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ABSTRACT
Forecasting significant societal events is an interesting and
challenging problem as it taking into consideration multiple
aspects of a society, including its economics, politics, and
culture. Traditional forecasting methods based on a single
data source find it hard to cover all these aspects compre-
hensively, thus limiting model performance. Multi-source
event forecasting has proven promising but still suffers from
several challenges, including 1) geographical hierarchies in
multi-source data features, 2) missing values, and 3) charac-
terization of structured feature sparsity. This paper propos-
es a novel feature learning model that concurrently address-
es all the above challenges. Specifically, given multi-source
data from different geographical levels, we design a new fore-
casting model by characterizing the lower-level features’ de-
pendence on higher-level features. To handle the correla-
tions amidst structured feature sets and deal with missing
values among the coupled features, we propose a novel fea-
ture learning model based on an Nth-order strong hierarchy
and fused-overlapping group Lasso. An efficient algorithm is
developed to optimize model parameters and ensure global
optima. Extensive experiments on 10 datasets in different
domains demonstrate the effectiveness and efficiency of the
proposed model.
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1. INTRODUCTION
Significant societal events such as disease outbreaks and

mass protests have a tremendous impact on our entire soci-
ety, which strongly motivates anticipating their occurrences
in advance. For example, according to a recent World Health
Organization (WHO) report [26], seasonal influenza alone is
estimated to result in around 4 million cases of severe illness
and about 250,000 to 500,000 deaths each year. In regions
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such as the Middle East and Latin America, the majority
of instabilities arise from extremism or terrorism, while oth-
ers are the result of civil unrest. Population-level uprisings
by disenchanted citizens are generally involved, usually re-
sulting in major social problems that may involve economic
losses that run into the billions of dollars and create mil-
lions of unemployed people. Significant societal events are
typically caused by multiple social factors. For example, civ-
il unrest events could be caused by economic factors (e.g.,
increasing unemployment), political factors (e.g., a presi-
dential election), and educational factors (e.g., educational
reform). Moreover, societal events can also be driven and
orchestrated through social media and news reports. For
example, in a large wave of mass protests in the summer
of 2013, Brazilian protesters calling for demonstrations fre-
quently used Twitter as a means of communication and co-
ordination. Therefore, to fully characterize these complex
societal events, recent studies have begun to focus on utiliz-
ing indicators from multiple data sources to track different
social factors and public sentiment that jointly indicate or
anticipate the potential future events.

These multi-source based methods share essentially simi-
lar workflows. They begin with collecting and preprocessing
each single data source individually, from which they extrac-
t meaningful features such as ratios, counts, and keyword-
s. They then aggregate these feature sets from all different
sources to generate the final input of the forecasting model.
The model response, in this case predicting the occurrence
of future events, is then mapped to these multi-source input
features by the model. Different data sources commonly
have different time ranges. For example, Twitter has been
available since 2006, but CDC data dates back to the 1990s.
When the predictive model utilizes multiple data sources, of
which some are incomplete, typically the samples with miss-
ing values in any of these data sources are simply removed,
resulting in substantial information loss.

Multi-source forecasting of significant societal events is
thus a complex problem that currently still faces several im-
portant challenges. 1. Hierarchical topology. When fea-
tures in different data sources come from different topolog-
ical levels, they cannot normally be treated as independent
and homogeneous. For example, Figure 1 shows multiple
indicators during the “Brazilian Spring”, the name given to
a large wave of protest movements in Brazil in June 2013
caused by economic problems and spread by social medi-
a. Here, indicators in economy and social media would be
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Figure 1: Predictive indicators from multiple data sources with
different geographical levels during the “Brazilian Spring” civil

unrest movement.

the precursors of the protests. Some of these indicators are
country-level, such as the exchange rate; some are state-
level, such as news reports specific to a state; and some
are city-level, such as the Twitter keyword count for chat-
ter geolocated to a specific city. When forecasting city-level
protest events, however, it is unrealistic to simply treat the
union of all these multi-level features directly as city-level
features for prediction. Moreover, it is unreasonable to as-
sume that all cities across the country are equally influenced
by the higher level features and are completely independent
of each other. 2. Interactions involving missing val-
ues. When features are drawn from different hierarchical
topologies, features from higher levels influences those lower
down. Thus, the missing value in such feature sets will also
influence other features. This means that simply discarding
the missing values is not an ideal strategy as its interactions
with other features also need to be considered. 3. Geo-
hierarchical feature sparsity. Among the huge number
of features from multiple data sources, only a portion of
them will actually be helpful for predicting the response.
However, due to the existence of hierarchical topology a-
mong the features, as mentioned earlier, features are not
independent of each other. It is thus clearly beneficial to
discover and utilize this hierarchically structured pattern to
regulate the feature selection process.

In order to simultaneously address all these technical chal-
lenges, this paper presents a novel model named hierarchi-
cal incomplete multi-source feature learning (HIML). HIML
is capable of handling the features’ hierarchical correlation
pattern and secure the model’s robustness against missing
values and their interactions. To characterize the hierarchi-
cal topology among the features from multi-source data, we
build a multi-level model that can not only handle all the
features’ impacts on the response, but also take into accoun-
t the interactions between higher- and lower-level features.
Under the assumption of feature sparsity, we characterize
the hierarchical structure among the features and utilize it
to regulate a proper hierarchical pattern. Our HIML model
can also handle missing values among multiple data sources
by incorporating a multitask strategy that treats each miss-
ing pattern as a task.

The main contributions of our study are summarized be-
low. We:

• Design a framework for event forecasting based
on hierarchical multi-source indicators. A generic

framework is proposed for spatial event forecasting that
utilizes hierarchically topological multiple data sources
and is based on a generalized multi-level model. A num-
ber of classic approaches on related research are shown
to be special cases of our model.

• Propose a robust model for geo-hierarchical fea-
ture selection. To model the structured inherent in geo-
hierarchical features across multiple data sources, we pro-
pose an N -level interactive group Lasso based on strong
hierarchy. To handle interactions among missing values,
the proposed model adopts a multitask framework that
is capable of learning the shared information among the
tasks corresponding to all the missing patterns.

• Develop an efficient algorithm for model param-
eter optimization. To learn the proposed model, a
constrained overlapping group lasso problem needs to be
solved, which is technically challenging. By developing an
algorithm based on the alternating direction method of
multipliers (ADMM) and introducing auxiliary variables,
we ensure a globally optimal solution to this problem.

• Conduct extensive experiments for performance
evaluations. The proposed method was evaluated on 10
different datasets in two domains: forecasting civil unrest
in Latin America and influenza outbreaks in the United
States. The results demonstrate that the proposed ap-
proach runs efficiently and consistently outperforms the
best of the existing methods along multiple metrics.

The rest of this paper is organized as follows. Section 2
reviews background and related work, and Section 3 intro-
duces the problem setup. Section 4 presents our HIML mod-
el and an efficient model parameter optimization algorithm.
The experiments on 10 real-world datasets are presented in
Section 5, and the paper concludes with a summary of the
research in Section 6.

2. RELATED WORK
This section introduces related work in several research

areas.
Event detection and forecasting in social media.

There is a large body of work that focuses specifically on
the identification of ongoing events, such as earthquakes [19]
and disease outbreaks [23]. Unlike these approaches, which
typically uncover events only after their occurrence, event
forecasting methods predict the incidence of such events in
the future. Most event forecasting methods focus on tempo-
ral events, with no interest in the geographical dimension,
such as elections [15] and stock market movements [1]. Few
existing approaches can provide true spatiotemporal reso-
lution for the predicted events [21]. For example, Gerber
utilized a logistic regression model for spatiotemporal event
forecasting [6]. Zhao et al. [24] designed a multitask learn-
ing framework that models forecasting tasks in related geo-
locations concurrently. Zhao et al. [22] also designed a new
predictive model that jointly characterizes the temporal evo-
lution of both the semantics and geographical burstiness of
social media content.

Multi-source event forecasting. In recent years, a
few researchers have begun to utilize multiple data sources
as surrogates to forecast future significant societal events
such as disease outbreaks and civil unrest. Chakraborty et



al. proposed an ensemble model to forecast Influenza-like
Illness (ILI) ratios based on seven different data sources [3].
Focusing on civil unrest events, Ramakrishnan et al. employ
a LASSO model as the event predictor, where the input-
s are the union of feature sets from different data sources
[18]. Kallus explores the predictive power of news, blogs,
and social media for political event forecasting [12]. Howev-
er, although these models utilize multiple data sources that
can be used to indicate a number of different aspects of fu-
ture events, they typically ignore the potential relationships,
topology, and hierarchy among these multi-source features.

Missing values in multiple data sources. The pre-
vention and management of missing data has been discussed
and investigated in earlier work [7]. One category of work
focuses on estimating missing entries based on the observed
values [5]. These methods work well when missing data
are rare, but are less effective when a significant amount
of data is missing. To address this problem, Hernandez et
al. utilized probabilistic matrix factorization [10], but their
method is restricted to non-random missing values. Yuan et
al. [20] utilized multitask learning to learn a consistent fea-
ture selection pattern across different missing groups. How-
ever, none of these approaches focus specifically on missing
values in hierarchical multiple data sources.

Feature selection in the presence of interaction-
s. Feature selection by considering feature interactions has
been attracting research interest for some time. For exam-
ple, to enforce specific interaction patterns, Peixoto et al. [9]
employed conventional step-wise model selection techniques
with hierarchical constraints. Unfortunately such approach-
es are expensive for high-dimensional data. Choi et al. pro-
posed a more efficient LASSO-based non-convex problem
with re-parametrized coefficients [4]. To obtain globally op-
timal solutions, more recent research has utilized interaction
patterns such as strong or weak hierarchy that are enforced
via convex penalties or constraints. Both of these apply a
group-lasso-based framework; Lim and Hastie [13] work with
a combination of continuous and categorical variables, while
Haris et al. [8] explore different types of norms. Howev-
er, none of these approaches considers missing values in the
feature sets.

3. PROBLEM SETUP
In this section, the problem addressed by this research

is formulated. Specifically, Section 3.1 poses the hierarchi-
cal multi-source event forecasting problem and introduces
the multi-level model formulation. Section 3.2 discusses the
problem generalization and challenges.

3.1 Problem Formulation
Multiple data sources could originate at different geo-

graphical levels, for example city-level, state-level, or country-
level, as shown in Figure 1. Before formally stating the
problem, we first introduce two definitions related to geo-
graphical hierarchy.

Definition 1 (Subregion). Given two locations qi and sj
under the ith and jth (i < j) geographical levels, respectively,
if the whole spatial area of the location qi is included by
location sj, we say qi is a subregion of sj, denoted as qi v
sj or equally sj w qi (i < j).

Definition 2 (Location Tuple). The location of a tweet or
an event is denoted by a location tuple l = (l1, l2, · · · , lN ),

which is an array that configures each location ln in each
geo-level n in terms of a parent-child hierarchy such that
ln−1 v ln(n = 2, · · · , N), where ln is the parent of ln−1

and ln−1 is the child of ln.

For example, for the location “San Francisco”, its location
tuple could be (“San Francisco”, “California”, “USA”) that
consists of this city, its parent, and the parent’s parent.

SupposeX denotes the set of multiple data sources coming
fromN different geographical levels. These can be temporal-
ly split into fixed time intervals t (e.g., “date”) and denoted

as X = {Xt,l}T,Lt,l = {Xt,ln}
T,L,N
t,l,n , where Xt,ln ∈ N|Fn|×1

refers to the feature vector for the data at time t in location
ln under nth geo-level. Specifically, the element [Xt,ln ]i (i 6=
0) is the value for ith feature while [Xt,ln ]0 = 1 is a dummy
feature to provide a compact notation for bias parameter in
forecasting model. T denotes all the time intervals. L de-
notes the set of all the locations and N denotes the set of
all the geographical levels. Fn denotes the feature set for
Level n and F = {Fn}Nn=1 denotes the set of features in all
the geo-levels. We also utilize a binary variable Yt,l ∈ {1, 0}
for each location l = (l1, · · · , lN ) at time t to indicate the
occurrence (‘yes’ or ‘no’) of a future event. We also define

Y = {Yt,l}T,Lt,l . Thus, the hierarchical multi-source event
forecasting problem can be formulated as below:

Problem Formulation: For a specific location l = (l1,
· · · , lN ) at time t, given data sources under N geographical
levels {Xt,l1 , · · · , Xt,lN }, the goal is to predict the occur-
rence of future event Yτ,l where τ = t + p and p > 0 is the
lead time for forecasting. Thus, the problem is formulated
as the following mapping function:

f : {Xt,l1 , · · · , Xt,lN } → Yτ,l (1)

where f is the forecasting model.
In Problem (1), input variables {Xt,l1 , · · · , Xt,lN } are not

independent of each other because the geographical hier-
archy among them encompasses hierarchical dependence.
Thus classical single-level models such as linear regression
and logistic regression cannot be utilized here.

As generalizations of the single-level models, multi-level
models are commonly used for problems where input vari-
ables are organized at more than one level. The variables
for the locations in Level n−1 are dependent on those of
their parents, which are in Level n (2 ≤ n ≤ N). The high-
est level (i.e., Level N) variables are independent variables.
Without loss of generality and for convenience, here we first
formulate the model with N = 3 geographical levels (e.g.,
city-level, state-level, and country-level) and then generalize
it to N ∈ Z+ in Section 3.2. The multi-level models for hi-
erarchical multi-source event forecasting are formulated as
follows:

(level − 1) Yτ,l = α0 +
∑|F1|

i=1
αTi · [Xt,l1 ]i + ε

(level − 2) αi = βi,0 +
∑|F2|

j=1
βTi,j · [Xt,l2 ]j + εi (2)

(level − 3) βi,j = Wi,j,0 +
∑|F3|

k=1
WT
i,j,k · [Xt,l3 ]k + εi,j

where αi, βi,j , and Wi,j,k are the coefficients for models of
Level 1, Level 2, and Level 3, respectively. Each Level-1 pa-
rameter αi is linearly dependent on Level-2 parameters βi,j
and each Level-2 parameter βi,j is again linearly dependent
on Level-3 parameters Wi,j,k. ε, εi, and εi,j are the noise
terms for Levels 1, 2, and 3. Combining all the formulas in
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Equation (2), we get:

Yτ,l =

|F1|∑
i=0

|F2|∑
j=0

|F3|∑
k=0

Wi,j,k ·[Xt,l1 ]i ·[Xt,l2 ]j ·[Xt,l3 ]k + ε (3)

where ε is noise term. Utilizing tensor multiplication, Equa-
tion (3) can be expressed in the following compact notation:

Yτ,l = W � Zt,l + ε (4)

where W ={Wi,j,k}|F1|,|F2|,|F3|
i,j,k=0 and Zt,l are two (|F1|+1)×

(|F2|+1)×(|F3|+1) tensors, and an element of Zt,l is defined
as [Zt,l]i,j,k = [Xt,l1 ]i·[Xt,l2 ]j·[Xt,l3 ]k. The operator � is the
summation of the Hadamard product of two tensors such
that A�B =

∑
i,j,kAijk ·Bijk for 3rd-order tensors A and

B.
The tensor Zt,l is illustrated in Figure 2(b). Specifical-

ly, the terms [Zt,l]i,0,0 = [Xt,l1 ]i, [Zt,l]0,j,0 = [Xt,l2 ]j , and
[Zt,l]0,0,k = [Xt,l3 ]k are the main-effect variables shown, re-
spectively as green, blue, and brown nodes in Figure 2(b).
Main-effect variables are independent variables. The terms
[Zt,l]i,j,0 = [Xt,l1 ]i · [Xt,l2 ]j , [Zt,l]i,0,k = [Xt,l1 ]i · [Xt,l3 ]k,
and [Zt,l]0,j,k = [Xt,l2 ]j · [Xt,l3 ]k are 2nd-order interactive
variables and are shown as nodes on the surfaces formed by
the lines of the main-effect variables in Figure 2(b). Their
values are dependent on both of their two main-effect vari-
ables. The terms [Zt,l]i,j,k = [Xt,l1 ]i · [Xt,l2 ]j · [Xt,l3 ]k are
called 3rd-order interactions because their values are depen-
dent on 2nd-order interactive variables, as shown in Figure
2(b). Finally, denote Z = {Zt,l}T,Lt,l as the set of feature
tensors for all the locations L and time intervals T .

3.2 Problem Generalization
Here, the 3-level model in Equation (4) is generalized into

an N -level model. Moreover, the linear function in Equation
(4) is generalized into nonlinear setting.
1. N-level Geo-hierarchy

In Equation (4), we assumed that the number of geograph-
ical levels is N = 3. Now we extend this by introducing the
generalized formulation where the integer N ≥ 2. We retain
the formulation in Equation (4), and generalize the opera-
tor � into a summation of the Nth-order Hadamard product
such that A � B =

∑
i1,··· ,iN

Ai1,··· ,iN · Bi1,··· ,iN . For sim-

plicity, this can be denoted as A � B =
∑
~iA~i · B~i, where

~i = {i1, i2, · · · , iN}.
2. Generalized Multi-level Linear Regression

In Equation (4), we assumed a linear relation between
input variable Zt,l and the response variable Yt,l. Howev-
er, in many situations, a more generalized relation could be
necessary. For example, we may need a logistic regression
setup when modeling a classification problem. Specifically,
the generalized version of our multi-level model adds a non-
linear mapping between the input and response variables:

Yt,l = h(W � Zt,l) + ε (5)

where h(·) is a convex and differentiable mapping function.
In this paper, the standard logistic function h(x) = 1/(1 +
e−x) is considered (see Section 4.3).

Although the models proposed in Equations (4) and (5)
are capable of modeling the features coming from differen-
t geo-hierarchical levels, they suffer from three challenges:
1). The weight tensor W is typically highly sparse. This
is because the main effects could be sparse, meaning that
their interaction (i.e., multiplication) will be even more s-
parse. Without considering this sparsity, the computation
will be considerably more time-consuming. 2). The pat-
tern of W is structured. There is a geo-hierarchy among the
multi-level features, which causes their interactions in W to
follow specific sparsity patterns. A careful and effective con-
sideration and utilization of this structure is both vital and
beneficial. 3) The models do not consider missing values,
whereas these are actually quite common in practical appli-
cations that use multi-source data. A model that is capable
of handling missing values is therefore imperative. In the
next section, we present HIML, a novel hierarchical feature
learning approach based on constrained overlapping group
lasso, to address all three challenges.

4. HIERARCHICAL INCOMPLETE MULTI-
SOURCE FEATURE LEARNING

Without loss of generality and for convenience, Section
4.1 first proposes our hierarchical feature learning model for
N = 3 geographical levels, and then Section 4.2 generalizes it
to handle the problem of missing values, as shown in Figure
2. Section 4.3 then takes the model further by generalizing
it to N ∈ Z+ geographical levels and incorporating nonlin-
ear loss functions. The algorithm for the model parameter
optimization is proposed in Section 4.4. The relationship of
our HIML model to existing models is discussed in Section
4.5.



4.1 Hierarchical Feature Correlation
In fitting models with interactions among variables, a 2nd-

order strong hierarchy is widely utilized [8, 11] as this can
handle the interactions between two sets of main-effect vari-
ables. Here, we introduce their definition as follows:

Lemma 1 (2nd-order Strong Hierarchy). If a 2nd-order
interaction term is included in the model, then both of its
product factors (i.e., main effect variables) are present. For
example, if Wi,j,0 6= 0, then Wi,0,0 6= 0 and W0,j,0 6= 0.

Here we generalize the 2nd-order Strong Hierarchy toNth-
order Strong Hierarchy (N ∈ Z+ ∧N ≥ 2) as follows:

Theorem 1 (Nth-order Strong Hierarchy). If an N th-order
interaction variable is included in the model, then all of its
nth-order (2 ≤ n < N) interactive variables and main-effect
variables are included.

Proof. According to Lemma 1, if an nth-order interaction
variable (2 ≤ n ≤ N) is included, then its product-factor
pairs, (n−1)th-order interaction factor and main effect, must
also be included. Similarly, if an (n−k)th-order interaction
variable (1 ≤ k ≤ n − 2) is included, then so must its pairs
of (n−k−1)th-order interaction factor and main effect. By
varying k from 1 to N − 2, we immediately know that any
nth-order (2 ≤ n < N) interactive variables and main effects
must be included.

When N = 3, Theroem 1 becomes the 3rd-order strong
hierarchy. Specifically, if Wi,j,k 6= 0, then we have Wi,j,0 6=
0, Wi,0,k 6= 0, W0,j,k 6= 0, Wi,0,0 6= 0, W0,j,0 6= 0, and
W0,0,k 6= 0, where i, j, k 6= 0. In the following we propose
a general convex regularized feature learning approach that
enforces the 3rd-order strong hierarchy.

The proposed feature learning model minimizes the fol-
lowing penalized empirical loss:

min
W
L(W ) + Ω(W ) (6)

where L(W ) is the loss function such that L(W )=
∑
t,l‖Yτ,l

−W �Zt,l‖2F . Ω(W ) is the regularization term that encodes
task relatedness:

Ω(W ) =λ0

∑
i,j,k 6=0

|Wi,j,k|+ λ1

∑
j+k 6=0

‖W·,j,k‖F

+ λ2

∑
i+k 6=0

‖Wi,·,k‖F + λ3

∑
i+j 6=0

‖Wi,j,·‖F (7)

where ‖·‖F is the Frobenius norm. λ0, λ1, λ2, and λ3 are reg-
ularization parameters such that λ0 = λ/(|F1| · |F2| · |F3|),
λ1 = λ/(

√
|F1| · |F2| · |F3|), λ2 = λ/(|F1| ·

√
|F2| · |F3|),

and λ3 = λ/(|F1| · |F2| ·
√
|F3|), where λ is a regulariza-

tion parameter that balances the trade off between the loss
function L(W ) and the regularization terms. Equation (7)
is a higher-order generalization of the `2 penalty proposed
by Haris et al. [8], which enforces enforces a hierarchical
structure under a 2nd-order strong hierarchy.

4.2 Missing Features Values in the Presence of
Interactions

As shown in Figure 2(a), multiple data sources usually
have different time durations, which result in incomplete
data in multi-level features and about the feature interac-
tions among them. Before formally describing the proposed
generalized model for missing values, we first introduce two
related definitions.

Definition 3 (Missing Pattern Block). A missing pattern

block (MPB) is a block of multi-source data {Xt,l}Tm,L
t,l (Tm ⊆

T ) that share the same missing pattern of feature values. De-
fine M(Xt,l) as the set of missing-value features of the data
Xt,l. Assume the total number of MPBs is M , then they
must satisfy the following three criteria:

• (completeness) : T =
⋃M
m Tm

• (coherence) : ∀ti, tj ∈ Tm :M(Xti,l) =M(Xtj ,l)

• (exclusiveness) : ∀ti ∈ Tm, tj ∈ Tn,m 6= n : M(Xti,l) 6=
M(Xtj ,l)

Therefore, completeness indicates that the whole time pe-
riod of dataset is covered by the union of all MPB’s. Coher-
ence expresses the notion that any time points in the same
MPB have the identical set of missing features. Finally,
Exclusiveness suggests that time points in different MPB’s
must have different sets of missing features.

Definition 4 (Feature Indexing Function). We define Wm

as the weight tensor learned by the data for MPB {Xt,l}Tm,L
t,l .

A feature indexing function WG(·) is defined as follows:

WG(·) ≡
⋃M

m
[Wm](·)

For example, WG(i,j,k) ≡
⋃M
m [Wm]i,j,k and WG(i,·,k) ≡⋃M

m [Wm]i,·,k.
According to Definitions 3 and 4, the feature learning

problem based on a 3rd-order strong hierarchy is then for-
malized as:

min
W
L(W) + λ0

∑
i,j,k 6=0

‖WG(i,j,k)‖F + λ1

∑
j+k 6=0

‖WG(·,j,k)‖F

+ λ2

∑
i+k 6=0

‖WG(i,·,k)‖F + λ3

∑
i+j 6=0

‖WG(i,j,·)‖F (8)

where the loss function L(W) is defined as follows:

L(W) =
∑

Tm⊆T

1

|Tm|
∑Tm,L

t,l
‖Yτ,l −Wm � Zt,l‖2F (9)

where |Tm| is the total time period of the MPB Tm.

4.3 Model Generalization
We can now extend the above 3rd-order strong hierarchy-

based incomplete feature learning to Nth-order and prove
that the proposed objective function satisfies the Nth-order
strong hierarchy. The model is formulated as follows:

min
W
L(W) + λ0

∑
min(~i)6=0

‖WG(~i)‖F +

N∑
n=1

λn
∑

~i−n 6=~0

‖WG(~i−n)‖F (10)

where W = {Wm}Mm , and Wm ∈ R|F1|×···×|FN | is an Nth-

order tensor whose element index is ~i = {i1, · · · , in}. Al-

so denote ~i−n = {i1, · · · , in−1 , in+1, · · · , iN}. WG(~i) ≡⋃M
m [Wm](~i) according to Definition 4. λ0 = λ/(

∏N
i |Fi|),

λn = λ/(
√
|Fn| ·

∏
i 6=n |Fi|).

Theorem 2. The regularization in Equation (10) enforces a
hierarchical structure under an N th-order strong hierarchy.
The objective function in Equation (10) is convex.

Proof. First, L(W) is convex because the Hessian matrix for
‖Yτ,l − Wm � Zt,l‖2F is semidefinite. Second, according to
Definition 4 and the properties of the norm, ‖WG(~i)‖F =

‖
⋃M
m [Wm]~i‖F is convex. Similarly, ‖WG(~i−n)‖ is also con-

vex. Therefore, the objective function is convex.



Our model is not restricted to a linear regression and can
be extended to generalized linear models, such as logistic
regression. The loss function is as follows:

LM (W) = −
∑
Tm⊆T

1

|Tm|
∑Tm,L

t,l
{Yτ,l log h(Wm � Zt,l)

· (1− Yτ,l) log (1− h(Wm � Zt,l))} (11)

where h(·) could be a nonlinear convex function such as the
standard logistic function h(x) = 1/(1 + e−x).

4.4 Parameter Optimization
The problem in Equation (10) contains an overlapping

group lasso which makes it difficult to solve. To decouple
the overlapping terms, we introduce an auxiliary variable Φ
and reformulate Equation (10) as follows:

min
W,Φ

LM (W) + λ0

∑
min(~i)6=0

‖Φ(0)

G(~i)
‖F +

∑N

n=1
λn

∑
~i−n 6=~0

‖Φ(n)

G(~i−n)
‖F

s.t. Wm = Φ(n)
m , m = 1, · · · ,M ; n = 1, · · · , N. (12)

where the parameter Φ
(n)
m ∈ R|F1|×···×|FN | is the auxiliary

variable for the mth MPB for Level n. ΦG(·) then follows

Definition 4 such that ΦG(·) =
⋃M
m [Φm](·). M is defined in

Definition 3 and N is the number of levels of the features.
It is easy to see that Equation (12) is still convex using

Theorem 2. We propose to solve this constrained convex
problem using the alternative direction method of multipli-
ers (ADMM) framework. The augmented Lagrangian func-
tion of Equation (12) is:

Lρ(W,Φ,Γ) = LM (W) +
∑M,N

m,n
tr(Γ(n)

m (Wm − Φ(n)
m ))

+
∑N

n=1
λn

∑
I−n 6=~0

‖Φ(n)

G(~i−n)
‖F + ρ/2

∑M,N

m,n
‖Wm − Φ(n)

m ‖2F

+ λ0

∑
min(~i)6=0

‖Φ(0)

G(~i)
‖F (13)

where ρ is a penalty parameter. tr(·) denotes the trace of

a matrix. Γ
(n)
m is a Lagrangian multiplier for the constraint

Wm − Φ
(n)
m = 0.

To solve the objective function in Equation (13) with mul-
tiple unknown parameters W, Φ, and Γ, we propose the
hierarchical incomplete feature learning algorithm as in Al-
gorithm 1. It alternately optimizes each of the unknown
parameters until convergence is achieved. Lines 11-12 show
the calculation of residuals and Lines 13-19 illustrate the up-
dating of the penalty parameter, which follows the updating
strategy proposed by Boyd et al. [2]. Lines 4-10 show the
updating of each of the unknown parameters by solving the
subproblems described in the following.

1. Update Wm.
The weight tensor Wm is learned as follows:

Wm = argmin
Wm

LM (W) +
N · ρ

2
‖ 1

N

∑N

n
Φ(n)
m −

1

Nρ

∑N

n
Γ(n)
m −Wm‖2F (14)

which is a generalized linear regression with least squares
loss functions. A second-order Taylor expansion is performed
to solve this problem, where the Hessian is approximated us-
ing a multiple of the identity with an upper bound of 1/(4·I).
I denotes the identity matrix.

2. Update Φ
(n)
m (n ≥ 1).

The auxiliary variable Φ
(n)
m is learned as follows:

Φ(n)
m←argmin

Φ
(n)
m

ρ

2
‖Φ(n)

m −Wm−
Γ

(n)
m

ρ
‖2F +λn

∑
~i−n 6=~0

‖Φ(n)

G(~i−n)
‖F (15)

which is a regression problem with ridge regularization. This
problem can be efficiently using the proximal operator [2].

3. Update Φ
(0)
m .

The auxiliary variable Φ
(0)
m is learned as follows:

Φ(0)
m ←argmin

Φ
(0)
m

ρ

2
‖Φ(0)

m −Wm−
Γ

(0)
m

ρ
‖2F +λ0

∑
min(~i)6=0

‖Φ(0)

G(~i)
‖F (16)

which is also a regression problem with ridge regularization
and can be again efficiently solved by utilizing the proximal
operator.

4. Update Γ
(n)
m .

The Lagrangian multiplier is updated as follows:

Γ(n)
m ← Γ(n)

m + ρ(Wm − Φ(n)
m ) (17)

Algorithm 1 Hierarchical Incomplete Feature Learning

Require: Z, Y , λ
Ensure: solution W
1: Initialize ρ = 1, Wm,Γ,Φ = 0.
2: Choose εs > 0, εr > 0.
3: repeat
4: for m← 1, . . . ,M do
5: Wm ← Equation (14)
6: for n← 0, . . . , N do

7: Φ
(n)
m ← Equation (16) # Equation (15) if n = 0

8: Γ
(n)
m ← Equation (17)

9: end for
10: end for
11: s = ρ‖{Φ(n)

m −Ψ
(n)
m }M,Nm,n ‖F # Calculate dual residual

12: r = ‖{W(n)
m −Ψ

(n)
m }M,Nm,n ‖F # Calculate primal residual

13: if r > 10s then
14: ρ← 2ρ # Update penalty parameter

15: else if 10r < s then
16: ρ← ρ/2
17: else
18: ρ← ρ
19: end if
20: until r < εr and s < εs

4.5 Relations to other approaches
In this section, we show that several classic previous mod-

els are actually special cases of the proposed HIML model.
1. Generalization of block-wise incomplete multi-

source feature learning. Let N = 1, which means there
is only one hierarchical level in the multisource data. Our
model in Equation (10) is thus reduced to an incomplete
multisource feature learning [20]:

min
W

∑
m

1

2Cm

Cm∑
n

‖Yn −Wm · Zn‖2F + λ0

|F|∑
i

‖WG(i)‖F (18)

where Cm is the count of observations in the mth MPB and
F is the feature set.

2. Generalization of LASSO. Let N = 1 and M = 1,
which means there is only one level and there are no missing
values. Our HIML model is thus reduced to a regression
with `1-norm regularization [16]:

min
W

1

2C

∑C

i
‖Yi −W · Zi‖2F + λ0

∑|F|

i
|Wi| (19)

where C is the count of observations.



3. Generalization of interactive LASSO. Let N = 2
and M = 1, which means there are only 2 hierarchical levels
in data without missing value. HIML is thus reduced to
a regression with regularization based on 2nd-order strong
hierarchy [8]:

min
W

1

2C

∑C

i
‖Yi −W � Zi‖2F + λ0

∑
i,j 6=0

|Wi,j |

+ λ1

∑|F1|

j=1
‖W·,j‖F + λ2

∑|F2|

i=1
‖Wi,·‖F (20)

where F1 and F2 are the feature sets for the two levels,
respectively.

5. EXPERIMENT
In this section, the performance of the proposed model

HIML is evaluated using 10 real datasets from different do-
mains. First, the experimental setup is introduced. The
effectiveness and efficiency of HIML is then evaluated a-
gainst several existing methods for a number of different
data missing ratios. All the experiments were conducted on
a 64-bit machine with Intel(R) core(TM) quad-core proces-
sor (i7CPU@ 3.40GHz) and 16.0GB memory.

5.1 Experimental Setup

5.1.1 Datasets and Labels

Table 1: Labels of different datasets. (CU=civil unrest;
FLU=influenza-like-illnesses).

Dataset Domain Label sources 1

#Events
Argentina CU Claŕın; La Nación; Infobae 1306

Brazil CU
O Globo; O Estado de São

Paulo; Jornal do Brasil
3226

Chile CU La Tercera; Las Últimas
Not́ıcias; El Mercurio

706

Colombia CU
El Espectador; El Tiempo;

El Colombiano
1196

El
Salvador

CU
El Diáro de Hoy; La

Prensa Gráfica; El Mundo
657

Mexico CU
La Jornada; Reforma;

Milenio
5465

Paraguay CU
ABC Color; Ultima Hora;

La Naćıon
1932

Uruguay CU El Páıs; El Observador 624

Venezuela CU
El Universal; El Nacional;

Ultimas Not́ıcias
3105

U.S. FLU CDC Flu Activity Map 1027

In this paper, 10 different datasets from different domains
were used for the experimental evaluations, as shown in Ta-
ble 1. Among these, 9 datasets were used for event forecast-
ing under the civil unrest domain for 9 different countries in
Latin America. For these datasets, 4 data sources from dif-
ferent geographical levels were adopted as the model inputs,
which are Twitter, The Onion Router (Tor) network traffic
statistics2, Currency Exchange3, and Integrated Crisis Ear-
ly Warning System (ICEWS) counts4, as shown in Table
3. The features of each data source are shown in Table 2.

1
In addition to the top 3 domestic news outlets, the following news

outlets are included: The New York Times; The Guardian; The Wall
Street Journal; The Washington Post; The International Herald Tri-
bune; The Times of London; Infolatam.
2
Tor: https://www.torproject.org/

3
Currency Exchange: http://finance.yahoo.com/currency-converter/

4
ICEWS project: http://www.lockheedmartin.com/us/products/

W-ICEWS.html

Table 2: Features of multiple data sources

domain data sources features

Civil Unrest

CURRENCY Open,High,Low,Close
Tor Tor network traffic statistics

ICEWS
CAMEO Codes8 of event news

article content

Twitter
Volume time series of 982

keywords from [18]

FLU

FluSurv-NET
Influenza Hospitalization Ratio
by age groups: 0-4 yr, 5-17 yr,
18-49 yr, 50-64 yr, and 65+ yr

ILI-Net

weighted/unweighted ILI
ratios,positive perctentage,

#cases of flu types: A(H1N1),
A(N1), A(H3), A, B, H3N2v

Twitter
Volume time series of 522

keywords from [17]

The data collected for each source was partitioned into a
sequence of date-interval subcollections. The data for the
period from April 1, 2013 to December 31, 2013 was used
for training, while the data from January 1, 2014 to Decem-
ber 31, 2014, was used for the performance evaluation. The
locations of the tweets were all geocoded by the EMBERS
geocoder [18]. The event forecasting results were validated
against a labeled event set, known as the gold standard re-
port (GSR), exclusively provided by MITRE [14]. GSR is a
collection of civil unrest news reports from the most influ-
ential newspaper outlets in Latin America [18], as shown in
Table 1. An example of a labeled GSR event is given by the
tuple: (CITY=“Hermosillo”, STATE = “Sonora”, COUN-
TRY = “Mexico”, DATE = “2013-01-20”).

The other dataset was collected to track influenza out-
breaks in the United States and consists of 3 data sources
from different geographical levels, which are Twitter, ILI-
Net5, and FluSurv-NET6, as shown in Table 3. These data
sources all have different geographical levels. The features of
each data source are shown in Table 2. In this case, the data
collection for each source was partitioned into a sequence of
week-interval subcollections. The data for the period from
January 1, 2011 to December 31, 2013 was used for train-
ing, while the data from January 1, 2014 to December 31,
2014, was used for the performance evaluation. The loca-
tions of the tweets were geocoded by the Carmen geocoder
[17]. The forecasting results for the flu outbreaks were vali-
dated against the corresponding influenza statistics reported
by the Centers for Disease Control and Prevention (CDC)7.
CDC publishes the weekly influenza-like illness (ILI) activity
level for each state in the United States based on the pro-
portional level of outpatient visits to healthcare providers for
ILI. There are 4 ILI activity levels: minimal, low, moderate,
and high, where the level “high” corresponds to a salient flu
outbreak and is effectively the target when forecasting. An
example of a CDC flu outbreak event is: (STATE =“Virgini-
a”, COUNTRY = “United States”, WEEK = “01-06-2013 to
01-12-2013”).

5.1.2 Parameter Settings and Metrics
There is only one tunable parameter in the proposed HIM-

L model, namely the regularization parameter λ. Based on

5
ILI-NET:https://wwwn.cdc.gov/ilinet/

6
FluSurv-NET:http://www.cdc.gov/flu/weekly/overview.htm#

Hospitalization
7
CDC: http://www.cdc.gov/flu/weekly/.

8
Event data codebook of Conflict and mediation event observations

(CAMEO): http://phoenixdata.org/description.AccessedFeb2016.



Table 3: Geographical levels and time ranges of the multiple data sources

Civil Unrest (yyyy-mm-dd) Influenza (yyyy-week)

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Geo-level City State Country State Region Country

Twitter: ICEWS: CURRENCY: Twitter: ILI-Net: FluSurv-NET:
data sources: 2013-04-01∼ 2013-04-01∼2013-07-10 2013-04-01∼2013-10-21 2011-1∼2013-52 2009-35∼2013-52 2009-1∼2011-12
training period 2013-12-31 2013-10-21∼2013-12-31 TOR: 2011-36∼2012-13

2013-04-01∼2013-10-21 2012-36∼2013-52

Table 4: Event forecasting performance in civil unrest datasets based on area under the curve (AUC) of ROC

Missing data ratio (3%)

Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.5267 0.7476 0.5624 0.8032 0.3148 0.7823 0.5572 0.4693 0.8073

LASSO-INT 0.5268 0.7191 0.5935 0.7861 0.5269 0.777 0.4887 0.5069 0.7543
iMSF 0.4795 0.4611 0.5033 0.7213 0.5 0.5569 0.4486 0.4904 0.5
MTL 0.3885 0.5017 0.5011 0.4334 0.3452 0.4674 0.4313 0.3507 0.5501

Baseline 0.5065 0.7317 0.6148 0.8084 0.777 0.8037 0.7339 0.7264 0.7846
HIML 0.5873 0.8353 0.5705 0.8169 0.7191 0.7973 0.7478 0.8537 0.7488

Missing data ratio (30%)
Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.5035 0.7362 0.588 0.8412 0.3785 0.7896 0.478 0.6749 0.681

LASSO-INT 0.4976 0.6361 0.5912 0.8151 0.3852 0.7622 0.426 0.7177 0.6428
iMSF 0.4797 0.4611 0.4959 0.6845 0.5 0.5569 0.4811 0.4898 0.5
MTL 0.4207 0.5156 0.5023 0.5978 0.3413 0.4666 0.4318 0.347 0.4397

Baseline 0.5012 0.7724 0.6245 0.8032 0.7626 0.7598 0.738 0.8205 0.7621
HIML 0.5854 0.8497 0.6072 0.8449 0.726 0.7907 0.7471 0.8576 0.7378

Missing data ratio (50%)
Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.5128 0.7461 0.5301 0.8167 0.3139 0.7552 0.5285 0.5992 0.6678

LASSO-INT 0.504 0.6145 0.5537 0.7339 0.4283 0.7309 0.4745 0.5396 0.6155
iMSF 0.4796 0.4611 0.4962 0.7467 0.4899 0.5488 0.4804 0.487 0.5
MTL 0.5104 0.4818 0.4715 0.65 0.3375 0.4744 0.436 0.3578 0.3839

Baseline 0.5101 0.7717 0.639 0.8142 0.7665 0.8079 0.7324 0.8112 0.7759
HIML 0.5795 0.8463 0.548 0.8432 0.7126 0.7892 0.7477 0.856 0.7176

Missing data ratio (70%)
Method Argentina Brazil Chile Colombia El Salvador Mexico Paraguay Uruguay Venezuela
LASSO 0.5162 0.6674 0.5947 0.8344 0.2597 0.7485 0.4075 0.2652 0.6699

LASSO-INT 0.4691 0.5557 0.5469 0.7167 0.2116 0.7 0.3808 0.2256 0.6503
iMSF 0.4796 0.4611 0.5503 0.7855 0.5 0.557 0.4795 0.5221 0.5
MTL 0.4128 0.5023 0.5069 0.6195 0.3323 0.4702 0.4283 0.3569 0.6464

Baseline 0.5188 0.7741 0.6059 0.8121 0.7557 0.8097 0.7136 0.72 0.6993
HIML 0.5484 0.7812 0.3887 0.8416 0.7181 0.8001 0.7146 0.8453 0.716

a 10-fold cross validation on the training set, it was set as
λ = 0.2. The logit function was used in Equation (11) for
our HIML.

In the experiment, the event forecasting task was to pre-
dict whether or not there would be an event during the next
time step for a specific location. For civil unrest datasets,
a time step is one day and the location is a city. For dis-
ease outbreaks, a time step is one week and the location is
a state. A predicted event was matched to a GSR event if
both the time and location attributes were matched; oth-
erwise, it was considered a false forecast. To validate the
prediction performance, different metrics were adopted: the
True Positive Ratio (TPR) designates the percentage of pos-
itive predictions that successfully matched the events that
truly happened, while the False Positive Ratio (FPR) de-
notes the percentage of positive predictions that were actu-
ally false alarms. In addition, a Receiver operating charac-
teristic (ROC) curve was utilized to evaluate the forecasting
performance as its discrimination threshold for each predic-
tive model was varied. Finally, the use of Area Under ROC
Curve (AUC) was also examined as a comprehensive mea-
sure of forecasting performance.

5.2 Performance
In this section, the effectiveness on the AUC and ROC

curves are analyzed for all the comparison methods, includ-
ing LASSO [16], LASSO with Interactive Features (LASSO-
INT), Incomplete Multi-Source Data Fusion (iMSF) [20],

Multitask Learning (MTL) [24], and the Baseline. Their
parameter settings are described in our supplementary ma-
terials1.

5.2.1 AUC on civil unrest datasets
Table 4 summarizes the effectiveness and robustness com-

parison for forecasting civil unrest events for different miss-
ing data ratios. The AUC measure has been adopted to
quantify the performance. The original percentage of miss-
ing data in our data sources was 3%. We manually enlarged
this to 30%, 50%, and 70% by randomly reducing the num-
ber of dates with complete multiple sources.

The results shown in Table 4 demonstrate that the meth-
ods that take into account the hierarchical topology in the
data sources performed better. Specifically, the performance
of HIML and the baseline method outperformed the oth-
er methods for different missing data ratios. LASSO and
LASSO-INT also performed competitively with AUC larg-
er than 0.75 on four datasets. Compared with the other
methods, iMSF and MTL had only limited performance for
a missing data ratio of 3%. When looking across different
missing data ratios, it can be seen that the methods that
were best able to handle incomplete input data achieved
better robustness against missing values. The performance
of LASSO dropped an average 10%, considerably more than
iMSF, which dropped less than 3%, when the missing data

1
http://people.cs.vt.edu/liangz8/materials/papers/KDD Multi

sourceAddon.pdf



ratio increased from 3% to 70%. HIML, similar to iMSF,
was able to handle the missing value problem in multiple
data sources. It also achieved an outstanding model robust-
ness against missing values, dropping on average less than
3% when the missing data ratio increased from 3% to 70%.
MTL was also not particularly sensitive to the change in
missing values, partially due to its ability to handle the lack
of data by sharing the information across different tasks. In
all, HIML outperformed all the other methods in 6 out of
the 9 datasets for all the different missing data ratios by 6%
on average, and achievd the second best performance on the
other 3 datasets. This is because HIML effectively handles
the two crucial challenges, namely hierarchical topology and
interactive missing values.

5.2.2 AUC on the flu dataset
Table 5 shows the performance on the metric AUC and

training runtime for forecasting influenza outbreaks.
As with the civil unrest datasets, Table 5 shows that for

the influenza dataset, the methods that take into account the
hierarchical topology in the data sources still perform com-
petitively for the missing data ratio of 21% that was present
in the real-world dataset. Specifically, the performance of
HIML and the baseline method outperformed both iMSF
and MTL. LASSO and LASSO-INT also performed com-
petitively, with AUC surpassing 0.85 for different missing
data ratios. Compared with the other methods, MTL suf-
fered from a limited performance on a missing data ratio of
21%. When looking across the different missing data ratios,
it is apparent that the methods that were best able to han-
dle incomplete input data not surprisingly achieved better
robustness against missing values. For example, iMSF per-
formed consistently well, with AUCs between 0.86 and 0.89
even when the missing data ratio increased from 21% to 70%
because it was able to cope with the missing value problem
in multiple data sources. As with iMSF, HIML also achieved
a consistent performance across the full range of missing da-
ta ratios. MTL was also not quite as sensitive to changes
in the missing data values, which mirrors its performance
on the civil unrest datasets, shown in Table 4. The perfor-
mance of the other methods, namely LASSO, LASSO-INT,
and Baseline, dropped more significantly. For example, al-
though the Baseline method achieved a good AUC of 0.9044
at a missing data ratio of 21%, this dropped to 0.4359 when
the missing data ratio increased to 70% because it could
not sufficiently utilize the shared knowledge across differen-
t missing patterns and thus large amounts of information
were lost. As with the civil unrest datasets, when forecast-
ing influenza outbreaks HIML once again outperformed all
the other methods consistently for all the different missing
data ratios by clear margins, due to its capacity to handle
hierarchical topology and interactive missing data values.

5.2.3 Efficiency on running time
The rightmost column of Table 5 shows the training time

efficiency comparison among HIML and the competing meth-
ods for forecasting influenza outbreaks with 21% missing ra-
tio. The running times on the test set for all the comparison
methods are instant (i.e., less than 0.01 second for one pre-
diction) so that are not provided here. According to Table
5, the running time of the baseline method was 31.97, out-
performing the other methods. LASSO, LASSO-INT, MTL,
and HIML were hundreds of seconds on the whole training

Table 5: Event forecasting performance in influenza datasets

Missing data ratio runtime

Method 21% 30% 50% 70% (second)
LASSO 0.9180 0.9056 0.9036 0.8753 493.92
LASSO-INT 0.9142 0.9027 0.9073 0.8403 508.49
iMSF 0.8949 0.8899 0.8930 0.8628 88.90
MTL 0.6129 0.5303 0.6253 0.5568 223.78
Baseline 0.9044 0.9045 0.8562 0.4359 31.97
HIML 0.9372 0.9368 0.9364 0.9357 851.83

set. However, the running times achieved by all these meth-
ods were only a maximum of 15 minutes for a 4-year-long
huge training set for week-wise event forecasting tasks, mak-
ing this eminently practical for real-world applications. The
efficiency evaluation results on civil unrest datasets follow a
similar pattern of Table 5 and are not provided due to space
limitations.

5.2.4 Event forecasting performance on ROC curves
Figure 3 illustrates the event forecasting performance ROC

curves for 9 datasets in two domains, namely civil unrest
and influenza outbreaks. The Argentina dataset follows
a similar pattern to that of Chile and is thus not shown
here to save space. For the 8 civil unrest datasets in Fig-
ures 3(a)-(h), HIML performs the best overall, with ROC
curves covering the largest area above the axis. Moreover,
the ROC curves for HIML are consistently above those of
the other methods in datasets including Brazil, Colombia,
El Salvador, Paraguay, and Uruguay as FPR and TPR vary
from 0 to 1. For the datasets for Chile and Mexico, HIML,
LASSO, LASSO-INT, and the Baseline perform similarly,
all outperforming the other methods. For the dataset for
Venezuela, LASSO, LASSO-INT, and the Baseline method
perform best when FPR is smaller than 0.7, while HIML out-
performs the other methods when FPR > 0.7. MTL gen-
erally achieves a limited performance, but its performance
is robust against missing ratio, as can be seen in Tables 4
and 5. For the influenza outbreak dataset, as can be seen
from Figure 3(i), HIML consistently outperforms the other
methods with different FPR and TPR values. iMSF, LAS-
SO, and LASSO-INT also achieve quite competitive perfor-
mances, outperforming the baseline method and MTL by an
apparent margin.

6. CONCLUSIONS
Significant societal events are prevalent in multiple aspects

of society, e.g., economics, politics, and culture. To accom-
modate all the intricacies involved in the underlying domain,
event forecasting should be based on multiple data sources
but existing models still suffer from several challenges. This
paper has proposed a novel group-Lasso-based feature learn-
ing model that characterizes the feature dependence, feature
sparsity, and interactions among missing values. An efficien-
t algorithm for parameter optimization is proposed to en-
sure global optima. Extensive experiments on 10 real-world
datasets with multiple data sources demonstrated that the
proposed model outperforms other comparison methods in
different ratios of missing values.
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