
BLOSOM: A Framework for Mining Boolean Expressions ∗

Lizhuang Zhao†, Mohammed J. Zaki†, Naren Ramakrishnan‡

† CS Dept., Rensselaer Polytechnic Institute, Troy, NY 12180
‡ CS Dept., Virginia Tech., Blacksburg, VA 24061

{zhaol2, zaki}@cs.rpi.edu, naren@cs.vt.edu

ABSTRACT
We introduce a novel framework, called BLOSOM, for min-
ing (frequent) boolean expressions over binary-valued datasets.
We organize the space of boolean expressions into four cate-
gories: pure conjunctions, pure disjunctions, conjunction of
disjunctions, and disjunction of conjunctions. We focus on
mining the simplest expressions (the minimal generators) for
each class. We also propose a closure operator for each class
that yields closed boolean expressions. BLOSOM efficiently
mines frequent boolean expressions by utilizing a number of
methodical pruning techniques. Experiments showcase the
behavior of BLOSOM, and an application study on real
datasets is also given.

1. INTRODUCTION
One of the basic goals of data mining is to discover novel

patterns that are potentially useful. For example, item-
set mining [1] discovers patterns that are pure conjunctions
of items. However, this covers a very restricted subset of
the wider class of boolean patterns, which may consist of
conjunctions, disjunctions, and negations of items. Min-
ing such boolean patterns can lead to significant nuggets of
knowledge, with many potential applications in market bas-
ket analysis, web usage mining, social network analysis, and
bioinformatics.

Boolean expression mining can provide tremendous value,
but there are two main challenges to contend with. The first
deals with the problem of high computational complexity.
With n items (or variables), there are 22n

possible distinct-
valued boolean expressions, far too many to enumerate. To
render the search tractable we focus on only the frequent
boolean expressions. Also instead of mining all frequent
boolean expressions, we focus on mining a lossless subset
that retains complete frequency information, namely closed
boolean expression. The second challenge relates to com-
prehension of the patterns, i.e., they may be complex and
difficult to understand. Here we focus on mining the sim-
plest or minimal expressions (which are in fact the minimal
generators of the closed expressions) that still from a lossless
representation of all possible boolean expressions.

In this paper, we present a novel framework, called BLO-
SOM (an anagram of the bold letters in BOOLean expres-
sion Mining over attribute Sets), the first such approach
to simultaneously mine closed boolean expressions over at-
tribute sets and their minimal generators. Our main con-
tributions are as follows: We organize boolean expressions
into four categories: (i) pure conjunctions (and-clauses),
(ii) pure disjunctions (or-clauses), (iii) conjunctive normal

∗This work was supported in part by NSF CAREER Award
IIS-0092978, DOE Career Award DE-FG02-02ER25538,
NSF grants EIA-0103708, EMT-0432098, EIA-0103660,
IBN-0219332, and NIH/NIAID grant N01-AI-40035.

form (conjunction of disjunctions), and (iv) disjunctive nor-
mal form (disjunction of conjunctions). For each class of
expressions, we propose a closure operator, and we give a
characterization of the minimal generators. BLOSOM em-
ploys a number of effective pruning techniques for search-
ing over the space of boolean expressions, yielding orders
of magnitude in speedup. We also highlight some of the
patterns found using BLOSOM on real datasets.

2. PRELIMINARY CONCEPTS
Lattice Theory Let’s first review a few facts from lattice
theory [5], which will be useful in our discussion. Let (P,⊆)
be a partially ordered set (also called a poset). Let X,Y ∈
P and let f : P → P be a function on P . f is called
monotone if X ⊆ Y ⇒ f(X) ⊆ f(Y). We say that f is
idempotent if f(X) = f(f(X)). f is called extensive (or
expansive) if X ⊆ f(X). Finally, f is called intensive (or
contractive) if f(X) ⊆ X. A closure operator on P is a
function C : P → P such that C is monotone, idempotent,
and extensive. X is called closed if C(X) = X. On the
other hand, a kernel operator on P is a function K : P → P ,
which is monotone, idempotent, and intensive. X is called
open if K(X) = X. The set of all closed and open members
of P form the fixed-point of the closure (C) and kernel (K)
operators, respectively. Given two posets (P,⊆) and (Q,≤),
a monotone Galois connection between them consists of two
order-preserving functions, φ : P → Q and ψ : Q→ P , such
that for all X ∈ P and Y ∈ Q, we have: X ⊆ ψ(Y) ⇐⇒
φ(X) ≤ Y . The composite function ψ ◦ φ : P → P is a
closure operator, whereas the function φ ◦ ψ : Q → Q is a
kernel operator, on P and Q, respectively [5]. Given posets
(P,⊆) and (Q,≤), a anti-monotone Galois connection [5]
between them consists of two order-reversing functions, φ :
P → Q and ψ : Q→ P , such that for all X ∈ P and Y ∈ Q,
we have: X ⊆ ψ(Y) ⇐⇒ Y ≤ φ(X). The composite
functions ψ ◦φ : P → P and φ ◦ψ : Q→ Q are both closure
operators on P and Q, respectively [5].

Boolean Expressions Let I = {i1, i2, . . . , im} be a set
of binary-valued attributes or items. Let and, or, and
notdenote the usual logical operators. We denote a negated
item (not i) as i. We use the symbol | to denote or, and
we simply omit the and operator whenever there is no am-
biguity. For example, (i3 and i4) or (i1 and (not i7)) is
rewritten as (i3i4)|(i1i7). A literal is either an item i or its
negation ¬i. A clause is either the logical and or logical or

of one or more literals. An and-clause is a clause that has
only the ∧ operator over all its literals, and an or-clause is
one that has only the ∨ operator over all its literals. We as-
sume without loss of generality that a clause has all distinct
literals (since a clause is either an and- or an or-clause,
repeated literals are logically redundant). A boolean expres-
sion is the logical and or or of one or more clauses.

A boolean expression is said to be in negated normal form
(NNF) if all ¬ operators directly precede literals (any ex-

pression can be converted to NNF by pushing all nega-
tions into the clauses). An NNF boolean expression is said
to be in conjunctive normal form (CNF) if it is an and

of or-clauses. An NNF expression is said to be in dis-
junctive normal form (DNF) if it is an or of and-clauses.
For example, (i3 ∧ i4) ∨ (i1 ∧ i5 ∧ i7) is in DNF, whereas
(i2 ∨ i3) ∧ (i0 ∨ i1 ∨ (¬i3)) is in CNF. Note that by defini-
tion, single or-clauses and single and-clauses, are in both
CNF and DNF. Furthermore, when considering negated lit-
erals, we disallow a tautology like the or-clause containing
i|i which is always true. Similarly, we disallow a contradic-
tion like the and-clause containing i ∧ i since this is always
false. Note that a CNF expression is a tautology if and only
if (iff) each one of its clauses contains both an item and its
negation. Likewise, a DNF expression is a contradiction iff
each one of its clauses contains both a variable and its nega-
tion. Thus by disallowing the tautologies/contradictions in
individual clauses, we disallow tautologies/contradictions in
any expression.

D DT

tid set of items
1 ACD
2 BC
3 ABCD
4 ADE
5 E

item tidset
A 134
B 23
C 123
D 134
E 45

Figure 1: Dataset D and its transpose DT

Dataset Let I = {i1, i2, . . . , im} be a set of items, let T =
{t1, t2, . . . , tn} be a set of transaction identifiers (tids). A
dataset D is then a subset of T × 2I (note that 2I denotes
the power-set of I, i.e., the set of all subsets of I); in other
words, the dataset D is a set of tuples of the form (t, t.X),
where t ∈ T is the tid of the transaction containing the set
of items t.X ⊆ I. Note that any categorical dataset can
be transformed into this transactional form, by assigning a
unique item for each attribute-value pair.

Given dataset D, we denote by DT the transposed dataset
that consists of a set of tuples of the form (i, i.Y), where
i ∈ I and i.Y ⊆ T is the set of tids of transactions containing
i. Fig. 1 shows a dataset and its transpose, which we will
use as a running example in this paper. It has five items
I = {A,B,C,D,E} and five tids T = {1, 2, 3, 4, 5}. Note
that in D, transaction t1 contains the set of items {A,C,D}
(for convenience, we write it as ACD), and in DT , the set of
tids of transactions that contain item A is {1, 3, 4} (again,
for convenience we write it as 134).
Tidset and Support Given a transaction (t, t.X) ∈ D,
with t ∈ T and t.X ⊆ I, we say that tid t satisfies an
item/literal i ∈ I if i ∈ t.X, and t satisfies the literal i if
i 6∈ t.X. For a literal l, the truth value of l in transaction t,
denoted Vt(l) is given as follows:

Vt(l) =

1 if t satisfies l
0 if t does not satisfy l

We say that a transaction t ∈ T satisfies a boolean expres-
sion E if the truth-value of E, denoted Vt(E), evaluates to
true when we replace every literal l in E with Vt(l). For any
boolean expression E, t(E) = {t ∈ T : Vt(E) = 1} denotes
the set of tids (also called a tidset), that satisfy E.

The support of a boolean expression E in dataset D is
the number of transactions which satisfy E, i.e., |t(E)|. An
expression is frequent if its support is more than or equal
to a user-specified minimum support (min sup) value, i.e.,
if |t(E)| ≥ min sup. For disjunctive expressions, we also
impose a maximum support threshold (max sup) to disallow
any expression with too high a support. Setting min sup =
1 and max sup = ∞ allows mining all possible expressions.

Boolean Expression Mining Tasks Given a dataset D
and support thresholds min sup and max sup, the task is
to mine minimal and closed frequent boolean expressions,
such as and-clauses, or-clauses, CNF and DNF.

Before presenting the BLOSOM framework, we first study
the structure and properties of four classes of boolean ex-
pressions; we consider each case separately – and-clauses,
or-clauses, CNF and DNF. For simplicity of exposition, we
restrict our examples to only positive literals, but our ap-
proach is applicable to negated literals as well.

3. MINING CLAUSES
Note that or and and clauses are duals of each other.

That is, if D is the complement of database D, given as
D = {(t, I \ t.X) | t.X ∈ D }, then Y = (l1l2 . . . lk) is

an and-clause in D iff Y = (l1|l2| · · · |lk) is an or-clause in

D. Given this duality between or- and and-clauses, it is
still of interest to consider them separately, especially from
a theoretical view-point, since the characterization of mini-
mal generators, closed expressions and closure operators can
provide valuable insight into the structure of these spaces.

3.1 Mining or-clauses
Given dataset D, and thresholds min sup and max sup,

the goal here is to mine or-clauses that occur in at least
min sup and in at most max sup transactions. Let E∨ be
the set of all possible or-clauses over the set of items I; T
is the set of all tids as before. For an or-clause X ∈ E∨, let
L(X) = {l|l is a literal in X} denote the set of its literals.
Given X,Y ∈ E∨, we define the relation ⊆ between or-
clauses as follows: X⊆Y iff L(X) ⊆ L(Y). Then ⊆ induces
a partial order over E∨. For example, A|C⊆A|B|C, since
L(A|C) ⊆ L(A|B|C). Let X ∈ E∨ be an or-clause, and let
l ∈ X be some literal in X. Then t(X) =

S

l∈X t(l). For
example, t(A|B) = t(A) ∪ t(B) = 134 ∪ 23 = 1234.
Closed or-Clauses: For convenience let the or-clause
l1|l2| · · · |lk be represented as

W

{l1l2 · · · lk}. Let (E∨,⊆) be
the partial order over or-clauses, and let (2T ,⊆) be the
partial order over the tidsets under the usual subset (⊆)
relationship.

Theorem 1. Given posets (E∨,⊆) and (2T ,⊆). Let X ∈
E∨ and Y ∈ 2T . Then the following two mappings form a

monotone Galois connection over E∨ and 2T :
φ = t : E∨ 7→ 2T , t(X) = {t ∈ T | t satisfies X}
ψ = i : 2T 7→ E∨, i(Y) =

W

{i ∈ I | t(i) ⊆ Y }

Since (t, i) forms a monotone Galois connection, it follows
immediately that C = i ◦ t : E∨ → E∨ is a closure opera-
tor and K = t ◦ i : 2T → 2T is a kernel operator for or-
clauses (see Sec. 2). For example, in our example dataset
from Fig. 1, C(A|C) = i(t(A|C)) = i(1234) = A|B|C|D.
Thus A|B|C|D is a closed or-clause. On the other hand
K(234) = t(i(234)) = t(B) = 23. Thus 23 is an open tid-
set. It is also easy to see that the corresponding tidset for
a closed or-clause is always open. For example, the closed
or-clause A|D has the open tidset 134. We use the notation
C(E∨) to denote the set of all closed or-clauses.

Minimal or-Clauses: Given any set X of subsets over a
universe U , we denote by min⊆(X) the set of all minimal
members in X, w.r.t. the subset operator ⊆. Let X ∈ E∨

be a closed or-clause. We say that Y⊆X,Y 6= ∅ is a gen-
erator of X if C(Y) = X. Y is called a proper generator if
Y 6= X. By definition, a proper generator cannot be closed.
Let G(X) be the set of all generators of X, including X.
Then M(X) = min⊆{Y ∈ G(X)}, the set of all the minimal
elements of G(X) are called the minimal generators of X.
The unique maximal element of G(X) is X.

Lemma 2. Let X = C(X). If Y is a generator of X then
t(Y) = t(X).

By Lemma 2, t(Y) = t(X) = T for all generators Y ∈
G(X). We conclude that X is the unique maximal or-clause
that describes the set of objects T . On the other hand, a
minimal generator of X is the minimal or simplest or-clause
that still describes the same object set T . In other words, the
closed clause X is the most specific expression, whereas the
minimal generators are the most general expressions, that
describe T . The set of all minimal generators of closed or-
clauses in E∨ is given as M(E∨) =

S

X∈C(E∨) M(X). The

minimal generators and closed or-clauses, and their corre-
sponding tidsets, for our example database (fom Fig. 1), are
summarized in Table 1.

Tidset Closed Min Generators
23 B B
45 E E
123 B|C C
134 A|D A,D
1234 A|B|C|D A|B,A|C,B|D,C|D
1345 A|D|E A|E,D|E
2345 B|E B|E
12345 A|B|C|D|E A|B|E,B|D|E,C|E

Table 1: Closed (CO) and Minimal (MO) or-Clauses

It should be apparent at this point that both closed or-
clauses (CO) and minimal or-clauses (MO), individually,
serve as a lossless representation of the set of all possible
(frequent) or-clauses. We are particularly interested in min-
imal or-clauses, since they represent the most general ex-
pressions, and as such may be easier to comprehend. We
would like to gain further insight into the structure of these
minimal generators.

We give two separate characterizations of the minimal
generators, one based on the closed clauses and the other
a direct one. They are both based on the notion of hitting
sets. Let X = {X1, X2, · · · , Xk} be a set of subsets over
some universe U . The set Z ⊆ U is called a hitting set (or
transversal) of X iff Z ∩Xi 6= ∅ for all i ∈ [1, k]. Let H(X)
denote the set of all hitting sets of X. Z is called a minimal
hitting set if there does not exist another hitting set Z′, such
that Z′ ⊂ Z. Let X be a closed or-clause, we define the
lower-shadow of X as the set Xℓ = {Xi}i∈[1,k] where for all
i ∈ [1, k], Xi ⊂ X, Xi is closed, and there doesn’t exist any
other closed or-clause Y , such that Xi ⊂ Y ⊂ X. In other
words, the lower shadow of X is the set of closed or-clauses
that are immediate subsets of X. We further define the dif-

ferential lower-shadow of X as the set Xδ = {X−Xi}i∈[1,k],

where Xi ∈ Xℓ.

Theorem 3. Let X be a closed or-clause, and let Xδ be
the differential lower shadow of X. Then M(X) = min⊆{Z ∈
E∨ | Z ∈ H(Xδ)}.

The theorem states that the minimal generators of a closed
or-clause X are exactly the minimal hitting sets of the dif-
ferential lower shadow of X. For example, consider the
closed clause X = A|B|C|D|E. From Table 1 we obtain as
its lower shadow the set of closed clauses Xℓ = {A|B|C|D,
A|D|E, B|E}. Thus the differential lower shadow of X is
given as Xδ = {E,B|C,A|C|D}. The minimal hitting sets
of Xδ are given as min⊆{H(Xδ)} = {C|E,A|B|E,B|D|E}.
We can see from Table 1, that the minimal hitting sets are
identical to the minimal generators of A|B|C|D|E.

The above characterization of minimal generators relies
on knowing the closed sets and their lower shadows. There
is in fact a direct structural description. We define a union
tidset to be a tidset obtained by finite unions over the set
of tidsets for single items, {t(i)|i ∈ I}. Let U be the set

of all distinct union tidsets. For a union tidset T ∈ U , we
define the transaction set of T , as the set R(T) = {t.X ⊆
I|t ∈ T, (t, t.X) ∈ D}, i.e., the set transactions in D with
tids t ∈ T .

Theorem 4. Let T ∈ U be a union tidset. Then the set
min⊆{Z ∈ E∨ | Z ∈ H(R(T)) and t(Z) = T} is identical to
the minimal generators of the closed or-clause X which has
the corresponding open tidset T = t(X).

The above theorem states that every distinct tidset T ob-
tained as a union of other tidsets produces minimal gener-
ators for the closed or-clause associated with the tidset T .
For example, let T = 1345 = t(A) ∪ t(E) in our example
database in Fig. 1. Then R(T) = {ACD,ABCD,ADE,E}.
The hitting sets Z with t(Z) = T and that are minimal are
given as follows {A|E,D|E}. Note that C|E is a minimal
hitting set of R(T), but t(C|E) = 12345 6= T , thus we reject
it. We can see from Table 1 that these minimal hitting sets
form the minimal generators of the closed or-clause A|D|E
with tidset T = 1345.

3.2 Mining and-clauses
Closed and-clauses have been well studied in data min-

ing as closed itemsets [4], as well as in the Formal Concept
Analysis as concepts [6]. The notion of minimal generators
for and-clauses has also been previously proposed in [4]. We
thus focus on our novel structural insights for and-clauses.

Let E∧ be the set of all and-clauses over the set of items
I, Given posets (E∧,⊆) and (2T ,⊆), and X ∈ E∧, Y ∈ 2T ,
the following two mappings form an anti-monotone Galois
connection [6]:

φ = t : E∧ 7→ 2T , t(X) = {t ∈ T | t satisfies X}
ψ = i : 2T 7→ E∧, i(Y) = {i ∈ I | Y ⊆ t(i)}

Notice the duality, in the definition of i and the galois con-
nection, for or and and clauses (see Theorem 1). Since
(t, i) forms an anti-monotone Galois connection, it follows
that C = i ◦ t : E∧ → E∧, and t ◦ i : 2T → 2T both form
a closure operator for and-clauses [6]. We use the nota-
tion C(E∧) and M(E∧) to denote the set of all closed and
minimal generators of and-clauses, respectively.

In terms of the strucure of minimal generators for and-
clauses, an analog of Theorem 3, describing the minimal
generators of a closed and-clause as the minimal hitting
sets of its differential lower shadow is already known [9].
We focus instead on a novel characterization of the minimal
generators for and-clauses. We define an intersection tidset
to be a tidset obtained by finite intersections over the set of
tidsets for single items, {t(i)|i ∈ I}. Let M be the set of all
distinct intersection tidsets. As before, for an intersection
tidset T ∈ M, we define the transaction set of T , denoted
R(T), as the set of transactions with tids t ∈ T . For exam-
ple, T = 13 is an intersection tidset since it can be obtained
as the intersection of t(A) and t(C). The transaction set
of T is the set of transactions with tids 1, and 3, given as
R(T) = {ACD,ABCD}.

Theorem 5. Let T ∈ M be an intersection tidset. Then
the set min⊆{Z ∈ E∧ | Z ∈ H(R(T)) and t(Z) = T} is
identical to the minimal generators of the closed and-clause
X which has the corresponding closed tidset T = t(X).

Tidset Closed Min Generators
3 ABCD AB, BD
4 ADE AE, DE
13 ACD AC, CD
23 BC B
45 E E
123 C C
134 AD A, D

Table 2: Closed (CA) and Minimal Generators
(MA) for and-clauses

This theorem gives a novel structural description of the
minimal and-clauses. It states that every distinct tidset T
obtained as a finite intersection of other tidsets produces
minimal generators for some and-clause. For example, let
T = 13 = t(A) ∩ t(C) in our example database in Fig. 1.
Then R(T) = {ACD,ABCD}. The hitting sets Z of R(T)
with t(Z) = T and that are minimal are given as follows
{AC,CD}. Note that A is a minimal hitting set, but t(A) =
134, thus we reject it. Likewise we reject hitting sets C, D,
AB, and BD. Table 2 lists the set of all closed (CA) and-
clauses, the minimal generators (MA), and the correspond-
ing tidsets. We can see that the minimal hitting sets are
identical to the minimal generators of the closed and-clause
ACD with tidset T = 13.

4. MINING NORMAL FORMS
Our approach for DNF and CNF mining builds upon the

pure or- and and-clauses. Here we give structural charac-
terizations for the minimal DNF and CNF expressions.

4.1 Mining DNF Expressions
Let Ednf denote the set of all boolean expression in DNF,

i.e., each X ∈ Ednf is an or of and-clauses. For convenience
we denote a DNF-expression X as X =

W

Xi, where each Xi

is an and-clause. By definition E∧ ⊆ Ednf. Also E∨ ⊆ Ednf,
since an or-clause is a DNF-expression over single literal
(and) clauses. We assume we have already computed the
closed (C(E∧)) and minimal (M(E∧)) and-clauses, and their
corresponding tidsets.

Note that any DNF-expression X =
W

Xi is equivalent
to the DNF expression X ′ =

W

C(Xi), since any tidset that
satisfies Xi must satisfy C(Xi) as well. Similarly X is also
equivalent to the DNF expression X ′′ =

W

M(Xi), since
t(Xi) = t(M(Xi)). We say that X =

W

Xi is a min-DNF-
expression if for each and-clause Xi there does not exist
another Xj (i 6= j) such that Xi ⊆ Xj . Note that any
DNF-expression can easily be made a min-DNF-expression
by simply deleting the offending clauses. For example in
the DNF-expression (AD)|(ADE), we have AD ⊆ ADE;
thus the expression is logically equivalent to its min-DNF
form (AD). For any DNF-expression X, we use the notation

mindnf(X) to denote its min-DNF form. GivenX,Y ∈ Ednf,
withX =

W

Xi and Y =
W

Yi, we say thatX is more general
than Y , denoted X⊆Y , if there exists a 1-1 mapping f that
maps each Xi ∈ X to f(Xi) = Yj ∈ Y , such that Xi ⊆ Yj .

Tidset Closed (maximal
min-DNF)

Min Generators

34 (ABCD)|(ADE) (AB)|(AE), (AB)|(DE),
(BD)|(AE), (BD)|(DE)

123 (ACD)|(BC) C
134 (ACD)|(ADE) A,D
234 (ADE)|(BC) B|(AE), B|(DE)
345 (ABCD)|E (AB)|E, (BD)|E
1234 (ACD)|(ADE)|(BC) A|B,A|C,B|D,C|D
1345 (ACD)|E A|E,D|E
2345 (BC)|E B|E
12345 (ACD)|(BC)|E A|B|E,B|D|E,C|E

Table 3: Additional/changed Closed (CD) and Min-
imal Generators (MD) for DNF

Closed DNF: We now define a closure operator for DNF
expressions. First, we consider DNF expressions consisting
only of closed and-clauses. Then if we treat each Xi ∈
C(E∧) as a composite item, we can define two monotone
mappings that form a monotone Galois connection as fol-
lows: Let X =

W

Xi be a DNF expression, such that Xi ∈
C(E∧), and let Y ∈ 2T . Define t(X) = {t ∈ T | t satisfies X},

and i(Y) =
W

{Xi | Xi ∈ C(E∧) ∧ t(X) ⊆ Y }. This im-
plies that C = i ◦ t is a closure operator. For example,
consider each closed and-clause in Table 2 as an “item”.
Consider X = ACD|E. C(X) = i(t(ACD|E)) = i(1345) =
ABCD|ADE|ACD|E|AD, which is a closed DNF expres-
sion. However it is logically redundant. What we want is
the maximal min-DNF expression equivalent to C(X), which
is ACD|BC|E.
Minimal DNF: Let T ∈ 2T be a union tidset obtained as
the finite union of tidsets of closed and-clauses. As before
the transaction set of T , denoted R(T), as the set of trans-
actions in D with tid t ∈ T . Analogous to Theorem 4 for or-
clauses, we can characterize the minimal DNF expressions

as the set min⊆{Z ∈ Ednf | Z ∈ H(R(T)) and t(Z) = T},
which is the set of all minimal hitting sets of R(T) hav-
ing the tidset T . For example, consider the union tidset
T = 34 (which is the union of t(ABCD) and t(ADE). The
minimal DNF hitting sets that hit only the tidset 34 are
AB|AE,AB|DE,BD|AE,BD|DE. In fact minimal hitting
sets can be obtained directly from minimal and-clauses.

Theorem 6. Let T be a union tidset, and let X be the
closed DNF-expression with t(X) = T . Then M(X) =
min⊆{Z =

W

Zi|Zi ∈ M(E∧) and t(Z) = T}.

For example, for T = 34, we see in Table 2 that {AB,BD}
are the minimal generators with tidset 3, and {AE,DE}
have tidset 4. Taking the minimal or expressions obtained
from these two sets, we get all the minimal generators having
tidset T = 34, namely AB|AE,AB|DE,BD|AE,BD|DE.
Table 3 shows the closed and minimal DNF expressions, in
addition to those shown in Tables 1 and 2. Some entries are
repeated since the closed expressions in DNF have changed.
Also the new union tidsets are marked in bold.

4.2 Mining CNF Expressions
Let Ecnf denote the set of all boolean expressions in CNF,

i.e., each X ∈ Ecnf is an and of or-clauses. By definition

E∨ ⊆ Ecnf and E∧ ⊆ Ecnf. For convenience we denote a
CNF-expression X as X =

V

Xi, where each Xi is an or-
clause. We say that X is a min-CNF-expression if for each
or-clause Xi there does not exist another Xj (i 6= j) such
that Xi⊆Xj . For a CNF expression X, we use the notation

mincnf(X) to denote its min-CNF form. Let Ecnf denote the

set of all min-CNF-expressions. Given X,Y ∈ Ecnf, with
X =

V

Xi and Y =
V

Yi, we say that X is more general
than Y , denoted X⊆Y , if there exists a 1-1 mapping f that
maps each Xi ∈ X to f(Xi) = Yj ∈ Y , such that Xi⊆Yj .
Analogously to DNF expressions, we can define the closed
and minimal CNF expressions directly from the set of all
closed (C(E∨)) and minimal (M(E∨)) or-clauses, and their
corresponding tidsets.

Let’s treat each Xi ∈ C(E∨) as a composite item, we
can define two anti-monotone mappings that form an anti-
monotone Galois connection as follows: Let X =

V

Xi be
a CNF expression, such that Xi ∈ C(E∨), and let Y ∈
2T . Define t(X) = {t ∈ T | t satisfies X}, and i(Y) =
V

{Xi | Xi ∈ C(E∨) ∧ Y ⊆ t(X)}. This implies that
C = i ◦ t is a closure operator. For example, consider
each closed or-clause in Table 1 as an “item”. Consider
X = (A|D)(B|C). C(X) = i(t((A|D)(B|C))) = i(13) =
(B|C)(A|D)(A|B|C|D)(A|D|E)(A|B|C|D|E), which is closed.
However it is logically redundant. What we want is the
maximal min-CNF expression equivalent to C(X), which is
(A|D|E)(B|C).

Theorem 7. Let T ∈ 2T be an intersection tidset ob-
tained as the finite intersection of tidsets of closed or-clauses.
Let X be the closed CNF-expression with t(X) = T . Then

M(X) = min⊆{Z =
V

Zi|Zi ∈ M(E∨)and t(Z) = T}.

For example, let T = 13. We can obtain 13 as the in-
tersection of several minimal or-clauses’ tidsets, e.g., the

Tidset Closed (maximal
min-CNF)

Min Generators

3 B(A|D) AB,BD
13 (B|C)(A|D|E) AC,CD
34 (A|D)(B|E) A(B|E), D(B|E)
234 (A|B|C|D)(B|E) (A|B)(B|E), (A|C)(B|E),

(B|D)(B|E), (C|D)(B|E)
345 (A|D|E)(B|E) (A|E)(B|E), (D|E)(B|E)

Table 4: Additional/changed Closed (CC) and Min-
imal Generators (MC) for CNF

minimal or-clauses C and {A|E,D|E}. However the min-
imal among all of these are C and {A,D}, giving the two
minimal CNF expressions: AC and CD. Table 4 shows the
closed CNF expressions and their minimal generators in ad-
dition to those already shown in Tables 1 and 2, or those
that have changed.

5. THE BLOSOM FRAMEWORK
The BLOSOM framework supports mining arbitrary boolean

expressions, including closed and minimal clauses (or and
and), and normal forms (CNF, DNF). BLOSOM assumes
that the input dataset is D, and it then transforms it to
work with the transposed dataset DT . Starting with the sin-
gle items (literals) and their tidsets, BLOSOM performs a
depth-first search (DFS) extending an existing expression by
one more “item”. BLOSOM employs a number of effective
pruning techniques for searching over the space of boolean
expressions, yielding orders of magnitude in speedup. These
include: dynamic sibling reordering, parent-child pruning,
sibling merging, threshold pruning, and fast subsumption
checking. Further BLOSOM utilizes a novel extraset data
structure for fast frequency computations, and to identify
the corresponding transaction set for a given arbitrary boolean
expression. Due to space limitations, we are not able to give
a detailed account of these pruning methods; a very brief ac-
count follows.

5.1 Mining or-Clauses
BLOSOM-MO mines all the minimal or-generators, and

is broadly based on Charm [15]. However, Charm mines
only the closed and-clauses, whereas BLOSOM-MO mines
the minimal or-clauses. BLOSOM-MO takes as input the
set of parameter values min sup, max sup, max item and
a dataset D (we implicitly convert it to DT). The max item
constraint is used to limit the maximum size of any boolean
expression, if desired. BLOSOM-MO conceptually utilizes
a DFS tree to search over the or-clauses. Each or-clause
is stored as a set of items (the or is implicitly assumed).
Thus each node of the search tree is a pair of (I×T), where
I is an item set denoting an or-clause and T is a tidset.
BLOSOM-MO systematically searches over this DFS tree,
enumerating all the frequent minimal and closed or-clauses.
The main difference in mining closed or-clauses is that in-
stead of finding the minimal elements, we have to find the
maximal elements corresponding to the given tidsets. Thus
in BLOSOM-CO the logic of subsumption checking, as well
relationship pruning, has to be reversed.

5.2 Mining Other Expressions
To mine the minimal and closed and-clauses, we build

upon BLOSOM-MO and BLOSOM-CO, respectively. Note
that by DeMorgan’s law, to mine the minimal and-clauses,
we can mine the minimal or-clauses over the complemented
tidsets. For example in our example dataset in Fig. 1, with
T = 12345, we have t(AB) = t(A)∩t(B) = 134∩23 = 3. We

can obtain the same results if we mine for A|B in the comple-

mented database. For example t(A)|t(B) = t(A) ∪ t(B) =
25 ∪ 145 = 1245 = 3.

Following the structural characterization of minimal DNF
expressions in Sec. 4.1, BLOSOM-MD follows a two-phase
approach. It first extracts all the minimal and-clauses and
then find the minimal DNF expressions using those. First we
use BLOSOM-MA to get all MA generators (MMA) on the
original dataset. Second, we generate tidsets for each entry
in MMA and assign each MA class a new item label. These
then form a new dataset. Third, we call BLOSOM-MO to
get all MO generators on the new dataset. Next, we com-
bine the results from BLOSOM-MA and BLOSOM-MO to
form MD candidates by replacing each item label in MMD

with the MA generators it represents. Finally, we delete the
subsumed generators in MMD to produce min-DNF forms.
Finally, for mining the minimal DNF and CNF expressions,
we can adopt BLOSOM-MO by using the closed expression
methods BLOSOM-CO and BLOSOM-CA instead of the
minimal generator methods.

6. EXPERIMENTS
All experiments were done on a Ubuntu virtual machine

(over WindowsXP & VMware) with 448MB memory, and a
1.4GHz Pentium-M processor. We used both synthetic and
real datasets to evaluate BLOSOM.

 0

 10

 20

 30

 40

 50

 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

tim
e

(s
ec

)

#Items (|I|): DB size (|I| x 2|I|)

original
hash

parent-son
dynamic-sibling-reordering

no-superset
sibling-merging
one-parent-son

extraset
no-transaction-set

Figure 2: The effects of the speedup optimizations
6.1 Performance Study

We study the effect of various optimizations proposed in
on the performance of BLOSOM-MO, as shown in Fig. 2.
The x-axis shows the number of items |I| in the synthetic
datasets. The number of transactions were generated as
|T | = 2|I|. Given the dataset density parameter δ = 0.5,
for each item i, the average size of its transaction set t(i), is
given as δ×|T |. Each curve in the figure shows the running
time after applying the optimizations specified in succes-
sion. Thus the final curve for no-transaction-set includes
all previous optimizations (original stands for the unopti-
mized version). We can see that the cumulative effect of the
optimizations is substantial; BLOSOM-MO can process a
dataset around 10 times ((38 × 76)/(12 × 24) = 10) larger
than the base algorithm can in the same running time. Thus
all the optimizations together deliver a speedup of over an
order of magnitude compared to the base version.

 0

 5

 10

 15

 20

 2000 2100 2200 2300 2400

ti
m

e
(s

ec
)

min_sup

CHARM-L
BLOSOM-MA

Figure 3: BLOSOM-MA

vs. CHARM-L

We compared BLOSOM-

MA with CHARM-L [14],
which can also mine the
minimal generators for and-
clauses (i.e., itemsets). We
used the chess dataset,
from the UCI machine
learning repository, which
has 3196 rows and 75
items. From Fig. 3 we can
see that BLOSOM-MA

can be about ten times
faster than CHARM-L,
and the gap is increasing with decreasing support. This is
mainly because CHARM-L first finds all closed expressions
and then uses their differential lower shadows to compute
the minimal and-clauses. In contrast, BLOSOM-MA di-

rectly mines the minimal generators, and uses effective op-
timizations to speed up the search.

6.2 Application: Gene Regulatory Networks
An application of BLOSOM is in finding complex gene

regulatory networks, which can be represented in a simpli-
fied form, as boolean networks [2]. Consider the network
involving 16 genes, taken from [2], shown in Fig. 4.

Figure 4: Gene Network

Here ⊕ and ⊖ denote
gene activation and deac-
tivation, respv. For ex-
ample, genes B, E, H,
J , and M are expressed
if their parents are not
expressed. On the other
hand G, L, and D ex-
press if all of their par-
ents express. For exam-
ple, D depends on C, F ,
X1 and X2. Note that F
expresses if A does, but
not L. Finally A, C, I,
K, N , X1 and X2 do not depend on anyone, and can
thus be considered as input variables for the boolean net-
work. We generated the truth table corresponding to the
7 input genes but BLOSOM was provided the values for
all genes, without explicit instruction about which are in-
puts and which are outputs. This yields a dataset with
128 rows and 16 items (genes). We then ran BLOSOM

to discover the boolean expression corresponding to this
gene network; we used min sup = 100%, since we want
to find expressions that are true for the entire set of assign-
ments. BLOSOM output 65 expressions in 0.36s, which
hold true for the entire dataset. After simplification these
can be reduced to the equivalent expression, as shown in
Fig. 5. We verified that indeed this expression is true for
all the rows in the dataset! It also allows us to recon-
struct the boolean gene network shown in Fig. 4. For ex-
ample, the first component of the expression in the first
row D | (ABCEFGHJKLMX1X2) can be converted into

the implication D ⇒ (ABCEFGHJKLMX1X2), which
means that D depends on the variables on the right hand
side (RHS). If, at this point, we supply any partial knowl-
edge about the input variables or of the maximum fan-out of
the network, we could project the RHS only on those vari-
ables to obtain (ACKX1X2), which happens to be precisely
the relationship given in Fig. 4. The second row tells us that
L depends on the activation of C and inactivation of K, i.e.,
K, if we restrict ourselves to the input variables. Also C and
K give the values for the remaining varibles in the second
row. Note that other dependencies in the boolean network
are also included in the mined expression. For example, we
find that B and A always have opposite values, and so do
B and E, and K and M . G and B always have the same
values, and so on. Thus this example shows the power of
BLOSOM in mining gene regulatory networks.

`

D | (A B C E F G H J K L M X1 X2)
´

and
`

L | (C F H J K M)
´

and
`

(A B E G) | C | D | L | X1 | X2
´

and
`

(A B E G) | (C L) | (F H J)
´

and
`

(F H J) | (A B C E G) | (A B E G K M)
´

Figure 5: Boolean Network Expression

7. RELATED WORK
Mining frequent itemsets (i.e., pure conjunctions) has been

extensively studied within the context of itemset mining [1].
The closure operator for itemsets (and-clauses) was pro-
posed in [6], and the notion of minimal generators for item-
sets was introduced in [4]. Many algorithms for mining

closed itemsets (see [7]), and a few to mine minimal genera-
tors [4, 14] have also been proposed in the past. The task of
mining closed and minimal monotone DNF expressions was
proposed in [12]. It gives a direct definition of the closed
and minimal DNF expressions (i.e., a closed expression is
one that doesn’t have a superset with the same support and
a minimal expression is one that doesn’t have a subset with
the same support). The authors further give a level-wise
Apriori-style algorithm. In contrast, the novel contribution
of our work is the structural characterization of the differ-
ent classes of boolean expressions via the use of closure op-
erators and minimal generators, as well as the framework
for mining arbitrary expressions. Within the association
rule context, there has been previous work on mining nega-
tive rules [11, 13, 3], as well as disjunctive rules [8]. Unlike
these methods we are interested in characterizing such rules
within the general framework of boolean expression mining.
Also of relevance is the task of mining redescriptions. The
CARTwheels algorithm [10] mines redescriptions only be-
tween length-limited boolean expressions in disjunctive nor-
mal form and CHARM-L [14] is restricted to redescriptions
between conjunctions.

8. CONCLUSIONS
In this paper we present the first algorithm, BLOSOM,

to simultaneously mine closed boolean expressions over at-
tribute sets and their minimal generators. Our four-category
division of the space of boolean expressions yields a composi-
tional approach to the mining of arbitrary expressions, along
with their minimal generators. The pruning operators em-
ployed here have resulted in orders of magnitude speedup,
producing highly efficient implementations.

There are still many interesting issues to consider. The
first one involves the effective handling of negative literals
without being overwhelmed by dataset density. The sec-
ond issue is to push tautological considerations deeper into
the mining algorithm by designing new pruning operators.
Finally, given a general propositional reasoning framework,
we are interested in mining the simplest boolean expressions
necessary for inference in that framework.

9. REFERENCES
[1] R. Agrawal, et al. Fast discovery of association rules. In

Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI Press, 1996.

[2] T. Akutsu et al.. Identification of gene regulatory networks by
strategic gene disruptions and gene overexpressions. In
Symposium on Discrete Algorithms, 1998.

[3] M.-L. Antonie and O. Zaiane. Mining positive and negative
association rules: An approach for confined rules. In European
PKDD Conf, 2004.

[4] Y. Bastide et al. Mining frequent patterns with counting
inference. SIGKDD Explorations, 2(2), Dec. 2000.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, 1990.

[6] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer-Verlag, 1999.

[7] B. Goethals and M. Zaki. Advances in frequent itemset mining
implementations: report on FIMI’03. SIGKDD Explorations,
6(1):109–117, June 2003.

[8] A. Nanavati et al. Association rule mining: Mining generalised
disjunctive association rules. In ACM CIKM Conf., 2001.

[9] J. Pfaltz and R. Jamison. Closure systems and their structure.
Information Sciences, 139:275–286, 2001.

[10] N. Ramakrishnan et al. Turning cartwheels: An alternating
algorithm for mining redescriptions. In ACM SIGKDD Conf.,
2004.

[11] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong
negative associations in a large database of customer
transactions. In IEEE ICDE Conf, 1998.

[12] Y. Shima et al. Extracting minimal and closed monotone dnf
formulas. In Int’l Conf. on Discovery Science, 2004.

[13] X. Wu, C. Zhang, and S. Zhang. Efficient mining of both
positive and negative association rules. ACM Trans. on
Information Systems, 22(3):381–405, 2004.

[14] M. Zaki and N. Ramakrishnan. Reasoning about sets using
redescription mining. In ACM SIGKDD Conf., 2005.

[15] M. J. Zaki and C.-J. Hsiao. Efficient algorithms for mining
closed itemsets and their lattice structure. IEEE Trans. on
Knowledge and Data Engineering, 17(4):462–478, Apr. 2005.

