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ABSTRACT
Spatial event forecasting from social media is an important
problem but encounters critical challenges, such as dynamic
patterns of features (keywords) and geographic heterogene-
ity (e.g., spatial correlations, imbalanced samples, and dif-
ferent populations in different locations). Most existing ap-
proaches (e.g., LASSO regression, dynamic query expansion,
and burst detection) are designed to address some of these
challenges, but not all of them. This paper proposes a novel
multi-task learning framework which aims to concurrently
address all the challenges. Specifically, given a collection
of locations (e.g., cities), we propose to build forecasting
models for all locations simultaneously by extracting and
utilizing appropriate shared information that effectively in-
creases the sample size for each location, thus improving
the forecasting performance. We combine both static fea-
tures derived from a predefined vocabulary by domain ex-
perts and dynamic features generated from dynamic query
expansion in a multi-task feature learning framework; we
investigate different strategies to balance homogeneity and
diversity between static and dynamic terms. Efficient algo-
rithms based on Iterative Group Hard Thresholding are de-
veloped to achieve efficient and effective model training and
prediction. Extensive experimental evaluations on Twitter
data from four different countries in Latin America demon-
strated the effectiveness of our proposed approach.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Discourse; Text
analysis
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1. INTRODUCTION
Microblogs such as Twitter and Weibo are experiencing an

explosive level of growth. Millions of worldwide microblog
users broadcast their daily observations on an enormous va-
riety of topics, e.g., crime, sports, and politics.

This paper focuses on the problem of spatial event fore-
casting from microblogs, for events such as civil unrest, dis-
ease outbreaks, and crime hotspots. The basic idea is to
search for subtle patterns in specific cities as indicators of
ongoing or future events, where each pattern is defined as
a burst of context features (keywords) relevant to a specific
event. For instance, the expression of discontent about gas
price increases could be a potential precursor to a protest
about government policies.

There are three technical challenges in addressing this
problem: 1) Dynamic features. The language used in mi-
croblogs is highly informal, ungrammatical, and dynamic.
Most existing methods treat fixed keywords as features [24,
26]. However, the expression in tweets may dynamically
evolve, which makes the use of fixed features and historical
training data insufficient. For example, the most significant
Twitter keyword for the Mexican protests in Aug 2012 was
“#YoSoy132” (i.e., the hashtag of an organization protesting
against electoral fraud), alluding to the protests against the
Mexican presidential election, but “#CNTE” (i.e., a hash-
tag denoting the national teacher’s association of Mexico)
has become the most popular term by the beginning of 2013
due to the movements against the Mexican education re-
form. Ideally an event forecasting system must combine ju-
dicious use of static (fixed) features but must be cognizant to
subtle changes involving dynamic features. 2) Geographic
heterogeneity. Different cities have different characteris-
tics, such as population, weather (e.g., humidity, tempera-
ture), and administrative structures (e.g., capital cities ver-
sus non-capital cities). As a result, it is difficult to im-
pute basal levels of occurrence uniformly. Considering civil
unrest as an example, finding 1000 tweets mentioning the
keyword “protest” is likely not a strong indicator of an up-
coming civil unrest event if the city houses a population of
a few million users but could be a strong signal for a city
with a population of 10,000. At the same time, it is diffi-
cult to dynamically adjust such thresholds precisely due to
the data sparsity problems in the latter case. 3) Scalabil-
ity. The massive scale of microblogging data necessitates
development of new, scalable forecasting methods.

In order to concurrently address all these technical chal-
lenges, this work presents a novel computational approach
in the framework of multi-task learning (MTL) that com-



bines the strengths of methods that use static features (e.g.,
LASSO regression [22]) and those that use dynamic features
(e.g., dynamic query expansion (DQE) [34]). We have uti-
lized these methods, individually, for event forecasting and
this paper tackles challenges involved in unifying these con-
trasting approaches in a single framework. Learning mul-
tiple related tasks simultaneously effectively increases the
sample size for each city, which can potentially improve the
forecasting performance, especially when the sample size for
each task (city) is small. One critical issue in multi-task
learning is how to define and exploit the commonality among
different tasks. Intuitively, events that occur around the
same time may involve similar topics, and therefore tweets
from different cities may share many common keywords that
are related to the event(s). We present three multi-task
feature learning (MTFL) formulations for event forecasting
that differ in the specifics of how common features are ex-
tracted.

The main contributions of our study are summarized as
follows:

1. Formulation of a multi-task learning framework
for event forecasting. We formulate event forecast-
ing for multiple cities in the same country as a multi-
task learning problem. In the proposed model, we
build event forecasting models for different cities simul-
taneously by restricting all cities to select a common
set of features. We explore both penalized and con-
strained MTL formulations, which use different strate-
gies to control the common set of features selected.

2. Concurrent modeling of static and dynamic terms.
The existing models (LASSO and DQE) use different
but complementary information; LASSO uses static
terms, while DQE identifies dynamic terms. Our pro-
posed MTL formulations make use of both types of
information by integrating the strengths of LASSO (a
supervised approach) and DQE (an unsupervised ap-
proach). To the best of our knowledge, there is not
much prior work that combines supervised and unsu-
pervised approaches for event forecasting.

3. Development of efficient algorithms. We explore
both convex and non-convex optimization formulations.
For convex problems, we employ proximal methods,
e.g., FISTA [7], which have been shown to be effi-
cient for solving sparse and multi-task learning prob-
lems. For non-convex problems, we apply the itera-
tive Group Hard Thresholding (IGHT) [8] framework,
which is guaranteed to converge to a local solution.

4. Comprehensive experiments to validate the ef-
fectiveness and efficiency of the proposed tech-
niques. We evaluated the proposed methods using
Twitter data collected from July 2012 to May 2013 in 4
countries in Latin America: Mexico, Brazil, Paraguay,
and Venezuela. For comparison we implemented a
broad range of other algorithms. Results showed that
the proposed methods consistently outperformed com-
peting methods, including LASSO, DQE, traditional
multitask learning models, and their variants. We also
performed sensitivity analysis to reveal the impact of
the parameters on the performance of the proposed
methods.

The rest of this paper is organized as follows. Section
2 reviews background and related work, and Section 3 in-
troduces the problem setup. Section 4 presents our multi-
task feature learning models, and Section 5 presents efficient
algorithms based on IGHT. Experiments on real Twitter
datasets are presented in Section 6, and the paper concludes
with a summary of the research in Section 7.

2. RELATED WORK
Compared to traditional media, Twitter has the following

significant characteristics: 1) Timeliness of messages: Un-
like traditional media that take hours or days to publish,
tweets can be posted instantly utilizing portable mobile de-
vices; 2) Ubiquity of social sensors: Tweets reflect the pub-
lic’s mood and trends, which could be the determinants of
future social events; and 3) Availability of geo-information:
Twitter users provide rich location information in profiles,
texts, and geotags. As a social “sensor” which can identify
emerging patterns in sentiments and opinions, the use of mi-
croblogs holds great promise for detection and forecasting of
significant societal events.

The typical dichotomy to event detection or forecasting
research is to classify them into whether they are super-
vised or unsupervised. The former consider a set of station-
ary terms whose distribution can be learned from historical
data. Particularly, LASSO regression methods estimate a
sparse predictive model based on a predefined set of keyword
terms (vocabulary) for each city that predicts the proba-
bility of an ongoing event in this city in each predefined
time interval (e.g., hourly or daily) [22]. Burst detection
methods search for geographic regions (cities) where the ag-
gregated counts of some predefined terms are abnormally
high compared with the counts outside the cities. For ex-
ample, Sakaki et al. consider spatiotemporal Kalman filter-
ing, which is similar to space-time burst detection, to track
the geographical trajectory of hot spots of tweets related
to earthquakes [24]. Unsupervised methods, as the name
indicates, consider a set of dynamic terms that could be
different in different time intervals, and apply unsupervised
learning techniques for event detection. Particularly, the dy-
namic query expansion method (DQE) iteratively expand a
predefined set of seed terms (e.g., protest, strike, march) us-
ing the current tweets to identify and rank new terms that
are relevant to ongoing events, then retain the top terms
and tweets containing these terms for further modeling [34].
Clustering-based methods search for novel spatial clusters
of documents or terms using predefined similarity metrics,
such as cosine similarity and social similarity for documents
[3], or auto-correlations [2] and co-occurrences [32] for terms.

Event detection: A large body of work focuses on the
identification of ongoing events, including earthquakes [24],
disease outbreaks [26], and other types of events [3, 19, 32,
17]. In general, they either use classification or clustering
to extract tweets of interest and examine the spatial [24],
temporal [25, 32], or spatiotemporal burstiness [19] of the
extracted tweets. However, instead of forecasting events in
the future, these approaches typically can only uncover them
after their occurrence.

Event forecasting: Most research in this area focuses on
temporal events and ignores the underlying geographical in-
formation, such as the forecasting of elections [21, 29], stock



market movements [9], disease outbreaks [2, 23], box office
ticket sales [6, 35], and crimes [31]. These works can be
grouped into three categorizes: 1) Linear regression models:
Simple features, such as tweet volumes, are utilized to pre-
dict the occurrence time of future events [6, 9, 15, 21]; 2)
Nonlinear models: More sophisticated features such as topic-
related keywords are used as the input to build forecasting
models using existing methods such as support vector ma-
chines or LASSO [23, 31]; 3) Time series-based methods:
Methods like autoregressive models are used to model the
temporal evolution of event-related indicators (e.g., tweet
volume) [2]. However, there are few existing approaches
that can provide true spatiotemporal resolution to predicted
events. In [13], Gerber utilized a logistic regression model for
spatiotemporal events forecasting using topic-related tweet
volumes as features. Wang et al. [30] developed a spa-
tiotemporal generalized additive model to characterize and
predict spatio-temporal criminal incidents, but their model
requires the demographic data. Ramakrishnan et al. [22]
built separate LASSO models for different locations to pre-
dict the occurrence of civil unrest events. Zhao et al. [34,
22, 18] designed a new query expansion method to expand
both keywords and key tweets by considering both semantic
and social network relationships, and used the burstiness of
key tweets to predict civil unrest events. Zhao et al. [35]
designed a new predictive model based on topic model that
jointly characterizes the temporal evolution in both seman-
tics and geographical burstiness of social media content.

Multi-task learning: Multi-task learning (MTL) learns
multiple related tasks simultaneously to improve general-
ization performance [10, 27]. Many MTL approaches have
been proposed in the past [36]. In [12], Evgeniou et al. pro-
posed the regularized MTL which constrained the models
of all tasks to be close to each other. The task relatedness
can also be modeled by constraining multiple tasks to share
a common underlying structure, e.g., a common set of fea-
tures [5], or a common subspace [4]. MTL approaches have
been applied in many domains, including computer vision
and biomedical informatics. To our best knowledge, ours is
the first work that applies MTL for civil unrest forecasting.

3. PROBLEM SETUP
Suppose there are m locations (e.g., cities, states) in a

country of interest, and each location l has nl,t ∈ Z tweets
in each time interval t (e.g., hour, day). Define a matrix
Cl,t ∈ Zp×nl,t , whose (i, j)-th entry, denoted as Cl,t,i,j , refers
to the frequency of the i-th term in the j-th tweet. Here p
refers to the size of the vocabulary V . We are also given
a binary variable Yt,l ∈ {0, 1} for each location l at time
t, which indicates the occurrence (‘yes’ or ‘no’) of a future
event. The goal is to predict the occurrence of a future event
for a specific location l at a specific time interval t based on
the tweets data collected.

This work is built upon two of our previous predictive
models, including LASSO [22] and dynamic query expan-
sion (DQE) [34]. Suppose we have a predefined subset of
keywords of size d in V that are relevant to the event of
interest for forecasting, and denote A as the corresponding
incidence matrix, A ∈ [0, 1]d×p. Define a matrix Kl,t as fol-
lows: Kl,t = A · Cl,t · 1, where 1 refers to a vector of all
ones. It is clear that Kl,t ∈ Zd×1 is the vector of keywords
frequencies in location l at time t. The LASSO model learns

a separate sparse linear regression model for each location l:

arg min
wl

∥∥∥wl
TKt,l − Yt,l

∥∥∥2
2

+ ρ1‖wl‖1,

where the regularization parameter ρ1 controls the sparsity,
and wl ∈ Rd×1 is the vector of regression coefficients that
need to be estimated. We need to estimate m ·d parameters
in total for the m separate LASSO regression models.

DQE is a Twitter-oriented query expansion method to get
dynamic keywords, which are then utilized for event detec-
tion or forecasting. Denote I(·) as the indicator function.
For each location l and time t, define the number of tweets

containing any of the k dynamic keywords S
(k)
t as Dl,t,k.

Then, the DQE-based event forecasting can be formulated as
a function Yl,t = I(Dl,t > γ), that is, Yl,t = 1 if Dl,t is larger
than the threshold γ; Yl,t = 0, otherwise. The dynamic key-
words are expanded and ranked from the seed query based
on the tweets data Ct, where the seed query S0 is an initial
set of few semantically coherent keywords that characterize
the concept of the targeted domain. Specifically, the key-
word expansion process is formulated as follows:

Pt = Ft(B
T
t ·Bt +BT

t RtBt) · P0

where P0 ∈ R|V |×1 is the initial weight vector of all the words
in V , [P0]i,1 = I(Vi ∈ S0), and Vi is the ith word. Bt is the

adjacency matrix between tweets and words. R ∈ R|Ct|×|Ct|

is the tweet-replying matrix, i.e., [Rt]ij = 1 means there is
replying relationship between tweet i and tweet j; [Rt]ij = 0,

otherwise. F ∈ R|V |×|V | is the inverse document frequency
(IDF) matrix of F , which is a diagonal matrix such that

[F ]ii refers to the IDF of the word Vi. Pt ∈ R|V |×1 is the
updated weight vector. Finally, the dynamic keyword set

S
(k)
t is defined as the top k words with the largest weights

according to Pt.
There are three main challenges for using either of LASSO

and DQE individually: (1) The LASSO model only uses a set
of predefined fixed keywords, called “static features,” which
may not capture the fast-evolving expressions in Twitter,
thus it may be difficult to predict future events that are re-
lated to a small set of new keywords not included in the
fixed keywords set. (2) The LASSO model trains an indi-
vidual model for each location, but many small cities may
have insufficient amount of information in the training set to
build an accurate forecasting model. (3) DQE requires two
types of thresholds, which are 1) k, the number of dynamic
keywords expanded from a seed query, and 2) γ, the least
number of tweets, each of which contains any of dynamic
keywords, to indicate the event occurrence. However, it is
difficult to set these two thresholds based on domain experi-
ence. In the next section, we present a novel computational
approach based on multi-task learning to address all these
three challenges.

4. MODELS
As defined above, LASSO uses the“static feature”set Kl,t,

which is the count of predefined keywords in location l at
time t. DQE uses the “dynamic feature” set Dl,t,k, which
is the number of tweets containing top k dynamic keywords
at location l at time t. Because it is difficult to predefine
an optimal k, we propose to make use of multiple k val-
ues in the range of [1, s] (here s is user-specified parameter;
our experiments show that using a set of s = 20 values is
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Figure 1: The flowchart of the proposed multi-task learning model

sufficient), and then learn the optimal k automatically in
the proposed multi-task learning framework. This results in
Dl,t = {Dl,t,k}sk=1, Dl,t ∈ RK×1, called the “dynamic fea-
ture” set for location l and time t. We combine the informa-
tion used in LASSO and DQE by forming a new data matrix
Xl,t = [Kl,t;Dl,t] ∈ Rd+s×nl,t . For notational simplicity, we
will remove subscript t throughout the rest of this paper.

We aim to build m models {wi|i = 1, . . . ,m} to predict
the occurrence of events for the m locations. A simple ap-
proach is to learn these m models (tasks) independently,
ignoring the task relatedness. However, such approach does
not consider the intrinsic relationships among cities, and the
resulting models may not be accurate as some cities may not
have sufficient information in the training set. To address
this issue, we propose to build the forecasting models for all
m cities simultaneously by extracting and utilizing appropri-
ate shared information across tasks [36]. Figure 1 illustrates
the proposed multi-task learning framework. Learning mul-
tiple related tasks simultaneously effectively increases the
sample size for each city, since when we learn a model for a
specific city, we use information from all other cities.

Intuitively, the events that occur at different cities around
the same time may involve similar topics, thus the tweets
from different cities may share many common keywords that
are related to the events. This motivates us to explore multi-
task feature learning (MTFL) models which constrain multi-
ple related models to select a common set of features. Specif-
ically, we explore three multi-task feature learning models:

• Regularized multi-task feature learning model,

• Constrained multi-task feature learning model I,

• Constrained multi-task feature learning model II.

Each of the three models formulates the multi-task learning
problem by following a general paradigm, i.e., to minimize
a penalized empirical loss:

min
W
f(W ) + λg(W ) (1)

or a constrained version:

min
W
f(W ) s.t. g(W ) ≤ l. (2)

where f(W ) is the empirical loss on the training set; we use a
smooth and convex loss function, e.g., the least squares and
logistics loss. g(W ) is the regularization term that encodes

task relatedness, which is typically non-smooth or even non-
convex. λ (or l) is a tuning parameter to balance the tradeoff
between the loss and penalty.

Different regularization/constraint terms capture different
types of task relatedness [12, 1, 16, 11]. In this paper, we
adopt the least square loss, and characterize the model re-
latedness by restricting all models to select a common set of
features. We detail the three models below.

4.1 Regularized MTFL model
The j-th element in model wi indicates the importance of

j-th feature for i-th task. In MTFL, we restrict all tasks to
share a common set of top features, that is, the forecasting
models for all cities are based on the same subset of features.
This can be achieved by grouping the j-th elements of all
tasks together and selecting the top groups. Specifically, we
consider the m entries of the j-th row of the matrix W as
a group and use the l2,1-norm regularization to identify the
top groups [5]. Thus, the j-th feature which corresponds
to the j-th element in models are likely to be selected or
not by all models simultaneously, achieving our desired goal.
Mathematically, we employ the following multi-task feature
learning model:

min
W

m∑
i=1

‖wT
i Xi − Yi‖2F + ρ1‖W‖2,1 + ρL2‖W‖2F , (3)

where the first term is the data fitting term for all tasks,
‖W‖2,1 denotes the l2,1 norm of matrix W which encour-
ages all tasks to select a common set of features, and it can
be computed as the summation of l2-norm of each row in
W . The regularization parameter ρ1 controls the sparsity.
We include a small multiple of the Frobenius-norm regular-
ization, i.e., ‖W‖2F , to enhance the robustness of the model.
Problem (3) is a convex problem and can be solved by the
FISTA algorithm [7].

4.2 Constrained MTFL model I
In the regularized MTFL model above, the model sparsity

is controlled by the parameter ρ1, which is less interpretable
than the number of features selected. It is thus desired to
develop a model which directly controls the number of fea-
tures to be selected. To this end, we introduce a constraint
in the model which ensures that a specific number of rows
of W will be non-zero, i.e., we control the number of fea-
tures included in the model. In particular, we consider the



following constrained multi-task feature learning model:

min
W

m∑
i=1

‖wT
i Xi − Yi‖2F + ρ1‖W‖2F ,

s.t.
∑
j

I(‖wj‖ > 0) ≤ r.
(4)

Here wj is the j-th row of W and I(·) is the indicator func-
tion. The constraint in (4) ensures that the number of
nonzero rows of W is no larger than r, ensuring no more
than r features will be selected. Note that the convexity
property does not hold any more for Model (4). We will
use the iterative Group Hard Thresholding framework to
solve (4). More details are provided in the next section.

Figure 2: Illustration of constraint MTFL model II.
Each column represents the model for a specific city.
The i-th row in WK indicates the feature values for
the i-th static feature (i.e., keyword), and the j-th
row in WD corresponds to the j-th dynamic feature
(i.e., threshold value). Colored entries represent
non-zero values in the model matrix, while white
entries represent zeros.

4.3 Constrained MTFL model II
The constrained model above does not distinguish the

static and dynamic features. Recall that the first d features
correspond to the d static features, while the last s features
correspond to the use of s dynamic features. The feature
values thus have very different meanings. In general, d is
much larger than s. In our experiments, d is around 2000,
while s is around 10 to 20. Thus, it is desired to restrict
the number of features selected from these two groups sep-
arately. In addition, in the current DQE model, only one
dynamic feature is used and a common threshold value is
applied for all cities in the same country. It is thus natural
to restrict the number of dynamic features selected (out of
the total s candidates) to be one. To achieve these goals, we
propose the following model, which selects u features from
the d static features, and selects v features from the s dy-

namic features:

min
W

m∑
i=1

‖wT
i Xi − Yi‖2F + ρ1‖W‖2F ,

s.t.
∑
j

I(‖wj
K‖ > 0) ≤ u,

∑
j

I(‖wj
D‖ > 0) ≤ v,

(5)

where WK is the model matrix corresponding to the set of
static features, and WD is the model matrix corresponding
to the set of dynamic features. We illustrate the structure
of the model in Figure 2. Similar to Problem (4), u and v
are user-specified parameters that control the number of fea-
tures selected for the two sets of features, i.e., static feature
set and dynamic feature set, respectively. We set v = 1 in
our experiments, however, our model is more general in that
the user can select an arbitrary number of dynamic features.

Problem (5) is non-convex due to the use of nonconvex
constraints. Similar to Problem (4), we will apply the It-
erative Group Hard Thresholding algorithm to solve Prob-
lem (5). We show the details of our proposed algorithm for
Problem (5) in the next section.

5. ALGORITHM
The FISTA algorithm performs well for convex problems [7,

36, 11]. However, both Problem (4) and Problem (5) are
non-convex. Even worse, they both involve discrete con-
straints, which make the problems challenging to solve. Mo-
tivated by the success of the iterative hard thresholding algo-
rithm for solving l0-regularized problems [8] and the recent
advances on nonconvex iterative shrinkage algorithm [14,
33], we propose to employ the Iterative Group Hard Thresh-
olding framework to solve both problems. Note that Prob-
lem (4) is a special case of Problem (5) with v = 0. We thus
focus on Problem (5) only in the following discussion. The
details are summarized in Algorithm 1.

Algorithm 1 The Proposed Algorithm

Require: X, Y , ρ, η > 1
Ensure: solution W

1: Initialize W 0, α0 ← 1.
2: for i← 1, 2, . . . do do
3: Initialize L
4: repeat
5: Si ←W i − 1

L
∇f(W i)

6: W i ← proj
(
Si
)

(defined in Lemma 1)
7: L← ηL
8: until line search criterion is satisfied
9: if the objective stop criterion satisfied then

10: return W i

11: end if
12: end for

Recall Problem (4), and denote f(W ) =
∑m

i=1 ‖w
T
i Xi −

Yi‖2F +ρ1‖W‖2F . The key idea of IGHT is to first use the gra-
dient information at the current iterate to provide the first-
order approximation of the objective function, then apply
the projection operators to ensure the next iterate satisfies
the given constraints. Specifically, we use the combination
of the linear approximation of the function f(W ) at a given



point W 0 and a quadratic penalty term, and solve the fol-
lowing problem:

min
W
f(W 0) + 〈∇f(W 0),W −W 0〉+

ρ

2
‖W −W 0‖2F ,

s.t.
∑
j

I(‖wj
K‖ > 0) ≤ u,

∑
j

I(‖wj
D‖ > 0) ≤ v,

(6)

where ρ is a positive constant that can be estimated by
a line search scheme. By ignoring the constants and re-
arranging the terms in Problem (6), we obtain the following
sub-problem:

min
W

1

2
‖W − S‖22

s.t.
∑
j

I(‖wj
K‖ > 0) ≤ u

∑
j

I(‖wj
D‖ > 0) ≤ v.

(7)

where S = W 0 − 1
c
∇f(W 0). Problem (7) aims to find the

optimal point satisfying the constraint set that is closet to a
fixed point S. We call it an Euclidean projection problem,
denoted as proj(·), even the constraint set is not convex.
The key of the IGHT framework is to solve the projection
problem in (7). It is not hard to show that Problem (7)
admits a closed-form solution as it can be decomposed into
two independent problems, one for each block of features, as
summarized in the following lemma.

Lemma 1. The projection Problem (7) admits a closed-
form solution given below:

wj
K =

{
Sj
K , if j ∈ ΩK

0, otherwise
(8)

and

wj
D =

{
Sj
D, if j ∈ ΩD

0, otherwise
(9)

where SK consists of the first d rows of S, Sj
K is the j-th row

of SK , SD consists of the last s rows of S, Sj
D is the j-th

row of SD, ΩK is the index subset of {1, 2, · · · , d} of size
u, including all rows of SK that are among the top u rows
of SK in term of the length of the row vector, and ΩD is
the index subset of {1, 2, · · · , s} of size v, including all rows
of SD that are among the top v rows of SD in term of the
length of the row vector.

One remaining issue is how to estimate the step size, which
determines the amount of movement made along a given
search direction. In this paper, we apply the well-known
Lipschitz criterion to select the step size.

6. EXPERIMENTS
In this section, we evaluate the performance of the three

multi-task learning formulations. First, we evaluate the ef-
fectiveness and efficiency of the methods on real data in

1
In addition to the top 3 domestic news outlets in each country, the

following news outlets were included: The New York Times; The
Guardian; The Wall Street Journal; The Washington Post; The In-
ternational Herald Tribune; The Times of London; Infolatam.

Table 1: Twitter datasets and gold standard report (GSR)

Country
#Tweets
(million)

News source1

#Events

Brazil 57
O Globo; O Estado de São

Paulo; Jornal do Brasil
451

Paraguay 8
ABC Color; Ultima Hora;

La Naćıon
563

Mexico 51
La Jornada; Reforma;

Milenio
1217

Venezuela 45
El Universal; El Nacional;

Ultimas Not́ıcias
678

comparison with baseline methods on multiple event fore-
casting tasks. Then, we study the parameter sensitivity
of the methods. Finally, we provide several empirical case
studies of civil unrest event forecasting to demonstrate the
usefulness of these forecasting models. All the experiments
were conducted on a 64-bit machine with Intel(R) core(TM)
quad-core processor (i7CPU@3.40GHz) and 16.0GB mem-
ory.

6.1 Experiment Setup
The raw data was obtained by randomly sampling 10%

(by volume) of the Twitter data from July 2012 to May 2013
in 4 countries in Latin America including Brazil, Paraguay,
Mexico, and Venezuela, as shown in Table 1. Twitter data
collection was partitioned into a sequence of date-interval
subcollections. The Twitter data for the period from July
1, 2012 to December 31, 2012 was used for training while
the second half of the period, from January 1, 2013 to May
31, 2013, was used for the performance evaluation. The
locations of the tweets were geocoded by the geocoder in
[22]. The event forecasting results were validated against a
labeled events set, called the gold standard report (GSR),
which was exclusively provided by MITRE [20]. GSR is a
collection of civil unrest news reports from the most influ-
ential newspapers outlets in Latin America [34], as shown in
Table 1. An example of a labeled GSR event is given by the
tuple: (CITY=“Hermosillo”, STATE = “Sonora”, COUN-
TRY = “Mexico”, DATE = “2013-01-20”).

In this experiment, two types of features were utilized.
As introduced above, the first type of features is static fea-
tures, which examines the relevance of tweets to fixed key-
words. Specifically, they are defined as the daily counts of
the keywords in the tweets. These keywords include 614
civil unrest related words (such as “protest” and “riot”), 192
phrases (such as “election fraud”), and country-specific ac-
tors (e.g., political parties and public figures). For each
keyword, its translations in Spanish, Portuguese, and En-
glish are all included. The second type is dynamic features,
which examines the volume of tweets containing dynamic
keywords. Specifically, dynamic features are a set of counts,
where each count is the number of daily tweets containing
any of the top k (k ∈ [1, s]) dynamic keywords. The dy-
namic keywords were extracted and ranked based on dy-
namic query expansion (DQE) [34], which utilizes both se-
mantic and social relationship to expand real-time keywords
from seed query, as introduced in Section 3. The seed query
includes: “protest”, “march”, “movement”, “patriotic”, “man-
ifest”, and their translations in Spanish and Portuguese. In
this experiment, s was set to 20. Thus we have 20 dynamic
features.

In the experiment, given the day-by-day tweets data, the
event forecasting task is to predict whether there is an event



Table 2: Event forecasting performance comparison (Precision, Recall, F-measure)

method Mexico Venezuela Paraguay Brazil All Countries

DQEF 0.56, 0.40, 0.47 0.57, 0.61, 0.59 0.90, 0.15, 0.26 0.37, 0.34, 0.35 0.54, 0.38, 0.45
LASSO-K 0.68, 0.32, 0.44 0.93, 0.18, 0.30 1.00, 0.17, 0.29 0.62, 0.44, 0.51 0.72, 0.28, 0.40

DQEF+LASSO 0.57, 0.49, 0.53 0.59, 0.64, 0.61 1.00, 0.11, 0.20 0.42, 0.49, 0.45 0.55, 0.44, 0.49
LASSO 0.70, 0.36, 0.48 0.94, 0.19, 0.32 1.00, 0.17, 0.29 0.63, 0.43, 0.51 0.73, 0.30, 0.43

rMTFL-D 0.96, 0.12, 0.21 0.66, 0.42, 0.51 1.00, 0.02, 0.04 1.00, 0.07, 0.13 0.77, 0.15, 0.25
rMTFL-K 0.78, 0.45, 0.57 0.53, 0.68, 0.60 0.93, 0.43, 0.59 0.79, 0.55, 0.65 0.71, 0.51, 0.59
rMTFL 0.70 0.70 0.70 0.54, 0.61, 0.57 0.96, 0.32, 0.48 0.71, 0.52, 0.60 0.68, 0.57, 0.62

CMTFL-I 0.59, 0.87, 0.70 0.51, 0.66, 0.58 0.95, 0.39, 0.55 0.72, 0.60, 0.66 0.62, 0.68, 0.65
CMTFL-II 0.71, 0.79, 0.75 0.53, 0.57, 0.55 0.78, 0.81, 0.79 0.76, 0.57, 0.65 0.69, 0.71, 0.70

Table 3: Run time comparison of different methods

rMTFL rMTFL-D rMTFL-K DQEF LASSO-K DQEF+LASSO LASSO CMTFL-I CMTFL-II

Training time (sec) 10.73 8.79 10.60 2.30 6.53 6.56 6.96 8.85 8.064
Testing time (sec) 0.003 0.001 0.003 0.01 0.001 0.001 0.001 0.003 0.01

or not in the next day for a specific city. To perform this
task, we created a training set and a testing set for each
city, where each data sample is the daily tweet observation
with the above-mentioned features. On the training set, we
set the label for each data sample as “1” if there is event on
next day; and “0”, otherwise. Three standard performance
metrics are used for comparison: precision, recall, and F-
measure. The predicted events were structured as tuples of
(date, city). A predicted event is matched to a GSR event
if both the date and city attributes are matched; Otherwise,
it is considered as a false forecasting.

The following methods are included for performance com-
parison: 1). LASSO [28]. For each city, three LASSO mod-
els are trained utilizing different sets of features: i). both
static and dynamic features, and ii). Only static features
(denoted as LASSO-K). The regularization parameters of
these models for different cities are set based on 10-fold cross
validation. 2). DQE-based event forecasting (DQEF). This
model only considers the dynamic features, as introduced in
Section 3. The number of top dynamic keywords, k, and
the tweet count threshold γ are set for each countries by 10-
fold cross-validation on training set. 3). DQEF+LASSO.
For each city, it first uses DQEF method to do forecasting.
If there is no predicted event, i.e., Yl,t = 0, the LASSO
model using only static features will be employed for fore-
casting. 4). Regularized Multi-task Feature Learning Model
(rMTFL). For each country, a rMTFL model is built where
each task is the event forecasting for a city. This model uti-
lizes three sets of features: i). Both static and dynamic
features, ii). Only static features (denoted as rMTFL-K);,
and iii). Only dynamic features (denoted as rMTFL-D).
The regularization parameters ρ1 and ρL2 are set based on
10-fold cross-validation. 5). Constrained multi-task feature
learning model I (CMTFL-I). For each country, a model is
built where each task is the event forecasting for a city. All
the tasks share the same features, i.e., both the static and
dynamic features. The feature number constraint r and the
regularization parameter ρ1 are set based on 10-fold cross-
validation. 6) Constrained multi-task feature learning model
II (CMTFL-II). For each country, a model is built where
each task is the event forecasting for a city. All the tasks
share the same features, i.e., the static and dynamic features.
We use the 10-fold cross-validation to set the regularization
parameter ρ1, the numbers of static features u, and dynamic
features v for each country. The sensitivity of these three
parameters are studied in Section 6.3.

6.2 Performance
Table 2 summarizes the comparison among the proposed

methods and the competing methods for the task of civil un-
rest event forecasting. These results showed that the meth-
ods that utilize both sets of static features and dynamic
features performed better than the ones utilizing either one
of them. For example, rMTFL outperformed rMTFL-D
and rMTFL-K by 50% and 10% in F-measure, respectively.
DQEF+LASSO and LASSO outperformed LASSO-K by 10%
on average in F-measure. All these results demonstrated ef-
fectiveness of combining both type of features for event fore-
casting. Among all methods, CMTFL-II achieved a recall
of 0.71 and a F-measure of 0.70, which were both the best.
Moreover, the proposed CMTFL-II performed well consis-
tently across different countries by being the best in Mex-
ico and Paraguay, and competitive in Venezuela and Brazil.
Other methods like the proposed CMTFL-I and rMTFL also
obtained high F-measures, around 0.65, but not as competi-
tive as the CMTFL-II. The reason is because (1) CMTFL-II
is able to ensure the inclusion of both type of features, whose
combination are demonstrated to be more effective than us-
ing either one of them, and (2) unlike rMTFL and CMTFL-
I, CMTFL-II treats both types of features separately in the
constraint based on their different characteristics, leading
to a more effective integration of these two types of fea-
tures. Finally, we can observe from Table 2 that the multi-
task models outperformed the traditional LASSO models by
50% on average. This revealed the advantage of multi-task
models, which can select features by learning from similar
forecasting tasks for all the cities. The generalization and
stability of the forecasting performance can be improved by
learning models for different cities together, especially for
those cities that lack sufficient training samples.

Table 3 shows the run time of all the methods in training
and testing. The training time of the multi-task models
is only slightly larger than that of the LASSO model. As
expected, the models using both static and dynamic features
tend to consume more time than the ones only using either
type of features. All methods consumed negligible testing
time (around 0.01 0.003 sec).

Table 4 shows the specific features selected by different
models, including rMTFL, LASSO, and the proposed CMTFL-
II for several cities of two countries, i.e., Mexico (Spanish-
spoken) and Brazil (Portuguese-spoken). According to Ta-
ble 4, CMTFL-II effectively selected static features (i.e., key-
words) very relevant to civil unrest, and the selection was



Table 4: Top 10 static features (translated in English) and the selection of dynamic features. TRUE means there is

at least one dynamic feature selected; FALSE means no dynamic feature selected. rMTFL and CMTFL-II can ensure

sufficient and stable selection of static features. CMTFL-II can ensure the selection of effective dynamic feature(s).

Mexico Brazil

Methods Features Mexico City Cuernavaca Guadalajara Morelia Oaxaca Braśılia Rio de Janeiro São Paulo

rMTFL
Static

fight fight remember employ university participant expensive prisoners
movement hate street remember allow increased strength expensive
election hungry work unit work expensive gringo increase
president street hate water develop prepare cries cries
congress sent president university hatred include progress force
initiative calling unit change problem protest participant include
progress hungry poor class progress strength protest censorship
hard work permit statement released march student progress
help eliminate killing force congress gringo censorship prepare
government forcibly remove problem killing screams include student

Dynamic TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

LASSO
Static

block complaint request request help send problem throw
fight gunfire confront meet power power water bond
work tranquility water water avoid food official unit
help forward danger danger forward work defeat
hearsay power results results money fight send
president avoid order order street government forward
initiation help help national control
occupy national national employ confront
request initiation expensive
power town finish

Dynamic TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE

CMTFL-II
Static

protest police university movement block shooting attack march
fight protest expected occupy money order block resolve
president struggle movement encounter encounter movement occupy attack
government patriot manifest hunger memories throw arrest warrant
movement movement occupy national change government control payment
death hunger hate change police submit kill poor
poor student change request occupy march followers claim
national block class fear steal national throw block
expected work block money fight block ask hatred
wait memories official country president attack march problem

Dynamic TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

stable and consistent across different cities. Moreover, the
selection of dynamic feature(s) was ensured, as shown in the
bottom row, which enhanced the capacity to consider the
burstiness of tweets containing dynamic keywords. rMTFL
model also effectively selected civil unrest-related keywords
as the top static features. However, it cannot guarantee the
selection of dynamic features because in all the listed cities
for Brazil, it did not select any dynamic features. The se-
lected static features for LASSO model was not consistent
across different cities, and more importantly, not as relevant
and sufficient as the above-two multi-task learning models
in several cities, especially the smaller ones, such as Oax-
aca and Cuernavaca. Additionally, the selection of dynamic
features was not ensured, such as in Morelia and Braśılia.

6.3 Parameter Sensitivity Study
There are three main parameters in the proposed rMTFL

II model, which are the regularization parameter ρ1, number
of selected static features u, and number of selected dynamic
features v.
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Figure 3: Sensitivity analysis on the regularization pa-

rameter.

Figure 3 illustrates the performance of the proposed model
versus, ρ1, the regularization parameter. By varying ρ1
in a large range from 0.001 to 500, the performance in F-
measures for all the 4 countries are stable. The fluctuation
ranges are typically within 8%.

Figure 4 shows the sensitivity results of varying u, the
number of selected static features from 10 to 100. In general,
for all the countries, the F-measures at u = 10 and u =
20 are slightly lower than other cases, but after u is larger
than 30, the F-measure becomes stable. This is because a
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Figure 4: Sensitivity analysis on the number of selected

static features.
small number of selected static features may not capture the
complexity of the event forecasting task. Thus, the number
of selected keywords should not be too small. But when
the selected static features are sufficient (>30), using more
of them does not necessarily lead to additional performance
improvement.

Figure 5 illustrates the F-measures obtained by varying
v, the number of selected dynamic features, from 1 to 20.
The F-measure is quite stable, even when v is as small as
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Figure 6: A map of civil unrest events and forecasting

hotspots on March 17th, 2013 in Brazil.

1, which demonstrates that even only 1 dynamic feature
could be sufficient to capture the dynamic in the civil un-
rest tweets, and adding more dynamic features does not add
extra information.

6.4 Case Studies
We observed numerous interesting events predicted by the

proposed approaches, CMTFL-I and CMTFL-II in our ex-
periments. For instance, Figures 6 and 7 record two waves
of civil unrest events that occurred on March 17th, 2013 in
Brazil, and April 17th, 2013 in Paraguay, respectively.

We can observe from Figure 6 that there were three events
in Brazil, among which Event 1 and Event 2 happened in
large cities, e.g., Sao Paulo and Rio de Janeiro, while Event
3 was in a smaller city, Niterói. Note that the city Niterói
does not have any training sample. The proposed CMTFL-II
successfully predicted all of events, even for the city Niterói.
This is because CMTFL-II jointly learned the models of
all the tasks (i.e., cities). Even the model of the city has
no training sample, it can still be estimated by data from
other cities. The LASSO model predicted two of them but
failed on the forecasting of Event 3. This is because each
LASSO model is trained for each city individually, and thus
the events of the city without any training sample cannot
be predicted. The rMTFL model only predicted one event
for Rio De Janerio. Its failure of discovering events for two
other cities might be due to its exclusion of the dynamic fea-
tures after training, as shown in Table 4. This reduces its
capability to uncover the burstiness of dynamic keywords.
This further verifies the need for a separate selection of the
static and dynamic features as in our CMTFL-II model.

We can observe from Figure 7 that there were four events
in Paraguay, among which Event 2, Event 3, and Event 4 had
been successfully predicted by CMTFL-II. rMTFL predicted
Event 2 and Event 3 while LASSO failed to predict any

Figure 7: A map of civil unrest events and forecasting

hotspots on April 17, 2013 in Paraguay.

event. As shown in Table 1, Paraguay is a country that the
number of reported events is large but the volume of tweets
is relatively small, i.e., the ratio of #tweets/#events is less
than one third of other countries. The sparsity of tweets data
make the forecasting more difficult for Paraguay by methods
without using multi-task learning, as shown in Table 2.

7. CONCLUSIONS
This paper presents a novel multi-task learning framework

to the problem of spatial event forecasting in Social Media.
Existing methods are not able to concurrently address the
critical challenges, such as dynamic patterns of features, and
geographic heterogeneity. Our work considers the estimation
of predictive models in different locations as a multi-task
learning problem, in order to use the shared information be-
tween locations, which effectively increases the sample size
for each location. We further model both static and dynamic
features using different constraints to balance both homo-
geneity and diversity between these two types of features.
We propose efficient algorithms based on the IGHT that are
able to predict spatial events in real time. Our empirical re-
sults demonstrated that we can effectively detect civil unrest
events, outperforming competing methods by a substantial
margin on both precision and recall. For the future work,
we plan to extend our multi-task learning framework by ex-
ploring more complex relationships between locations and
integrating human domain knowledge as priors.
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