The above solution for St is a log-normally distributed ran-
dom variable with expected value and variance given as [17]:

E(St) = S0e
µt (5)

V ar(St) = S

2
0e

2µt
⇣
e

�2t � 1
⌘

(6)

St is a geometric Brownian motion stochastic process, which
is typically denoted as B(µ,�). In this paper we use an initial
trust of S0 = 1 without loss of generality.

3.3 GBM propagation
Suppose that user vi posts a protest-related tweet at time

t0 which indicates that vi has been recruited or infected.
Whether vi will infect its neighbor vj depends on vj ’s trust
function with vi. For instance, if vj is a close friend of vi,
then it is more likely that vj will be infected in a short time
because of vj ’s trust in vi. But if vj is not a very close friend
of vi, then it might take a long time to build vj ’s trust with
vi and to accept vi’s status. Only after vj ’s trust with vi

crosses some threshold, vj gets infected.
For better quantitative analysis, we consider dij to be the

trust threshold. After crossing this threshold, vj will agree
with vi’s opinion. According to the properties of GBMs, the
trust function St grows continuously over time. This implies



input : mentions network G(V,E), time step �t,
propagation time T

output: infected users
for each infected user vi 2 V do

for each non-infected user vj 2 N(vi) do
set tij = 0;

end
set vi as not newly infected user

end
t = 0;
for t  T do

for each infected user vi 2 V do
if vi is a newly infected user then

for each non-infected user vj 2 N(vi) do
set tij = 0;

end
set vi as not newly infected user

end
for each non-infected user vj 2 N(vi) do

set tij = tij + �t

ln(Sij
t ) ⇠ N ((µ� �2

2 )tij ,�
2
tij)

if ln(Sij
t ) � dij then

set user vj as newly infected
end

end

end
t = t+ �t;

end

Algorithm 1: GBM propagation algorithm

that, if some user is infected, all of that user’s neighbors will
eventually get infected given enough time for di↵usion.

Since we assume a user cannot revoke trust, his or her
status will never change once infected. Based on the above
assumptions, we now detail our process for GBM propaga-
tion through the mentions network; see Algorithm 1. Since
GBM is a time-continuous stochastic process, we discretize
time using time steps of duration �t each. At the start of
the simulation, all infected users are considered as newly in-
fected users. Assume that the complete mass protest prop-
agation duration is T . Once a user vi becomes infected, the
node is marked as a newly infected user, and the new status
begins to a↵ect the statuses of the neighbors, i.e., N(vi).
For each user vj 2 N(vi), we use tij = 0 to initialize the
time instant from which vi begins to a↵ect vj . After all the
time variables tij of N(vi) are so initialized, user vi’s status
is updated to reflect that vi is no longer a newly infected
user, to avoid duplicate initializations.

Suppose that at current time t, vj ’s trust with vi is de-
noted as S

ij
t . According to the GBM properties, ln(Sij

t ) is
a Gaussian variable given by:

ln(Sij
t ) ⇠ N ((µ� �

2

2
)t,�2

t) (7)

If at time t, ln(Sij
t ) � dij , this means that vj gets infected

since vj ’s trust with vi is bigger than the distance dij . Now
vj begins to a↵ect his or her own neighbors. Instead at time
t, if ln(Sij

t ) < dij , then at the next time step, t+�t, the trust
is still a Gaussian variable, but with higher expectation and
variance:

ln(Sij
t+�t) ⇠ N ((µ� �

2

2
)(t+ �t),�2(t+ �t)) (8)

Figure 4: Bispace propagation model. In the latent
space, users infections are explained by a Poisson
model, and the red nodes denote the infected users
from one time step to another. In the mentions
network space, users are infected according to the
GBM model. Here, the purple nodes (a, b, c, d, e)
denote user infections explained by the GBM model.

3.4 GBM parameter estimation
We use past protest events in which Twitter played a sig-

nificant role in propagation to train our GBM model param-
eters. For each user who gets infected we record their Brow-
nian distance and infection time. Suppose vj gets infected
by vi after time tij ; then as per our propagation model, we
claim that vj ’s trust function S

ij
t with vi holds:

ln(Sij
t ) � dij (9)

where dij is the Brownian distance from vi to vj . For the
convenience of parameter estimation, we can assume that
ln(Sij

t ) = dij . It then follows that dij is a normally dis-
tributed random variable which can be expressed as:

dij ⇠ N ((µ� �

2

2
)tij ,�

2
tij) (10)

Because during the parameter estimation process, for each
infected user vj , we are not interested in exactly which user
gets vj infected, we use xj = dij , and ⌧j = tij in the following
part of this section for simplicity. The set of n users that
are infected during the infection process have independent
infection rates, and we get the following likelihood function:

L(✓,�2 | v1, . . . , vn) =
nY

j=1

1

�

p
2⇡⌧j

exp(�
(xj � (µ� �2

2 )⌧j)
2

2�2
⌧j

)

The optimal estimators can be obtained by maximizing
the above likelihood function. We di↵erentiate the natural
logarithm of the likelihood function above in terms of µ and
�, and set them to zeros. By solving the two equations
simultaneously, we obtain the optimal estimators µ̂ and �̂

2.

4. BISPACE PROPAGATION MODEL
Many information di↵usion models assume that propaga-

tion occurs over a single domain. However, it is hard to
build a complete, exhaustive network of interactions. For
instance, consider building a network based only on which
Twitter users follow which other users. This network will
miss interactions such as retweets and mentions and the ef-
fect of influences originating outside of Twitter. Therefore,
considering only a single space will make it di�cult to ac-
count for all possible factors that influence the spread of
information. In this study, we propose a bispace di↵usion



Figure 5: Major communities of teacher protest
events (Sep 1 to Sep 12, 2013, Mexico).

Figure 6: Key graph properties of communities un-
derlying the Mexican teacher protest events.

model that accounts for two domains of di↵usion: the ob-
served social network and the latent space, as can be seen
in Fig. 4. In our case, the observed user space is the Twit-
ter mentions network, whereas the latent space refers to any
interactions outside of this network. To account for varying
di↵usion dynamics, each space is intended to have its own
propagation model. As described earlier, we model propaga-
tion through the Twitters mentions network as Geometric
Brownian motion. We use the Poisson distribution to de-
scribe information propagation in the latent space.

4.1 GBM with Communities
Within networks, a community refers to the appearance

of densely connected groups of vertices, with sparse connec-
tions between each group [16]. Instead of treating the whole
network as a single propagation space, we use network struc-
ture to further split the network into communities. For our
mentions network we use the Louvain method [1] for com-
munity detection to split the network into groups of users.
For each community of users we can calculate classical graph
features such as average degree, diameter, density, and clus-

(a) Raw data

(b) Poisson distribution model

Figure 7: Poisson distribution in latent space prop-
agation. (a) shows the raw data outside of the men-
tions network of teacher protest events on Sep 3,
2013. (b) shows the probability distribution of the
number of infections.

tering coe�cient with which we can characterize them. In
Fig. 6 we plot several features for each of the 8 communities
found in the case study of Mexican teachers protest of 2013.
Diameter r = max dist(vi, vj) is the length (in number of
edges) of the longest geodesic path between any nodes vi

and vj [15]. The clustering coe�cient ci is the proportion
of node vi’s neighbors that are connected. Graph density is
defined as 2|E|

|V |(|V |�1) where E is the number of edges and V

is the number of nodes [21]. As shown in Fig. 6, diameter
and graph density vary considerably.

With the observed network further split into several com-
munities, each community is intended to have its own model
parameters for GBM. In GBM, ln(Sij

t ) is a Gaussian distri-

bution N ((µ� �2

2 )t,�2
t). We assume that each user within a

community shares the same µ and � so that each community
has its characteristic µ and �. As information propagates
through the mentions network, it may pass through di↵er-
ent communities. For an infected user vi and one of the
non-infected neighbors vj 2 N(vi), we assume the following
propagation strategy:

• If vi and vj are in the same community ci, the propa-
gation process will follow Bci(µci ,�

2
ci).

• Propagation from one community to another happens
as per the source community’s model parameters. For
instance, for propagation from community ci to com-
munity cj , we will use the source community ci’s GBM
parameters.

• After information propagates into a di↵erent commu-
nity, it will spread according to the new community’s



Table 1: Mass protests studied in this paper.

No. Event Hashtags Country A↵ected cities Event date(s)

1. YoSoy132 student movement #LaMarchaYoSoy132,
#YoSoy132, #132, #soy132

Mexico Nationwide 2012-05-17 to 2012-05-25

2. Anti-government protests against
tax reform and other policies pur-
sued by President Juan Manuel
Santos

#CacerolazoPaSantos, #5D Colombia Nationwide 2012-12-05

3. Education reform protests by
teachers

#ReformaEducativa Mexico Nationwide 2013-09-01

4. Social protests against violence
and crime

#UruguayosIndignados,
#HartosDeLaViolencia

Uruguay Montevideo 2012-05-14

5. Protests against the “media law” #LorenzettiNoMeFalles,
#MediosBuitres

Argentina Buenos Aires 2012-11-27

6. Protests against Senate President
Renan Calheiros’s election

#STFjulgueRenan,
#SocorroJoaquim, #ForaRenan

Brazil Nationwide 2013-02-22 to 2013-02-26

7. Anti-government student protests
against abuse of public media for
election campaign

#ConatelCareTabla Venezuela Caracas 2013-03-20

parameters. Once the information has entered com-
munity cj from community ci, subsequent infections
henceforth will use community cj ’s parameters.

At each time step we use the µ and � of any given node’s
current community for propagation from that node.

4.2 Propagation in Latent Space
As mentioned before, in the latent space, we are modeling

unobserved interactions of users. Since there are so many
factors that might a↵ect the dissemination of information,
such as news outlets, word-of-mouth, it is reasonable to as-
sume that the probability of the number of newly infected
users in a given time interval satisfies the Poisson distribu-
tion [9] in the latent space.

For each node in the mentions network, it can only be
infected by the GBM process. However, for those isolated
users outside the mentions network, it is only possible that
they get infected via the mechanics of the Poisson process.
(Recall that in the GBM process, users get infected primarily
via their neighbors.) We use X to represent the number of
infected users with time interval �t and so the probability of
the infected users is given by:

Pr(X = k) =
�

k
e

��

k!
(11)

To obtain an estimator of �, we can only use information
about Twitter users who are outside the mentions network
as our training dataset. We count the infected users outside
the mentions network with time interval of 15 minutes dur-
ing the Mexican teachers protest, and plot them as shown in
Fig. 7(a). Adequately modelable by a Poisson distribution,
we use the average value as the estimate of �. Fig. 7(b) de-
picts the Poisson distribution fit with �̂ = 4.18. If there are
M0 isolated users, the probability of each of these users to
get infected in time interval �t is �/M0. To summarize, for
any user not in the mentions network, infection is only possi-
ble via the Poisson process. For a user who is already in the

mentions network, infection can only happen via the GBM
process over the mentions network, as described earlier.

5. EXPERIMENTS

5.1 Dataset description
The study described in this paper uses two datasets: (i) a

gold standard report (GSR) of social unrest events in Latin
America provided by MITRE that we use to define major
mass protest events, and (ii) tweets collected over 14 months
from May 2012 to September 2013 from 20 Latin American
countries.

The GSR documents each civil unrest event by location,
date, type of protest, and specifies the national news arti-
cles that first reported the event. For protests that were
prominent on Twitter, the GSR news articles often report
hashtags which were used by protestors on social media. We
selected only those GSR events for which we were able to
find such hashtags. This process resulted in 64 unique hash-
tags related to 40 di↵erent protest that occurred in Latin
America since May 2012. In Table 1 we list a few of these
events from our study.

Our Twitter dataset was built by querying Datasift’s stream-
ing API. Each tweet payload includes crucial metadata along
with the tweet’s content. Though tweets from GPS-enabled
devices include geographic coordinates, the percentage of
such tweets in the collected sample was too low to be useful.

For this study, we further filtered tweets by removing
those that do not contain hashtags relevant to a specific
protest. Since most tweets do not have location data, we es-
timate their location by geocoding the tweet based on each
tweet’s content and properties of its user. We developed
our own geocoding library that uses the World Gazetteer
(http://archive.is/srm8P) database to lookup location names
and geographic coordinates. Tweets can be geocoded to the
user’s location at the time of tweeting or a location of inter-
est about which the user is tweeting. We focused on event ge-



Figure 8: Brownian distance vs propagation time for
teacher protest events.

olocation, which looks for location or landmark names, such
as Plaza de la Independencia or Quito, Ecuador, in a tweet’s
text. We generated a list of 2000 landmarks by extracting
place names mentioned in GSR events which had high mu-
tual information to civil unrest. In cases where no event
location was found in a tweet’s text, we use geo-coordinates
or self-reported location string in the tweet’s metadata.

Using the above pipeline we were able to extract and ge-
olocate 20, 227, 830 unique users to build our mentions net-
work from the filtered tweets that were spread over daily
sub-networks.

5.2 GBM Diffusion Model
For each of our mass protest events, we filter by its spe-

cific keywords (hashtags) to obtain a set of relevant tweets
and construct a mentions network from those tweets. We
assume that information propagates from an initial infected
user to other users through the network from one node to
its neighbors. We build an adjacency matrix based on the
mentions network and simulate the propagation using the
GBM di↵usion process as follows:

1. Brownian distance: The Brownian distance is in-
tended to have an inverse relationship with mention
frequency. As Fig. 8 shows, users with smaller Brown-
ian distance have greater mention frequencies resulting
in shorter mean propagation times with less variance.
From Fig. 8, we can see that infection time and vari-
ance generally both increase with an increase in Brow-
nian distance. Heuristically, more frequent mentions
indicate stronger ties which leads to easier adoption of
information.

2. Propagation speed: To evaluate our dynamic GBM
infection process assumptions, we estimate the GBM
parameters for di↵erent protest events and depict the
GBM propagation curves in Figs. 9, 10, and 11. The
blue curve depicts the Poisson propagation in latent
space. The red curve depicts GBM propagation through
the mentions network. The green curve is the overall
simulation result while the magenta curve depicts the
ground truth of the protest events process. By com-
paring the green and magenta curves, we can evaluate
the e↵ectiveness of our bispace model in simulating the
mass protest events. As shown, we find that, given a
mentions network, our bispace model can simulate the
propagation speed at a reasonable scale, at the right

(a) Simulation without community

(b) Simulation with community

Figure 9: GBM and Poisson propagation simulation
for Yosoy protests (Mexico) on May 19, 2012.

magnitudes. As seen in Figs. 9(a), 10(a) and 11(a), we
find that we can capture the burst of activity at the
same time point as the ground truth during protest
propagation.

5.3 GBM Diffusion with Communities
We were also able to observe the variation in µ and �

as community structure varies. In particular, community
features like graph density and diameter as shown earlier
in Fig. 6 may impact GBM propagation. We experimented
with two modeling approaches: (i) one set of parameters
for the whole network and (ii) di↵erent parameters for each
community in the network. We ran simulations for both
these situations, and plotted the results of the whole net-
work vs. community-specific approach in Figs. 9, 10, and 11.
Comparing these simulation results, we find the community
approach performs better, especially at capturing peak val-
ues. Taking a closer look at Fig. 12, we observe that propa-
gation time and speed of infection are di↵erent for each com-
munity and we are able to simulate local propagation more
accurately, which can be seen, e.g., from Fig. 10(b), where
the GBM with community method can simulate the burst
propagation e↵ectively, while the general GBM method (see
Fig. 10(a)) fails to capture the exact peak time.

5.4 Latent Space Diffusion Model
We use the following steps to calculate the properties of

the latent space for each event.

1. Latent space: The intent is to consider all possi-
ble external influences and latent interactions in this
space. We split Twitter data into unique 15 minute



(a) Simulation without community

(b) Simulation with community

Figure 10: GBM and Poisson propagation simula-
tion for teacher protests (Mexico) on Sep 1, 2013.

intervals and count the total number of infected users
in each interval.

2. Normalize: Twitter user activity varies based on time
of day and day of week (see Fig. 13). For each 15
minute window from Step 1, we find the average num-
ber of tweets over a 4 week period and use this value
to normalize the count. This baseline count of tweets
over time in the latent space is close to the Poisson
distribution. Fig. 7(a) shows an example of this base-
line.

3. Train: Using one week’s data split into 15 minute
intervals, we train the Poisson distribution parameters.
Fig. 7(b) shows that the training curve and ground
truth curve can be matched quite well.

6. EVALUATION RESULTS
We present an exhaustive evaluation of our bispace simu-

lation approach alongside various dimensions next:

• How e↵ective is the performance of the bispace
model?

Recall that the bispace modeling is comprised of two in-
dependent process: the GBM simulation in the mentions
network, and the Poisson process within the latent space.
Given an initial mentions network, after training the GBM
parameters of µ and �, we proceed to conduct the GBM sim-
ulation. After estimating the Poisson parameter �, we are
able to do the Poisson simulation within latent space. We
see that the GBM model is capable of capturing many mass
protest scenarios, to the order of magnitude. Even though it
cannot simulate the propagation speed accurately at every

(a) Simulation without community

(b) Simulation with community

Figure 11: GBM and Poisson propagation simula-
tion for Colombia protests on Dec 4, 2012.

time point, the method is e↵ective at capturing the total
number of infected nodes with an accuracy of [0.78, 0.95], as
shown in Fig. 14.

• How adept is the bispace model at capturing
surge/burst moments? How reliable are the
simulation results?

Fig. 9 depicts the analsis of the YoSoy132 student movement,
whose Twitter activity is generally tortuous, and the curve
is full of surges and bursts. From Fig. 9 we see that the bis-
pace model is capable of simulating the general surge trends.
Comparing the bispace simulation results with ground truth,
we can see at many time points, the bispace simulation
matches the ground truth. Fig. 11 shows the second protest
of people protesting against the government in Colombia;
here the Twitter activity depicts a burst at a single time
point which is hard to capture. We can see the bispace
model did show there is a burst, but not at the precise time
point, one of its current limitations.

• Is the performance of the model better taking
into account community structure?

After numerous experiments, we plot the accuracy distribu-
tion of both approaches for all our mass protest situations
in Fig. 14. Although the accuracies are sometimes inter-
spersed, we can see that in overall the community model
generally has a higher accuracy.

• Can the bispace model simulate the propaga-
tion path?

In addition to comparing the simulated counts of tweets over
time with ground truth values, we can also compare the



Table 2: GBM simulation results for teacher protest events on Sep 2, 2013.

Average degree Diameter Graph density Connected
components

Average clustering
coe�cient

Average path
length

Simulation 1.791 11 0.002 183 0.083 4.786

Ground truth 1.726 18 0.002 204 0.008 6.261

Figure 12: Normalized mass-protest propagation
speed for major communities during teacher protest
events.

Figure 13: Total tweets over time from Sep 2 to Sep
11, 2013 (Mexico).

propagation path generated by the simulation against the
actual propagation path through the mentions network. In
Fig. 15 we can obtain a sense of the type of infection net-
work bispace modeling creates as compared with the actual
network. The simulation produces networks with relatively
accurate paths and relevant characteristics as shown in Ta-
ble 2. The component to which a user belongs is that of
neighbors who can be reached from connected paths run-
ning along edges of the graph [15].

• Between the geometric Brownian model and
Poisson propagation approaches, which model
is more dominant during the simulation pro-
cess?

From Figs. 9, 10, 11, by observing the blue dashed line (Pois-
son) and red dashed line (GBM), we can see that the Poisson
process shows a mild activity, while the GBM model serves
as the dominant component which can capture the moments
of key surges.

Figure 14: Performance accuracy of the bispace
model for the 7 protest scenarios considered here,
with and without community structure.

(a) Simulation results (b) Truly infected nodes

Figure 15: Bispace model simulation results com-
pared against ground truth infected nodes for the
Mexican teacher protest events.

7. DISCUSSION
In this paper, we have characterized mass protest propa-

gation using a bispace model comprising an observed men-
tions network space and a latent space. We have introduced
a trust function to simulate propagation in observed space
using a geometric Brownian motion di↵usion process which
can be further extended to support communities with di↵er-
ent propagation parameters per community. We considered
the latent space of all interactions outside the mentions net-
work to be a Poisson distribution process. We have shown
how the GBM di↵usion model o↵ers a new approach for
modeling propagation through social networks like Twitter.
Through our experiments, we find that the time required
for spread of protest information through such networks is
dependent on the network’s substructures. Furthermore, we
find that modeling the di↵usion process on a community
basis provides better results than the assumption that all
nodes in the network spread information in the same way.



In future work, we hope to further characterize the hidden
network with the goal of uncovering specific latent variables.
Additionally, we envision applying the GBM model to other
networks, such as the Twitter follower network, to identify
those paths most susceptible to information dissemination.
Finally, we desire to compare propagation of mass protest
language against other themes, such as celebratory events,
to aid in determining correlations between topic or sentiment
and the resulting social media di↵usion.
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