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Abstract
Social unrest is endemic in many societies, and recent news has drawn attention to happen-

ings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize,

sometimes spontaneously and sometimes in an organized manner, to raise awareness of

key issues or to demand changes in governing or other organizational structures. It is of key

interest to social scientists and policy makers to forecast civil unrest using indicators ob-

served on media such as Twitter, news, and blogs. We present an event forecasting model

using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to

predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and

Venezuela. The basic assumption is that the emergence of a suitably detected activity cas-

cade is a precursor or a surrogate to a real protest event that will happen “on the ground.”

Our model supports the theoretical characterization of large cascades using spectral prop-

erties and uses properties of detected cascades to forecast events. Experimental results on

many datasets, including the recent June 2013 protests in Brazil, demonstrate the effective-

ness of our approach.

1 Introduction
Social media has become a window into happenings on the ground, from earthquakes [1] to
specific news stories [2]. A key population-level event is civil unrest, i.e., protests, strikes, and
occupy events, wherein civilian populations mobilize to raise awareness of key issues. As is evi-
dent from recent protests in many countries (e.g., Egypt, Turkey, Brazil), social media plays an
important role in documenting, triggering, mobilizing, or even quelling such events, e.g., see [3,
4]. However, it is not clear when preliminary chatter observed on social media becomes a true
precursor for a protest, and thus understanding the structure of the tweet behavior is a relevant
problem.

While Twitter is used for many purposes (e.g., discontent expression, event reporting,
planned protest recruitment), all of which can be used in a predictive model for civil unrest, we
focus on modeling activity cascades (using a formulation of [5–7]) as a uniform precursor for
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civil unrest forecasting. Our goal is to design a model that forecasts the date of the event. Cas-
cades, as is well known, help formalize the spread of influence and information, e.g., see [8–
12]. Informally, cascades are subgraphs (often trees) that capture the spread of influence from
a node to its newly activated/influenced neighbors and descendants.

There are many notions of cascades, which afford varying levels of formal characterization
and utility. For instance, in Bakshy et al. [8], an edge A! B is included in a cascade only if it
can be argued that some action (e.g., a posting or use of a URL) by B can be directly attributed
to A, which makes the analysis intensive in terms of data and computation; also, the mathemat-
ical analysis under their model becomes challenging. Another common approach is to define
cascades in terms of the (random) subgraph over which diffusion processes like linear thresh-
old and independent cascades models spread, e.g. [12, 13]. Here, we use a simpler notion of
cascades (referred to as “activity cascades”), introduced by [5–7]. Informally, such a cascade
consists of a tweet emitted by a user u, and the tweets of the users who see/mention u’s message
(for instance, her direct followers or users who mention her) given that those tweets are sent
within a small time interval (denoted by Δ), and so on (see Section 3.1 for a precise definition).
This turns out to be a special case of Hawkes processes [14–16], which are based on mixtures
of mutually exciting point processes. Although simpler to define, we demonstrate that this no-
tion of cascades has good predictive power for modeling civil unrest, and is also amenable to
rigorous analysis. Our key contributions are focused on the following three questions:

1. When do large activity cascades happen? A common empirical observation is that cas-
cades seldom become very large. We rigorously prove necessary and sufficient conditions for
large cascades in terms of spectral properties of the underlying graph (Section 3.2); these also
imply a similar characterization for a class of Hawkes processes. We find that this characteriza-
tion closely matches our empirical observations for synthetic traces. Specifically, our analyses
show if the spectral radius of a cascade graph (defined in Section 3.2) is below a particular con-
stant, then large cascades are not possible. Our techniques build on approaches for analyzing
the spread of epidemics [17–19], and are the first such results for cascades of this kind.

2. Are there critical subsets of users that contribute to cascades?We study the questions
of identifying critical subsets of users responsible for formation and survival of cascades, and
formalize these as two complementary problems: CRITICALSETFORMATION (CSFP) and CRITICAL-

SETSHATTERING (CSSP). We show both to be NP-complete, and we evaluate different greedy
heuristics to approximate them empirically by studying large, monthly cascades for all (coun-
try, month) combinations for Brazil, Mexico, and Venezuela over a 15-month period. Our re-
sults for CSSP show that a very small set of users are critical for a cascade to exist—their non-
participation causes the cascade to shatter. We also prove that a high degree strategy gives a
constant factor approximation for CSSP in random power law graphs. On the other hand, the
results for CSFP suggest that unless a large fraction of users participate a cascade cannot exist.
Thus, one needs a reasonable fraction of users, plus some critical users for a cascade to exist.
These are validated through empirical observations in Section 4.2.

3. Can we forecast protests using activity cascades? Since large cascades are not very com-
mon, their occurrence signals a big event. We analyze over 353 million tweets from three Latin
American countries over a 1.5-year period, and consider activity cascades formed by a filtered
set of tweets. These tweets contain at least 3 keywords from a dictionary that has over 900
words in English, Spanish and Portuguese, related to civil unrest activities. This ensures that
the resulting activity cascades will be relevant to the topic of civil unrest. Next, we build a fea-
ture set based on the structural properties of the cascades, to be used as predictors of social un-
rest. Statistical models are then used to remove redundancies among features and make
predictions of events from the reduced feature set. The model is tested on multiple countries
for robustness and compared against a baseline model. We show that our approach can ‘beat

Forecasting Using Activity Cascades

PLOS ONE | DOI:10.1371/journal.pone.0128879 June 19, 2015 2 / 27

Foundation (NSF) under grant number CCF-1216000
and NSF grant number CNS-1011769. The US
Government is authorized to reproduce and distribute
reprints of this work for Governmental purposes
notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or
implied, of IARPA, DoI/NBC, or the US Government.
None of the funders or grants represent commercial
funding sources, since they are all US federal
agencies.

Competing Interests: The authors have declared
that no competing interests exist.



the news,’ i.e., contribute a lead time of one to two days over the reporting of a protest in major
news media, with an accuracy of over 0.75. It can even predict black swan events like the Brazil-
ian Spring with an accuracy of 0.83. (Section 4.6).

Our paper helps explain the model and observations of [5–7] rigorously, especially condi-
tions for occurrence of large cascades. Since their frequency is relatively low, their occurrence
is a signal of significant events—-this corroborates with the observations of [5], and is the basis
of our approach for forecasting protest events.

1.1 Related work
Analyzing traffic trends in twitter and other social media sites is a very active topic of research.
Some of the specific applications include identifying specific news stories [2, 20], tracking natu-
ral disasters [1], predicting stock market moves [21, 22] and understanding political or cultural
events [5, 6, 23, 24]. Yang et al. [25] predict temporal patterns in the usage of specific hashtags
in social media data. Hutto et al. [26] show that increases in followers on Twitter are predicated
on social behavior, message content, and social network structure variables in roughly equal
proportions. Hsieh et. al. [27] demonstrated that experts could not match the crowd in identi-
fying future interesting news stories. Most of these works have focused on counts of keywords
and hashtags, and do not capture peer influence in the use of such terms. Peer influence is
often modeled by diffusion processes, such as linear threshold and SI/SIS/SIR epidemic models,
e.g., [12, 13]; in this context, cascades are used to refer to the (random) subgraph on which the
diffusion spreads. There has also been a lot of work on using semantic information for attribut-
ing influence more carefully, e.g., [8–11], as discussed in Section 1.

A simpler notion of cascades is studied by [5, 6] in Twitter follower graphs and by [7] in the
mentions graphs. Large cascades involving protest-related hashtags are found to occur infre-
quently. Our formulations extend point process models, which have been studied extensively.
Two closely related approaches are by [15, 16]. Simma et al. [15] consider a model in which a
Poisson process triggers other Poisson processes. They develop an EM algorithm to infer the
random forest of events, which captures the cause of each event. Zhou et al. [16] use a multi-di-
mensional Hawkes process.

There are other works that utilize models for characterization and prediction. Linear regres-
sion models using average tweet rates, and tweet rate time series (per-day tweet rates over a
7-day period), have been used to predict box-office revenues from movies [28]. A classifier and
hidden Markov model have been used with tweet content to establish the onset and end of
identified events (versus event prediction) [29]. Natural language processing and LDA have
been used to identify topics that capture collections of events identified in tweets; a linear re-
gression model is then used to predict crimes [30].

With respect to forecasting social unrest, [31] provides empirical data showing that in-
creases in food prices correlate with protests in 2008 and 2011. Rather than predicting specific
unrest events, [32] uses a 2-parameter dynamics model to predict the distributions of numbers
of unrest events per year, for many regions of the world. Disease outbreaks, deaths, and riots
are forecasted with topic detection and tracking using news articles, and a Bayes scheme to
compute the probability of some event, given other events occurring beforehand [33]. A ten-
sion parameter, based on hashtag usage, was shown to correlate well with clashes in Egypt be-
tween secularists and Islamists [34]. A generalized least squares model of political violence [35]
is used to predict the overall level of violent activity in a country, by year. By contrast, we are in-
terested in violent and non-violent protests.

Network characteristics and spectral bounds have been used for analyzing epidemic spread
in networks. Ganesh et al. [17] develop necessary and sufficient conditions for the duration of
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an SIS process; our analysis strongly builds on this approach, but our model requires the use of
a variant of the node expansion, instead of edge expansion. Similar spectral radius bounds are
also considered in [18, 19] for the SIS process.

Our work can be differentiated from the above studies in the following ways. This is the first
work of which we are aware that predicts daily civil unrest events in multiple countries using a
combination of different graph cascade characteristics. Further, we explain theoretically and
demonstrate empirically conditions that delineate small and large cascade regimes, using spec-
tral properties of the underlying graphs.

2 Materials

2.1 Twitter Dataset
For event prediction, we use a set of over 353 million tweets collected for Brazil, Mexico and
Venezuela for the period of May 2012 through November 2013. Our dataset constitutes a 10%
sample of the tweets for these countries during the above time period.

Our analysis is done separately for each country, and, as a pre-processing step, the tweets
are filtered by country (using geolocation codes, place identifiers, language detection, author
identification, and other enrichment processes), ignoring tweets for which a country of origin
could not be determined. Next, we organized a vocabulary of 614 protest-related words (such
as march, riot, strike, organize, democracia, conflicto, revolucion, criminalidade), 192 key-
phrases (such as “right to work”, “marcha por la paz”), and 105 country-specific key players
(which include important public figures, political parties, labor unions), collectively referred to
henceforth as keywords. Compiled by social scientists who are experts in the region, the key-
words include English, Spanish, and Portuguese translations. We then subselect tweets which
contain at least 3 keywords from our vocabulary. Tweet volumes before and after filtering are
shown in Table 1.

2.2 Follower Data
We obtained the follower network for a subset of the users who appear as authors in our data-
set, for each country by using Twitter API from a large number of machines. The size of the
graphs for the three countries are the following: Mexico has 79,598 nodes and 1,437,687 edges,
Venezuela has 312,241 nodes and 21,119,120 edges, and Brazil has 142,176 nodes and
6,854,368 edges.

2.3 Gold Standard Report (GSR) Datasets
GSR datasets are compiled by an independent group, selected by IARPA (Intelligence Ad-
vanced Research Projects Activity), which is comprised of social scientists and experts on Latin
America. A small set of well-reputed newspapers for each country are used to identify the in-
stances of civil unrest events to be included in the GSR. For each event, the GSR captures the

Table 1. Number of tweets for the period May 2012 to Nov 2013.

Country Raw Filtered

Mexico 97,873,616 3,524,695

Venezuela 105,938,438 6,683,834

Brazil 150,147,141 1,575,041

doi:10.1371/journal.pone.0128879.t001
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when, where, who and why of the event, i.e. the date of the event, its geographic location, the
population protesting (e.g. labor, medical workers, general population) and the reason for the
protest (i.e., the event type, e.g., economic, political, resource). Here we are interested in fore-
casting primarily the if/when of the event (although text classification and geo-coding of the
tweets reveals insight into where/who/why, something we do not study here further).

3 Methods

3.1 Activity Cascades
Let G = (V, E) denote a directed graph, with No(u) and Nin(u) denoting the set of out-neighbors
and in-neighbors for a node u2V, respectively. The nodes represent Twitter users. We consider
two kinds of graphs—a follower graph and a combinedmentions and retweet graph. An edge
(u, v) has different interpretations depending on the graph, as discussed below. We assume
each user u sends at most one tweet at a time (with one second granularity), so a node-time
pair (u, t) identifies a tweet. For a node u2V, time t and time interval Δ, we define a cascade C
(u, t, Δ) to be a set of tweets/node-time pairs in the following recursive manner, using the for-
mulation of [5–7].

• If there is no tweet driven by node u at time t, then C(u, t, Δ) = ϕ.

• Else, C(u, t, Δ) = {(u, t)}[{x2C(v, t0, Δ):v2No(u), t02(t, t+Δ]}
The term driven by will be explained below. This general notion of cascade makes no prior

assumptions about the nature of the edges connecting the nodes of the graph, which gives us
the flexibility to define the neighborhood of a node in different ways. Though this definition
does not explicitly look for any correlation between the messages of u and v (which is used by,
e.g., [8–12]), we use it on a set of tweets that are already filtered for protest related keywords, as
done by [5–7], which brings in some correlation. Also, note that this notion of cascades is dif-
ferent from the more commonly studied notion associated with diffusion processes, e.g., [12,
13]—here, a cascade is a random subgraph on which the influence spreads.

In this paper, we study two types of activity cascades: follower (F) and combinedmention
plus retweet (MRT) cascades, defined, respectively, by the follower andmention and retweet
graphs, each of which models a different kind of interaction between users in the Twitter net-
work. Our methodology is the same as [36], except that we also include retweets.

In a follower graph, for every node u2G, No(u) is the set of Twitter followers of u, and
Nin(u) is the set of Twitter friends of u (i.e. users followed by u). From this definition, follower
cascades in Twitter emerge in the following manner: a user u posts a tweet at time t starting a
cascade where she is the only participant. For each follower v of u who posts a tweet at some
time t02(t, t+Δ], (v, t0) is added to this cascade, and so on, as illustrated in Fig 1. This process is
repeated until no more users can be added to the cascade.

We combine mentions and retweets to form an MRT graph because both types of tweets in-
dicate influence between pairs of users. Suppose a user w with nameW composes a tweet at
time t1 that mentions another user u with name U, whereW and U are sequences of characters
of the form [a−zA − z0 − 9_]+. In the following, we specify the concatenation of two se-
quences of characters, A = (a1, a2, . . ., aq) and B = (b1, b2, . . ., br), using the operator�, as A�B
= (a1, a2, . . ., aq, b1, b2, . . ., br). Let PW be the payload or content of the tweet ofW; PW is a se-
quence of characters. Because wmentions u, we have (@)�U� PW, which produces the direct-
ed edge (u, w) of the MRT graph. This edge has the semantics that u influences w. Analogously,
if x with name X retweets a message from user w at time t2, where (RT@)�W� PX, then we
have the directed edge (w, x), where the semantics are the same as in the mentions edge: w
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influences x. If the two tweets occur such that t22(t1, t1+Δ], then the two edges link up to form
a directed path of length 3, u! w! x, and the cascade C(u, t1, Δ) = {(u, t1), (w, t2)}.

We have several notes. The term driven by indicates the user that instigates the cascade. For
a follower graph, the instigator is the user that sends the first tweet of a cascade. For an MRT
graph, the instigator is the first influencer of a cascade. Second, users (nodes) in an MRT graph
with zero out-degree (x in this example) are not included in the MRT cascade because there is
no evidence that these nodes influence other users. Also, a single tweet can produce multiple
edges in an MRT graph. Since retweets of an original tweet preserve the original tweeter, no
matter how many times the original tweet is (sequentially) retweeted, a set of these retweets
(without mentions) produces a star subgraph of the MRT graph. Finally, MRT cascades, unlike
follower cascades, directly use tweet payloads; however, F cascades utilize the follower graph.

We provide additional definitions that will be useful in forecasting social unrest. We say
that a (follower or mentions/retweet) cascade C is active on day d if there exists at least one
message or tweet (u, t) by user u at time t, such that t is some time during day d and (u, t) is an
element of C. The size of a cascade is the number of tweets comprising it. A user or participant
is a tweeter.

3.2 Characterizing large cascades in terms of graph properties
Our empirical results suggest that large and long cascades are rare, and arise within communi-
ties of users. We now attempt to explain this behavior by relating it to the spectral properties of
the graph, by considering a formulation based on a slight relaxation of the notion of cascades:
We consider a cascade starting at a random initial node u0 at time t0; (i) X(0) denotes the initial

Fig 1. Formation of cascades in the Twitter follower network. At time t, node 1 posts a tweet. Nodes 2
and 4 post at times t2 and t4 between t and t0 = t + D. Node 5, which follows 2, posts at some time t5 between
t0 and t@ = t0 + D. Therefore, the cascadeC(1, t, D) is C(1, t, D) = {(1, t), (2, t2), (4, t4), (5, t5)}.

doi:10.1371/journal.pone.0128879.g001
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configuration. We say that (u0, t0) is active in the cascade at time t0. Following our definition,
we will think of a cascade as consisting of tweets indexed by user-time pairs (u, t); (ii) The
number of tweets sent by each user u is a Poisson process with parameter αu; (iii) If user u
sends a message at time t, and some other user v with u2No(v) is active at time t, then (u, t) be-
comes active in the cascade at time t; (iv) A tweet (u, t) ceases to be active after a (random)
time duration D(u, t) drawn from an exponential distribution with parameter δ = 1/Δ; and (v)
The cascade C(u0, t0) dies when there are no more active tweets in it.

We now model this as a Markov process X(t) with values in N
V. Let Xu(t) denote the num-

ber of messages by user u that are active at time t. Then, the cascade evolves in the following
manner:

Xu : increases by 1 at rate aðuÞ if fv 2 NinðuÞ : Xv > 0g 6¼ � ð1Þ

Xu : decreases by 1 at rate dXu ð2Þ

Every cascade eventually becomes inactive, since Xu = 0 for all u is the unique absorbing
state for this Markov process. The lifetime of the cascade, the duration for which it lasts, is pre-
cisely T = sup{t:Xu(t)> 0,for some u2V}. We now derive necessary and sufficient conditions
for obtaining large cascades.

3.2.1 Multivariate Hawkes Processes. Our formulation above makes it a special case of
the multivariate Hawkes processes, as we now discuss. A Hawkes process Nt is a type of self-ex-
citing counting process characterized by a time-dependent intensity (rate) λ(t) [14–16].

Let Nd(t) be a multidimensional counting process, where d2{1, . . ., D} denotes a dimension
(with D being the number of dimensions). Let λd(t) denote the intensity of Nd(t). The process
is defined in the following manner:

ldðtÞ ¼ mdðtÞ þ
XD

d0¼1

Z t

�1
kd0dðt � sÞdNd0 ðsÞ;

where μd is a base intensity for dimension d, and κd0d(τ) is a kernel function describing the in-

fluence of the previous events in dimension d0 on the current rate on d.
For our formulation, let each node u2V be a separate dimension, and let Nu(t) be the num-

ber of messages contributed to an ongoing cascade. We have μu(t) = 0 and the kernel function
as κvu(τ) = αvu × κ(τ), where: (i) αvu = αu Nv(t) if v2Nin(u); otherwise, αvu = 0. Here, αu is the
(fixed) tweeting rate of u, and αvu describes the fact that u’s contributions to the cascade are
proportional to her in-neighbors’ contributions (i.e. her friends in the follower graph); and (ii)
κ(τ) = 1 if 0< τ� Δ; otherwise κ(τ) = 0. As a result, we have:

luðtÞ ¼ aðuÞ
X

v2NinðuÞ
ðNvðtÞ � Nvðt � DÞÞ

We use the process X(t) below for our discussion, since it simplifies the analysis; our results
hold for a class of Hawkes processes with the kind of kernel function mentioned above.

3.2.2 Conditions for Small Cascades. We now derive conditions when the maximum cas-
cade size is O(logn), with high probability, where n is the number of nodes. The process X(t) is
non-linear, making it quite complex to analyze; instead we consider the following relaxation
Y(t):

Yu : increases by 1 at rate aðuÞPv2NinðuÞYv ð3Þ
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Yu : decreases by 1 at rate dYu ð4Þ

Lemma 1 The process Y(t) stochastically dominates X(t) so that X(t)� Y(t) for all t� 0.
Proof 1Our proof is based on designing a coupling that ensures that X(t)� Y(t) for all

t� 0, and builds on [17]. Clearly, X(0)� Y(0). We consider the process Y(t) and for each node
u, we sample random variables R1

u and R
2
u from exponential distributions with parameters

α(u)∑v2Nin(u) Yv and δYu, respectively. The first transition out of Y(0) happens at time τ, which
equals minufR1

u;R
2
ug. Our coupling will specify the transition for the process X(t) in the follow-

ing manner. Suppose the transition at time τ corresponds to Yu(τ) = Yu(0) + 1; this would have
happened with rate α(u)∑v2Nin(u) Yv(0). For the corresponding process X(t), the transition
Xu(τ) = Xu(0)+1 is made with probability 1P

v2NinðuÞ
Yvð0Þ

, if {v2Nin(u):Xv > 0} 6¼ ϕ; otherwise

Xu(τ) = Xu(0). This ensures that the transition Xu(τ) = Xu(0)+1 happens with the correct rate.
Similarly, the transition corresponding to Yu(τ) = Yu(0)−1 can be handled to get a coupling of
the first jumps in X(t) and Y(t).

Lemma 2 Let ρ(A) denote the spectral radius of A, the adjacency matrix of G. Assume that
G is a bi-directed graph and let αmax = maxu α(u). If αmax ρ(A)< δ, the duration of the cascade

T satisfies Pr[T> t]� ne−(δ−αmax ρ(A))t and E½T� � lognþ1

d�amaxrðAÞ.

Proof 2Our proof is an adaptation of that of [17] for the SIS model; we describe it here
completely for completeness. From equations (3, eqn:y2), it follows that

E½Yuðt þ dtÞ � YuðtÞjYðtÞ� ¼ aðuÞ
X

v2NinðuÞ
YvðtÞdt � dYuðtÞdt þ oðdtÞ

� amax

X
v2NinðuÞ

YvðtÞdt � dYuðtÞdt þ oðdtÞ;

which implies dE½YðtÞ�
dt

� ðamaxA� dIÞE½YðtÞ�.
This has solution E[Y(t)]� e(αmax A−δI) Y(0). From Lemma 1, and since X(0) = Y(0), we have

E[X(t)]� e(αmax A−δI) X(0).
Let Nt = ∑v Xv(t) = 1T X(t) denote the number of nodes infected at time t. Then, Nt � 1T

e(αmax A−δI) X(0). Since A is a symmetric matrix, e(αmax A−δI) is also symmetric, and we have
k eðamaxA�dIÞXð0Þ k� rðeðamaxA�dIÞÞ k Xð0Þ k¼ eamaxrðAÞ�d

ffiffiffi
n

p
. This implies E[Nt]� neαmax ρ(A)−δ =

ne−(δ−αmax ρ(A)), since k Xð0Þ k� ffiffiffi
n

p
. The first part of the lemma follows since Pr[T> t] = Pr

[Nt� 1]� E[Nt].
For the second part of the lemma, we have

E½T� ¼
Z 1

0

Pr ½T > t�dt

�
Z 1

0

min f1; neamaxrðAÞ�dg

�
Z log n=ðd�arðAÞÞ

0

1dt þ
Z 1

log n=ðd�amaxrðAÞÞ
ne�ðd�amaxrðAÞÞdt

� lognþ 1

d� amaxrðAÞ

Lemma 2 implies that when αmax ρ(A)< δ, any cascade has size O(logn). We are able to
prove Lemma 2 only when G is symmetric, because the proof relies on all eigenvalues being
real, though the statement might be true in general.
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3.2.3 Conditions for Large Cascades. We now consider the conditions for having a large
cascade (of size cm, where c is a constant larger than 1, andm is a parameter). We need the fol-
lowing version of the isoperimetric constant, which captures node expansion.

ẐðG;mÞ ¼ min
S�V;jSj�m

P
v2V�S:NinðvÞ\S6¼�av

jSj :

We sometimes omit the reference to the graph G in ẐðG;mÞ, and just use ẐðmÞ when G is
clear from the context. We now consider a Markov process Z(t) with state space {0, . . .,m}, de-
fined in the following manner:

ZðtÞ ¼ ZðtÞ þ 1 at rate ẐðmÞZ; if Z < m

ZðtÞ ¼ ZðtÞ � 1 at rate dZ; if Z > 0

Lemma 3 Z(t) is stochastically dominated by ∑u Xu(t), i.e., Z(t)� ∑u Xu(t) for all t� 0.
Proof 3 The proof is also by designing a coupling, as in Lemma 1. We assume that Z(0)�

∑u Xu(0), and prove the statement by induction. We consider the process X(t) and for each
node u, we sample random variables R1

u and R
2
u from exponential distributions with parameters

α(u)1{v2Nin(u):Xv > 0} 6¼ ϕ and δXu(0), respectively. The first transition out of X(0) happens at
time τ, which equals minufR1

u;R
2
ug. Our coupling will specify the transition for the process Z(t)

in the following manner. Let S = {w:Xw(0)> 0}. Let N+(S) = {v2V−S:N(v)\S 6¼ ϕ}.
Suppose the transition at time τ corresponds to a transition Xu(τ) = Xu(0)+1 for some node

u (which increases the number of active messages). The total rate at which such an increase
happens equals ∑u α(u)1{v2Nin(u):Xv > 0} 6¼ ϕ = ∑u2N+(S) α(u). First, suppose that jSj<m. The
transition Z = Z+1 is now made at time τ with probability

ẐðmÞZP
u2NþðSÞaðuÞ

:

This fraction is in [0, 1], because Zð0ÞẐðmÞ � P
u2NþðSÞaðuÞ, by definition of ẐðmÞ, and because

jSj<m, so that the transition happens with the correct rate. Second, if jSj �m, Z is unchanged,
which is the correct rate.

Next, we consider the case that the transition at time τ corresponds to a transition Xu(τ) =
Xu(0)−1 = 0 for some node u. In this case, the transition Z(τ) = Z(0)−1 is made with probability

Zð0ÞP
u
Xuð0Þ

, which is well defined since this is in [0, 1]. Also, note that there is some probability

that ∑u Xu(0) decreases by 1, but Z(0) does not— this does not violate the property, because in
this case Z(0)< ∑u Xu(0).

Therefore, in either case, we have Z(τ)� ∑u Xu(τ), and the lemma follows.

Lemma 4 Suppose r ¼ d
ẐðmÞ < 1. Then, we have Pr½T > r�mþ1

2m
� � 1�r

e
ð1þ OðrmÞÞ.

Proof 4 The proof of the above lemma follows by observing that the process Z(t) is a one-di-
mensional random walk, defined in the following manner. Consider the discrete time Markov
chain associated with Z. Let p(i, j) denote the probability that Z switches to value j from i.

Forecasting Using Activity Cascades

PLOS ONE | DOI:10.1371/journal.pone.0128879 June 19, 2015 9 / 27



Then, we have:

pði; iþ 1Þ ¼ ẐðmÞ
ẐðmÞ þ d

; i ¼ 1; � � � ;m� 1;

pði; i� 1Þ ¼ d
ẐðmÞ þ d

; i ¼ 1; � � � ;m� 1

pð0; 0Þ ¼ 1;

pðm;m� 1Þ ¼ 1:

Then, the duration of the cascade, T, is the time before the process hits 0. As in [17], this is
the standard gambler’s ruin probability, and the rest of the proof follows exactly as in [17].

Spectral connection. Vertex expansion is related to the graph spectrum. If G is a d-regular
graph, and if its spectral gap, i.e., the difference between the smallest and second smallest eigen-
value, is μ, the vertex expansion for sets of size at mostm is 1

ð1�m=nÞm2þm=n
.

3.2.4 Identifying Critical Sets in a Cascade. We now consider the following questions:
What is the critical subset of users whose tweets are responsible for the cascade to survive?
What is the critical subset of users whose removal would cause the cascade to disintegrate?
These are related and complementary problems, which can help explain the conditions for cas-
cade formation. We consider a slightly more general notion of cascades than the one defined in
Section 3.1—for a set S of nodes, we define C(S, t, Δ) = [u2S C(u, t, Δ) to be the union of cas-
cades starting at nodes in S. As a result, any directed acyclic graph can be seen as a cascade
formed by its sources.

CRITICALSETSHATTERING Problem CSSP(G, C, k):
Input: A set of cascades C in a graph G = (V, E) and parameter k.
Goal: Determine the smallest set S� V of users, such that the sub-cascades of all C2C in G

[V\S] are of size at most k.
Thus, the goal in CSSP is to find the subset S whose removal causes all cascades in C to be

“shattered”.
CRITICALSETFORMATION Problem, CSFP(G, C, α, k):
Input: A set of cascades C in a graph G = (V, E), tweet rate α and parameter k.
Goal: Determine the smallest set S� V of users, such that for every C2C, a sub-cascade of

size at least k exists in the graph G[S] with tweet rate α.
Thus, CSFP quantifies the number of users needed to cause large cascades. While CSSP and

CSFP are closely related and seem to be complementary problems, they are quite different
from a computational perspective.

Complexity and algorithms for CSSP. We have the following result.
Lemma 5 CSSP (C, G, k) is NP-complete.
Proof 5 It is easy to verify that CSSP is in NP. The NP-hardness of CSSP is by a reduction

from the balanced graph partitioning problem (see, e.g., [37])— this problem involves finding
the smallest subset S	 V0 of nodes in an undirected graph H = (V0, E0) so that all components
inH[V0−S] have size at most b, which is a given parameter.

Let C be a DAG formed by orienting the edges ofH arbitrarily, so that it forms a DAG. Let
B	 V0 whose removal splits C into weakly-connected componentsH1, . . .,Hr, each of size at
most k = b; as discussed earlier, each component Hi is a cascade formed by the sources in that
DAG. If we ignore the directions of the edges, we get components of size at most k = b. This im-
plies that the solution to CSSP in C corresponds to a solution to the separator problem on H.
The converse also holds similarly.
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Whenever the condition in Lemma 2 is tight, i.e., it gives both necessary and sufficient con-
ditions, CSSP can be solved by simply attempting to reduce the spectral radius ρ(A). We con-
sider the special case of the Chung-Lu random graph model [38]: given a weight sequence w =
(w(v1), w(v2), � � �, w(vn)) for nodes vi2V, the random graph G2G(w) is obtained by choosing
each edge (u, v) with probability wðuÞwðvÞP

vi2V
wðviÞ

. We use the following result from [39].

Lemma 6 [39] If G = G(w) is a random graph in the Chung-Lu model with the weight se-
quence being a power law with exponent β> 2, removal of the Θ(n/T2(β−1)) nodes with the high-
est weight ensures that the spectral radius of the residual graph is at most T, almost surely.

Motivated by Lemma 6, we study heuristics for CSSP based on degree and the core number

in the underlying graph. Since rðAÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxvdegðv;GÞ

p
, a natural heuristic for CSSP is to re-

duce the maximum degree maxv deg(v, G). Also, since rðAÞ � 2jEðHÞj
jVðHÞj for any subgraph H of G,

another natural heuristic for CSSP is to reduce the density of every subgraph H. Motivated by
these bounds on the spectral radius of a graph, we consider the following heuristics for CSSP:
(i) high degree heuristic: remove nodes in decreasing order of degree in G; and (ii) high core
number heuristic: remove nodes in decreasing order of their core-number in G.

Complexity and algorithms for CSFP. We have the following hardness result.
Lemma 7 CSFP (C, G, α, k) is NP-complete.
Proof 7 It is easy to verify that CSFP is in NP. We only discuss the NP-hardness. Our proof

is by a reduction from the Set Cover problem, an instance of which consists of a set B of ele-
ments, a set A of subsets of B; the goal is to select the smallest subset A0 	 A such that each ele-
ment in B is covered by a set in A0.

We construct an instance of CFP in the following manner. We set � to be a large integer. We
construct a graph G = ({r, r0}[A[B, E), where E consists of the following edges: edges (j, i) if
j2B, i2A and j is contained in set i, edges (r, i), (r0, i) for all i2A, and edge (r, r0). We have αr =

αr0 = �, while αu = 1/n for all u2A[B. We note that ZðG; 1̂; fugÞ � � for all u2{r, r0}[A.
Suppose A0 � A is a minimum set cover. Then, increasing αu = � for all u2A0 will ensure

that ZðG; 1̂; fjgÞ � � for all j2B. Similarly, suppose S is the optimum solution to the CFP prob-
lem. Clearly, S� A; if S\{r, r0} 6¼ ϕ, we can drop r, r0 from S without affecting the feasibility of
the solution. For each j2B, there must be at least one neighbor in S; else, we cannot have

ZðG; 1̂; fjgÞ � �. This implies S is a set cover.
This completes the reduction.
We consider a greedy algorithm for CSFP: pick nodes in non-increasing order of degree

until the cascade on the graph induced by these nodes has size at least k.
We note that the maximum cascade size can be estimated for a given rate assignment within

a factor of 1 ± �, with high probability, in time O(jEjlogn/�2) by a standard Chebyshev bound.

3.3 Forecasting Social Unrest using Cascades
Social media is believed to be responsible for facilitating critical communication often required
to fuel momentum preceding the events of civil unrest. Here we explore the ability of Twitter
data to act as a predictive signal of future civil unrest. Specifically, we study the prediction of
civil unrest events (e.g., protests, strikes) by using properties of the activity cascades in Twitter
data.

We employ a regression model to predict the probability of a civil unrest event in a given
day by using features based on the structural properties of the activity cascades described earli-
er. We hypothesize that, in general, unusually large and long cascades are likely to be indicative
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of future events of interest. These could be sport events, concerts, revolutions, elections, etc.
However, given that our tweets are filtered by civil unrest related keywords, we expect the events
detected will be of civil unrest type.

Starting fromMay 1, 2012 to November 30, 2013, each day, we compute the total number
and size of cascades, number of participants and duration (in days) of cascades, change in the
number of participants and tweets, average growth rate of tweets and average growth rate of
participants. These features are collected daily for each active follower cascade and MRT cas-
cade. For each of the features described above, we also compute the minimum, maximum, me-
dian, and average of the cascade size, duration, and users, as well as the average value of the 1st,
2nd, 3rd, and 4th quartile of their distribution and add them to the feature set. Therefore, our
initial feature set consists of 114 attributes: (7 cascade properties × 8 aggregate statistics × 2
types of cascades + (daily cascade count × 2 types of cascades)).

Our initial list of features is expected to be highly correlated, resulting in unstable estimates
if used in regression modeling. For example, the cascade size of an MRT cascade is almost
equivalent to the number of users in that cascade, since people tend to retweet a message only
once. In addition, the majority of these cascades last for one day (duration = 1), which makes
the average growth equivalent to the change in the cascade size on the last day, which in turn
gives the change in the number of users, and so on.

In order to address the problem of multi-colinearity, we compute the correlation between
every pair of features (i.e. the correlation matrix) and remove highly correlated features. Specif-
ically, if the correlation between two variables is greater than 0.7, we only keep one of the two.
This methodology reduced the size of our feature set from 114 to 13. Next, we use a regression
methodology called LASSO (Least Absolute Shrinkage and Selection Operator) to further re-
move the redundant features and to shrink coefficients [40]. The LASSO based logistic regres-
sion model uses cascade features from both the follower and the MRT models.

3.3.1 Baseline model. We build a baseline model in order to set a benchmark and to mea-
sure the added predictability provided by the Twitter data. The baseline model uses no external
input in the regression model. It uses an autoregressive logistic model of order 1, since we have
a binary dependent variable. It uses lagged values of itself as the predictor. Formally, we esti-
mate Yt = α + βYt−1 + ε where Yt is the binary variable: 1, if there is an event on day t in the
GSR; 0 otherwise. The fitted values of Yt, which give the likelihood of future events, are com-
pared against the actual events in the GSR for measuring the model’s performance.

3.3.2 Evaluation metrics. Once the probabilities are estimated for the test days, a thresh-
old t is used to determine whether or not the probability exceeds t for an event to occur. The
optimal threshold t
 is determined by cross-validation, especially maximizing the area under
the ROC (receiver operating characteristic) curve. Once learned, t
 is further used to separate
events from non-events given the estimated probabilities. We evaluate our models against two
settings—a lead time of 1 day and a lead time of 2 days—and compare the results against the
GSR using standard measures such as precision, recall, and the misclassification rate.

3.3.3 Operational issues. All the Twitter data used in this study is in compliance with the
Terms of Use and all website conditions of Twitter. We use data fromMay 2012 to infer the ac-
tivity cascades. The GSR data is available only from Nov 2012. Hence, data from Nov 2012 to
May 2013 is used for training the forecasting model and the held-out June 2013 data is used for
testing in case of Brazilian Spring. This training/test split is actually a tough test for the fore-
casting algorithm because June 2013 depicted very significant changes in rates of occurrences
of protests in Brazil (more on this below), and our approach was nevertheless able to forecast
this variation in its forecasts.
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4 Results and Discussion
Our experimental results are focused on answering the following questions.

1. Do our theoretical conditions for large cascades from Section 3.2 hold true in real datasets?
(Section 4.1)

2. What level of increase in user tweeting initiates large cascades? Does the solution to the CFP
problem using our greedy heuristic suggest that a few important users are sufficient or is
large number of users necessary? (Section 4.2)

3. How adept are activity cascades at detecting precursors and surrogates for protests? (Section
4.3)

4. Which cascade features yield the best forecasting performance? Are these features consis-
tently better across multiple countries? (Section 4.4)

5. Are cascade models for forecasting protests significantly better than baseline models? Is
there value in building features from different Twitter networks (i.e. follower and MRT)?
(Section 4.5)

6. Can our methods help forecast ‘black swan’ events like the Brazilian Spring? (Section 4.6)

4.1 Validation: Two Regimes for Cascade Sizes
We empirically verify the conditions for large cascades uncovered using our theoretical analy-
sis. We find ten of the largest follower cascades in Mexico between June 27 and Sep 7, 2012,
and the subgraphs induced by these users (also referred to as the cascade graphs). We consider
synthetic twitter traffic generated using a Poisson process (as in Section 3.2) for the users in
these cascade graphs with rate αu = α, and then compute the cascades induced by this for Δ = 4
hours. Fig 2 shows the maximum cascade size nα, as a function of α for each of these cascade
graphs. The y-axis is normalized by the number of nodes n in the respective cascade. For most
of the cascades, we observe a clear phase transition for α somewhere in the range [0.05,0.15].

For these particular graphs, we find that rðÂÞ (in the notation of Lemma 2) is below δ when α
is in the range [0.10,0.15]. We also observe in Fig 2 that the cascades die out when α� 0.05,
which is consistent with the condition in Lemma 2. Note that some of the cascades die out even
for higher values of α, which is consistent with the gap between the necessary and sufficient
conditions in Lemmas 2 and 4.

4.2 Identifying Critical Sets in Cascades: CSSP and CSFP
Empirical analysis of heuristics for CSSP. We start with collections of tweets from Brazil, Me-
xico, and Venezuela that form cascades, in monthly intervals, fromMay 2012 through July
2013. We use reciprocal follower graphs (i.e., two users must follow each other to form an edge
in the reciprocal follower graph, which implies a stronger association between users [5]) to de-
termine which users follow each other. We use Δ = 4 hours for the maximum duration that
may separate a user’s and a follower’s tweets in forming edges in the cascade graph. The recip-
rocal follower graphs for Brazil, Mexico, and Venezuela have 1.9, 0.5, and 4.9 million edges, re-
spectively, and 123409, 69226, and 253423 nodes.

We select nodes (users) from the cascade graphs based on node properties in the follower
graph. Specifically, we successively remove nodes (i) from greatest degree to least, and (ii) from
the greatest k-shell to the least, from the follower graphs. We then remove these nodes from
cascade graphs and compute the numbers of nodes and the sizes of the largest weakly
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connected components that remain in them (cf. Section 3.2.4). Recall that nodes in a cascade
graph are (user,time) pairs. Results are provided in Figs 3 and 4 for the largest cascades of Bra-
zil and Venezuela, respectively. Results for other cascades, across countries and months, show
the same behavior.

Removing relatively small fractions of high degree nodes and high k-shell nodes are both ef-
fective in reducing the sizes of cascades. For all (country, month) combinations, the high degree
heuristic is more effective than the high k-shell heuristic. Differences between the methods can
be significant, particularly for small numbers of removed nodes.

Empirical analysis of heuristics for CSFP. We now solve the CSFP problem for selected
large cascades in Mexico, Brazil, and Venezuela using the greedy heuristic in Section 3.2.4, in
order to approximate the change in the level of tweeting that caused the cascade. We examine
the differences in aggregate level of tweets and user participation, as well the characteristics of
cascades that might result at lower levels of participation. When we consider the largest cas-
cades and retain either the tweets or the users involved with probability p, the resulting sub-cas-
cade size varies quite gradually with p, instead of showing a clear phase transition (in contrast
with the results in Section 4.1). It is possible that the more gradual change is due to the non-
uniform rates αu for users u in the large cascades, which cause a higher level of weighted vertex
expansion, even for moderate values of p. These results are omitted because of space
constraints.

We now consider the effect of a greedy choice of users from the original cascades, using var-
iants of the greedy heuristic described for CSFP. The first (structural) heuristic selects k nodes
{v1, . . ., vk} with the greatest values j N 0

oðvÞ j, where j N 0
oðvÞ j is the number of out-neighbors of

Fig 2. Follower cascade size as a function of tweeting rate for ten follower cascades in Mexico
(produced between June 27, 2012 and September 7, 2012), with synthetic traffic. As the tweet rate of the
users increases, we observe a sudden transition from a regime of very low user participation to a higher-
activity regime.

doi:10.1371/journal.pone.0128879.g002
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v appearing in the maximum cascade for a (country, Δ) pair; this is a high-degree heuristic.
The second (dynamical) heuristic simply chooses the k nodes with the greatest frequency of oc-
currence in a cascade. In both heuristics, k = pNc, where p is the probability of selecting a node
(cf. previous subsection) and Nc is the number of nodes in an original cascade, making it con-
sistent with the earlier analysis. We compare these with a random selection of users with prob-
ability p. Fig 5 shows the (normalized) maximum size of a cascade for each of the above
heuristics (labeled “degree”, “frequency” and “random”, respectively), averaged over 50 trials.
Fig 6 shows the corresponding normalized maximum number of unique users in the cascades.

Fig 3. Node and shell removal heuristics for CSSP (Brazil). Here, we see the largest remaining sub-cascade size in terms of numbers of tweets
(normalized by the original size) as a function of numbers of remaining nodes in the cascade graph (normalized by the original number of nodes). This
cascade occurred in June 2013, and its original size is 15,791 tweets.

doi:10.1371/journal.pone.0128879.g003
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The normalization constant in each plot is the empirically determined maximum cascade size
and maximum number of users, respectively. We find that the high degree heuristic generally
produces the largest cascades in terms of tweets and users. For ordinate values in the range 0.2
to 0.4, the maximum sizes for the high degree heuristic are 2× to 10× those of the random heu-
ristic. These data indicate that large cascades are tenuous; e.g., even with the high degree heu-
ristic, 80% of the original users are required to produce a cascade that is 80% of the maximum
measured size. Thus, it is not the case that a few users drive cascade formation. However, for
CSSP, removal of a smaller fraction (* 10–20%) of users can significantly reduce cascade size.

Fig 4. Node and shell removal heuristics for CSSP (Venezuela). Here, we see the largest remaining sub-cascade size in terms of numbers of tweets
(normalized by the original size) as a function of numbers of remaining nodes in the cascade graph (normalized by the original number of nodes). This
cascade occurred in April 2013, and its original size is 226,179 tweets.

doi:10.1371/journal.pone.0128879.g004
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4.3 Illustrative Results of Tweet Contents
What types of tweets form large activity cascades that are predictive of protests? There are at
least two broad classes of such tweets that we highlight here. The first kind pertains to tweets as
an early reporting mechanism that then go on to form activity cascades that can serve as a pro-
test recruitment or mobilization staging ground. The second kind are tweets that explicitly call
for protest action by individuals.

As an example of the first kind, we discuss two tweets with a high retweet count found in
our MRT cascades for Brazil. The original tweets were sent on January 27, and they are about a
past event (night club fire) which led to the deaths of 231 people in Santa Maria. These tweets
eventually formed part of a cascade that corresponded to an actual demonstration that took
place on January 28, 2013. According to the news articles, 35,000 people marched and held a

Fig 5. Greedy heuristic for CSFP. The (normalized) maximum cascade size vs. the fraction of users selected for some of the largest cascades in different
countries. Data are: blue (Mexico, Δ = 1 hour); light blue (Brazil, Δ = 4 hours); and orange (Venezuela, Δ = 4 hours).

doi:10.1371/journal.pone.0128879.g005
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moment of silence in front of the gymnasium where the victims’ bodies had been identified.
This shows that tweets selected by our vocabulary and tracked for activity cascade formation
may indeed correspond to actual protest events on the ground. The second kind is highlighted
by a tweet calling for a protest on September 7, illustrating that further analysis of tweets origi-
nating from such cascades can aid in forecasting.

4.4 Cascade Feature Utility for Forecasting
Fig 7 illustrates descriptive statistics of selected features of mention and follower graph cas-
cades in Brazil. Fig 8 shows the variables selected by the LASSO based logistic regression
model. The LASSO based model finds that the probability of an event depends upon the dura-
tion and the slope of the follower and MRT graphs. These selected features are used as

Fig 6. Greedy heuristic for CSFP. The (normalized) maximum number of unique users vs. the fraction of users selected for some of the largest cascades in
different countries. Data are: blue (Mexico, Δ = 1 hour); light blue (Brazil, Δ = 4 hours); and orange (Venezuela, Δ = 4 hours).

doi:10.1371/journal.pone.0128879.g006
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Fig 7. Descriptive statistics of selected features (Brazil) for the MRT and Fmodels. The names in the first column consist of the name of the structural
feature (i.e., cascade size, duration or slope, which is the incremental increase in the size per day), and the statistical operations (i.e. median, average etc.).

doi:10.1371/journal.pone.0128879.g007

Fig 8. LASSO Variables. Variables selected by LASSO in the cascade model for Brazil, for a training period
of November 2012 through May 2013.

doi:10.1371/journal.pone.0128879.g008
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explanatory variables in a generalized linear regression model [41] which confirms their signifi-
cance and relevance.

4.5 Comparison Against Baseline Models
Fig 9 compares the performance of the baseline model, volume-based model and the cascade
model for the three countries. For each model, we report the threshold used, true positive rate
(TPR), false positive rate (FPR), accuracy (ACC), brier score, and the area under the ROC
curve. The results in Fig 9 report the threshold that results in the highest accuracy in
prediction.

Note that the cascade model outperforms both the baseline model and the volume-based
model. Figs 10 and 11 shows the ROC for these models. Each point in the line represents a dif-
ferent threshold for the model.

Model Robustness Across Countries: Fig 9 shows the performance of the cascade model
for Brazil, Venezuela and Mexico. For Mexico, there are 20 matches out of 21 prediction days
which results in 95% accuracy. On the other hand, the cascade model results in 76% accuracy
for Venezuela and Brazil. Fig 12 illustrates the ROC plots for each of the countries at various
thresholds confirming Brazil and Venezuela’s performance to be worse than Mexico.

4.6 Forecasting the Unexpected: The Brazilian Spring
In a recent wave of uprisings in Brazil, known as the Brazilian spring, demonstrations were or-
ganized to protest increases in bus, train, and metro ticket prices in some Brazilian cities,
which quickly grew to become Brazil’s largest unrest since 1992. These events involved the

Fig 9. Performance of the predictive models.We show the performance of the three models in terms of accuracy, brier score, and area under the ROC
curve. The cascades model has the best performance accross different countries.

doi:10.1371/journal.pone.0128879.g009
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“General Population.”We test the performance of our cascade-based prediction model by
making a retrospective forecast for the events occurred in the month of June 2013 in Brazil. In
the training period (November 01, 2012 to May 30, 2013), there were 131 days (out of 212)
with events that involved the general population. In the test period of June 2013, there were
events almost every day (29 days out of 30). The total number of events was more than 29,
since there were multiple events on some days.

For this experiment, we collected 83 million tweets between November 2012 and June 2013
from Brazil. The keyword-based filtering (select if a tweet has at least 3 keywords present) re-
sulted in 890,000 tweets which were further used to generate the graphs and the cascades.

Fig 10. ROC curves for the volume-basedmodel.We show the ROC curves for Mexico, Brazil, and Venezuela. Training period November 1, 2012 to
November 9, 2013; test period November 10, 2013 to November 30, 2013.

doi:10.1371/journal.pone.0128879.g010
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The graph-based features were extracted for each of the cascade-based models. Fig 13 dis-
plays the performance of the cascade model for Brazil in June 2013. The model results in an
area of 0.86, showing good performance. However, ROC does well when the number of events
is very high. Therefore, we also plot the probabilities obtained from the regression model for
the test period. Note that the peaks correspond to the days when the events become nation-
wide and violent. Fig 14 highlights the sudden surge in the structural features of the cascades.
The cascade model results in 25 matches out of 26 alerts (when the best threshold is chosen as
0.6), a performance accuracy of 0.83 and TPR of 0.86.

Fig 11. ROC curves for the baseline model.We show the ROC curves for Mexico, Brazil, and Venezuela. Training period November 1, 2012 to November
9, 2013; test period November 10, 2013 to November 30, 2013.

doi:10.1371/journal.pone.0128879.g011
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Conclusions
Our main contributions include: (i) a detailed analysis of activity cascades arising from protest
related tweets, (ii) use of cascade features for a predictive model for protest events, (iii) a rigor-
ous formulation to explain the regimes for small and large cascades, in terms of the spectral ra-
dius and the node expansion, and (iv) characterizing critical sets for cascades, by means of the
CSSP and CSFP formulations.

Fig 12. ROC curves for different countries. ROC curves for Mexico, Brazil and Venezuela for the cascade model. Training period November 1, 2012 to
November 9, 2013; test period November 10, 2013 to November 30, 2013.

doi:10.1371/journal.pone.0128879.g012
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Fig 13. ROC curve for Brazil. ROC curve for different models for Brazil, for a training period of Nov 2012 through May 2013 and testing period of June 1-30,
2013.

doi:10.1371/journal.pone.0128879.g013
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Our results suggest that, despite their simplified notion, activity cascades are useful in char-
acterizing and predicting civil unrest events. Our rigorous characterization of the conditions
for having large cascades highlights the role of the overall network structure; this corroborates
with other recent work on influence cascades [8].

Supporting Information
S1 Dataset. Follower cascade features.
(XLS)

S2 Dataset. MRT cascade features.
(XLS)

S3 Dataset. Keyword counts for the volume-based model.
(XLS)

Fig 14. Cascade properties as predictors of protest. Cascade size, number of users, and number of cascades for Follower and MRT cascades in Brazil
for the period November 2012—June 2013.

doi:10.1371/journal.pone.0128879.g014
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