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Abstract—Recently proposed evaluation benchmarks aim to
characterize the effective context length and the forgetting
tendencies of large language models (LLMs). However, these
benchmarks often rely on simplistic “needle in a haystack”
retrieval or continuation tasks that may not accurately reflect the
performance of these models in information-dense scenarios. Thus,
rather than simple next token prediction, we argue for evaluating
these models on more complex reasoning tasks that requires them
to induce structured relational knowledge from the text - such as
graphs from potentially noisy natural language content. While
the input text can be viewed as generated in terms of a graph, its
structure is not made explicit and connections must be induced
from distributed textual cues, separated by long contexts and
interspersed with irrelevant information. Our findings reveal that
LLMs begin to exhibit memory drift and contextual forgetting
at much shorter effective lengths when tasked with this form
of relational reasoning, compared to what existing benchmarks
suggest. With these findings, we offer recommendations for the
optimal use of popular LLMs for complex reasoning tasks. We
further show that even models specialized for reasoning, such as
OpenAl ol, remain vulnerable to early memory drift in these
settings. These results point to significant limitations in the models’
ability to abstract structured knowledge from unstructured input
and highlight the need for architectural adaptations to improve
long-range reasoning. Our codebase to support reproducibility is
publicly available.'.

Index Terms—benchmark, evaluation, contextual forgetting,
context length, memory drift

I. INTRODUCTION

Recent benchmarks for evaluating LLMs have made sig-
nificant progress in measuring context length and memory
retention [1]-[3]. However, many of these evaluations rely on
highly synthetic tasks, such as “needle-in-a-haystack” retrieval
[4]-[6] or shallow continuation [7], which do not reflect
the kinds of structured reasoning and information integration
required in practical applications. While several of these works
acknowledge the limitations of such tasks, particularly in
capturing realistic comprehension or reasoning demands [4],
[6], [7], they still fall short of evaluating whether a model can
induce latent structure from long and noisy text.

In contrast, real-world reasoning often requires connecting
entities and events that are scattered across large, unstructured
documents [8]-[10]. The relevant relationships are rarely local
or explicit, but must be inferred from distributed and indirect
cues. Whether in scientific literature review, legal understanding,
intelligence analysis, or medical report comprehension, effec-
tive reasoning involves recovering sparse relational knowledge
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Fig. 1: Memory drift (lower = better) on the simplest relational
task (one connection per sample). Despite minimal complexity,
all models degrade beyond a certain context length, showing
that even low relational load challenges long-context reasoning.
See Table III for TL;DR.

embedded within irrelevant content. Evaluating models only on
token-level recall or completion fails to capture this challenge.

In this work, we argue that the effective context length
and the forgetting tendencies of LLMs should be evaluated
based on their ability to recover relational graphs from natural
language. These graphs encode semantic connections between
entities, events, or concepts, and serve as a cognitively aligned
abstraction of real-world information needs. Crucially, the graph
structure is not provided directly, and must be inferred from
paraphrased, interleaved, and noisy textual descriptions.

To this end, we introduce a new benchmark for evaluating
the effective context length and the forgetting tendencies of
LLMs centered on graph reconstruction from noisy text.
Given a long input that implicitly encodes a hidden graph,
the model must identify the correct nodes and their pairwise
relations. We systematically control two axes of difficulty: (i)
contextual separation, which measures how far apart related
entities appear in the prompt, and (ii) relational density, which
quantifies the number of connections the model must recover.
These controls allow us to probe how models degrade under
increased memory stress and structural complexity.

Our empirical findings reveal several consistent patterns
in how large language models handle long-context relational
reasoning:
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Fig. 2: Overview of our task: given a long, noisy text (left), the model (center) reconstructs the underlying relational graph
(right) by identifying connections between entities (edge, subgraph, clique). Disconnected nodes are distractors.

e Onset of memory drift at shorter effective context
lengths. Across models, performance degradation begins
well before the maximum supported context window, with
measurable declines in structural recovery observed as the
length and complexity of input increases.

o Recall is often the limiting factor in relational rea-
soning. Many models favor high-precision extraction
strategies, resulting in a tendency to miss valid connections
rather than produce spurious ones. This conservative
behavior becomes more pronounced as context length
SrOWS.

o Greater structural complexity amplifies degradation.
As the density of relationships or the number of connec-
tions within each prompt increases, all models display
declining performance, indicating heightened sensitivity
to relational complexity in long-context scenarios.

o Prompting strategies such as chain-of-thought do not
mitigate these challenges. Experiments with different
prompting styles, including chain-of-thought reasoning,
show little or no improvement for long-context graph
reconstruction tasks and can, in some cases, worsen results
due to increased distraction.

o A reasoning-specialized model does not overcome early
memory drift. In our evaluation, a model specifically
designed for advanced reasoning also exhibited early
onset of memory drift, similar to general-purpose language
models. This suggests that, at least for the tested model,
advanced reasoning capabilities alone are insufficient to
address the core limitations of long-context relational
reasoning.

These results highlight persistent brittleness in current LLMs
when faced with long-context relational reasoning, particularly
when structural recovery is required under dispersion, density,
and noise. Recovering graph structure from noisy text is
substantially more demanding than next-token prediction or
span-level retrieval. These observations underscore the need to
move beyond generic context-length benchmarks toward task-
specific evaluations that reflect structured reasoning demands.
As summarized in Table III, models vary significantly in how
they balance precision, recall, and memory stability, which
emphasizes the importance of targeted model selection for

real-world applications. Our key contributions are:

o We design a graph reconstruction tasks for LLMs, consist-
ing three subtasks, edge recovery, subgraph discovery, and
clique detection, that probe a model’s ability to induce
structure under dispersion and noise.

o We propose memory drift, a metric that captures forgetting
and hallucination as a function of context length and
relational complexity.

o We systematically evaluate five popular LLMs (GPT-40
[11], OpenAl ol [12], [13], Gemini-2 [14], Llama-3 [15],
Mistral-7B [16]), revealing earlier and sharper degradation
than suggested by existing benchmarks, especially under
high information density.

« We release our codebase to support reproducible analy-
sis of long-context reasoning via structured knowledge
extraction.

1I. BACKGROUND AND RELATED WORK
A. Context Length and Memory in Language Models

Recent years have seen rapid progress in the evaluation of
large language models (LLMs) on long-context understanding.
Several benchmarks have sought to quantify the effective
memory and forgetting behavior of LLMs using controlled
experimental designs. For instance, the Forgetting Curve [7],
Same Task, More Token [2], One Thousand and One Pairs [1],
and Ruler [4] benchmarks probe the extent to which LLMs can
retrieve information or maintain associations over increasing
input lengths.

However, these efforts primarily use synthetic or simplified
tasks, and often do not reflect model performance in settings
where relevant information is sparsely distributed or interleaved
with distractors. The true extent of early memory drift and
contextual forgetting in more complex, relational reasoning
tasks remains underexplored, motivating our present study.

B. Relational Reasoning with LLMs

LLMs have progressed from basic text generation [17],
[18] to complex applications involving chat agents [19],
multi-agent simulation [20], and scientific reasoning [21].
Structured information extraction and relational reasoning have
become increasingly important, particularly in domains such



as intelligence analysis [9], [22], where models must recover
key relationships embedded in lengthy, noisy text.

A core challenge in these applications is identifying salient
clues and mapping entity relationships across large, unstruc-
tured inputs [23]-[25]. Recent approaches leverage tool aug-
mentation or retrieval [26]—[30] to supplement the model’s
latent knowledge. Other work explores the capacity of LLMs to
maintain organized memory structures with or without external
augmentation [9].

Despite these advances, existing evidence suggests that
even advanced LLMs struggle with long-context relational
reasoning, especially when structural cues are dispersed or
implicit. In intelligence analysis tasks, for example, effective
memory length may be even shorter than in conventional text
benchmarks [1], [2], [4], [7], and the ability to induce latent
graph structure remains a significant limitation.

C. Relation to Entity Linking, Coreference Resolution, and
Knowledge Base Construction

While our benchmark is superficially related to traditional
NLP tasks such as entity linking, coreference resolution,
relation extraction, and knowledge base construction (KBC),
there are fundamental differences in both objective and
methodological focus. In recent years, large language models
(LLMs) have been increasingly applied to these classical
tasks [31]-[42]. Entity linking, coreference resolution (mention
clustering/anaphora), and relation extraction have all seen
improvements from generative modeling, instruction tuning,
and prompt-based LLMs. Some recent studies have further
explored the limitations of LLMs with respect to context length
and memory for these tasks, particularly as applied to longer
documents or document-level extraction [35], [41], [43], [44].

However, the majority of this prior work continues to
focus on local mention disambiguation, anaphora resolution,
or extraction of predefined relation types, typically in settings
where relevant cues are assumed to co-occur or be easily
retrievable within limited context windows. In contrast, our
benchmark diverges in both its central aim and experimental
design. We treat relational graph reconstruction as a direct
proxy for analyzing LLM memory, context length, and
forgetting in information-dense, noisy settings. Specifically,
our task requires models to process extended and noisy input
sequences, where relational cues are highly dispersed, indirect,
and embedded within substantial irrelevant content. The model
must encode and maintain distributed entity descriptions over
long-range dependencies, and integrate these representations
to induce latent connections, often separated by significant
contextual distance or paraphrased evidence. This setting
compels holistic, graph-level reasoning rather than isolated
or span-local predictions.

Crucially, our benchmark is structured to push models to
their effective memory and reasoning limits by (i) dispersing
relational evidence across extended contexts, (ii) interleaving
structurally irrelevant distractors, and (iii) increasing the density
and granularity of latent relational structure that must be
reconstructed jointly. These design choices go beyond the

scope of existing information extraction or KBC benchmarks
and provide a more rigorous test of long-context reasoning.

Taken together, while recent advances have extended the
reach of LLMs in structured information extraction and
relational reasoning, existing benchmarks do not adequately
capture the challenges posed by long, noisy contexts where
latent structure must be recovered globally. To fill this gap, we
introduce relational graph reconstruction as a general probe
of long-context reasoning and memory in LLMs, enabling
systematic evaluation of their ability to integrate dispersed,
indirect, and noisy relational cues across extended input
sequences.

III. GRAPH RECONSTRUCTION AS A LENS ON
LONG-CONTEXT REASONING

Despite recent progress in information extraction and reason-
ing, it remains unclear whether LLMs can integrate and recover
latent relational structure from long, noisy, and unstructured
inputs. We address this by treating graph reconstruction as a
direct probe of long-context memory and reasoning in LLMs,
using data inspired by real-world, intelligence-style reporting.

The core task of our benchmark is relational graph
reconstruction. Given a long natural language input encoding
a hidden graph, the model must recover this graph through
structured prediction or post-hoc extraction. The key challenge
lies in piecing together distributed cues that correspond to nodes
and their connections. Natural language rarely encodes explicit
graph edges. Instead, relations are embedded in distributed
mentions, paraphrases, and disjoint spans. Moreover, real-world
text contains distractors or irrelevant facts, entities, or events,
which the model must learn to ignore. The presence of such
noise compounds the difficulty of maintaining stable memory
traces over long sequences.

Thus, with the above consideration, we evaluate three
subtasks: (i) Edge Discovery, where the model recovers
pairwise relations; (ii) Subgraph Discovery, where it identifies
connected node subsets (e.g., stars, chains); and (iii) Clique
Discovery, where it detects fully connected clusters.

A. Task Formulation

Let G = (V, E) be an undirected latent graph over a set of
entities V, where each edge (u,v) € E represents a hidden
semantic relation. Each node v € V has a corresponding natural
language description d, € D.

Input Construction: We define a prompt 1I =
{d,,,...,d,,} where n = |C| + [N, composed of:

e C: a set of connected components drawn from G (e.g.,

edges, stars, cliques),

e MN: a set of noise or distractor nodes such that Vu,v € N,

(u,v) ¢ E.

Let disp : C x N/ — II be a dispersion function that
interleaves elements of C into the distractor set, controlling
their relative positions.

We define the token-level separation between two related
entities u, v € C in the prompt II as:

0(u,v;IT) = TokenDist(d,,dy)
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Fig. 3: Graph-to-prompt pipeline: relational structures (edges, stars, cliques) are sampled from a latent graph and interleaved
with distractors to create dispersed, noisy prompts. Red and Blue are targets. Brown are the distractors.

TABLE I: Summary of graph-based tasks used in the benchmark. Each task varies in structural complexity and connection

granularity.

Task Type Structure

Connection Size

Sampling Strategy

Edge Discovery
Subgraph Discovery
Clique Discovery

Pairwise edges (u, v)
Star-like subgraphs
Fully connected cliques

2 nodes per connection
d + 1 nodes (degree-based)
k nodes per clique

Min-degree edge selection
Min-degree neighborhood centered on node
Min-degree clique removal

and use this to measure contextual dispersion or memory stress.
Language Model Objective: Let fp : II — G = (V, E) be
the output of the language model, where the goal is to recover:

G ~glC]

i.e., reconstruct the subgraph induced by the true connected
components.

Evaluation: We evaluate predictions using a graph-level
reconstruction loss:

L(G,G[C]) = Fleage(E, E[C])

alongside memory drift metrics based on ¢(u,v) and perfor-
mance degradation across increasing distance.
Benchmark Variants: We instantiate this task under three
structural regimes:
« Edge Discovery: C = {(u;,v;)}¥_, where each (u;,v;) €
E.
o Subgraph Discovery: C contains & star-like subgraphs
of size d + 1.
o Clique Discovery: C contains k cliques of size k such
that all (u,v) € C satisfy (u,v) € E.

B. Graph Sampling Strategies

1) Edge-Based Sampling (Edge Discovery): For this case,
we isolate individual pairwise relations for evaluation. Each
test instance is constructed by identifying edges that lie near
the periphery of the graph, where nodes are less embedded
within dense neighborhoods. Formally, we define the priority
of an edge (u,v) by the combined degree of its endpoints:
deg(u,v) = deg(u) + deg(v). Edges with the smallest such
values are selected first, under the assumption that they are less
likely to overlap with other relational structures. To prevent
redundancy or relational leakage, both the selected edge and
its immediate neighbors are excluded from further sampling.
This enforces disjointness and ensures that connections are
spatially isolated within the graph topology.

Remaining nodes that are no longer part of any edge structure
are repurposed as distractors. These nodes do not participate
in relational content relevant to the task, and serve as negative
examples. This setting provides a base case for evaluating
whether models can recover simple binary relations when
embedded in distractive and unstructured input.

2) Degree-Based Sampling (Subgraph Discovery): To ex-
amine a model’s ability to recover higher-order structure, we
sample local neighborhoods centered around nodes of fixed
degree. These subgraphs are star-like, consisting of a central
node and its d immediate neighbors, forming an induced
subgraph of size d 4 1. Each candidate neighborhood is scored
based on the total degree of its closed neighborhood, i.e.,
> uen(y) deg(u); where Nfv] is the set containing v and
all nodes adjacent to it. Lower-scoring neighborhoods are
prioritized, under the hypothesis that they are less entangled
within the larger graph and more likely to be topologically
separable.

Once a subgraph is selected, its constituent nodes and all
adjacent nodes are removed to maintain disjointness between
samples. The remaining portion of the graph is explicitly
disconnected, eliminating residual connectivity and yielding a
pool of structurally neutral distractors. This task setup probes
whether a model can identify subgraphs with coherent internal
structure when they are distributed among unrelated textual
descriptions.

3) Clique-Based Sampling (Clique Discovery): The most
structurally demanding variant of our benchmark targets the
recovery of cliques: fully connected subgraphs where each
node shares an edge with every other node in the group. A
clique of size k satisfies (u,v) € E for all u,v € C, where
C = {v1,...,v;}. Such substructures require the model to
integrate multiple overlapping relations simultaneously.

We restrict our attention to cliques that are not only maximal
but also situated in sparsely connected regions. Each candidate
clique is scored by the aggregate degree of its nodes, i.e.,



Zle deg(v;). Those with lower scores are preferred, as they
are more likely to be separable from the rest of the graph.
After sampling, the clique and its surrounding neighborhood
are removed to prevent structural overlap between samples.

Distractors are drawn from the remaining graph, which are
forcibly pruned to remove all residual edges. The result is a
controlled environment in which the only coherent structure
is the clique itself. This setting evaluates the model’s ability
to recognize dense and mutually entangled relational clusters
within noisy, otherwise unstructured contexts. Algorithm 1
shows a generalized version of three different sampling
techniques.

Algorithm 1 General Subgraph-Based Sampling

Require: Graph G = (V, E); selector type Type (e.g., EDGE,
CLIQUE, DEGREE); parameter p (e.g., k or d)
Ensure: C: selected subgraphs, D: disconnected nodes
LC«+[; D+ []; G+ G
2: while there are valid units of type Type in G’ do
3: if Type is EDGE then
Select (u,v) < argmin jyep(e) deg(i) + deg(j)
U + {u,v}
else if Type is CLIQUE then
: Find all cliques Q =
p, C is clique}

AR A

{¢ < V(&) | I =

8: U < argminceg Y, deg(v)

9: else if Type is DEGREE then

10: Ny + {v e V(G') | deg(v) = p}
11: V" 4= argminven, 3, vy, deg(u)
12: U < N[v]

13: end if

14 C+ CU{U}

15: R < N[U]

16: Remove R from G’
172 D+ DUV(G)
18: end while

19: return C, D

> closed neighborhood of U

Algorithm 2 Prompt Test Case Generation with Dispersion

Require: Profiles P, connection dict C, params © = {k,n,s, e},
tokenizer T
Ensure: Test cases Tcases
1: Teases < H
2: fori=1to N do
3: Sample C' = {cy,...,c,} from C
Sample D C V, |C|+ |D|=n
Partition D into k segments in [s - |D|,e - |D|]
Interleave each c; into segment j of D to form L
IT - Concat(P[z] |z € L)
Compute 6 = token_dist(ci,ck, T)
9: Store {L, 11,6} in Teases
10: end for
11: return 7gues

e A

C. Prompt Construction

To systematically evaluate long-context relational reasoning,
we construct a controlled benchmark that synthesizes input
prompts containing both relational and distractor entities. Each

test case is generated through a three-stage pipeline: (i) graph
sampling to define ground-truth connections, (ii) controlled
instantiation of test prompts with a mix of connected and
disconnected entities, and (iii) spatial dispersion of related
components to simulate contextual separation.

Given a curated entity graph and corresponding textual
profiles, we generate a set of test instances tailored to each task
type—edge discovery, subgraph recovery, or clique detection.
The prompt generation process samples structured relational
subsets and interleaves them with distractor nodes, allowing
us to modulate both structural complexity and memory stress.

For edge discovery, each test case includes a fixed number of
connected pairs sampled from the graph’s edge set. Distractors
are drawn from two sources: (a) explicitly disconnected nodes,
and (b) unused nodes from the relational pool, with at most
one node per unused pair. This guarantees a consistent number
of entities per prompt while preserving topological separation
between connected and distractor elements.

For subgraph and clique discovery tasks, we first sample
tuples of higher cardinality. These are drawn from the graph
according to degree-based or clique-specific criteria, ensuring
that each tuple forms a valid induced substructure. The number
of nodes per substructure is varied within a defined range,
and samples are stratified by structural regime (e.g., stars or
cliques). Each test case includes a balanced mixture of such
substructures and distractors, with a fixed total entity budget.

Finally, for every sampled prompt, we compute the adjacency
matrix of the ground-truth subgraph to enable evaluation. The
relative placement of connected entities within the distractor
pool is explicitly controlled to vary contextual separation and
dispersion, allowing us to probe the model’s ability to integrate
non-local relational cues. Algorithm 2 shows the inner-works
of prompt generation technique.

D. Dataset Construction and Model Tested

Motivated by recent research on the real-world deployment
of LLMs in complex downstream reasoning tasks [9], [22], we
construct a benchmark derived from two classical synthetic
intelligence analysis challenge datasets: Sign of the Crescent
and Atlantic Storm [45]. These datasets, originally developed
for analyst training, have since become classical benchmarks
widely used in analytics competitions and as evaluation datasets
in the intelligence analysis and visual analytics research
communities [46]-[49]. Each collection offers rich, narrative-
style descriptions of individuals, designed to emulate the
complexity and ambiguity of real-world intelligence scenarios.

Each data point corresponds to a unique person, represented
through a short paragraph containing biographical and con-
textual details. Entities are implicitly linked through shared
activities, affiliations, or co-occurrences, forming the basis of
an underlying latent graph. To establish the ground truth, two
annotators manually verified all relational connections between
individuals, resulting in a curated graph structure used for
evaluation.

We experiment with five models from different model
families: i) GPT-40 [11] from OpenAl, ii) OpenAl ol [12],



[13], iii) Llama-3 [15] from Meta Al, iv) Mistral-7B [16]
from MistralAl, and v) Gemini-2 [14] from Gemini platform,
Google.

E. Can LLMs Recover Structure in Short Contexts?

We begin by evaluating whether LLMs can recover latent
graph structure from natural language prompts under idealized
conditions, where entities are nearby and context length is
short. As shown in Figure 4, GPT-40 and Gemini-2 achieve
high precision but only moderate recall and F1. This indicates
that the models avoid hallucinating structure, but generaly
fail to retrieve many true connections. While partial structural
reasoning is evident, complete graph reconstruction remains
elusive even in low-memory-stress settings.

We now turn to more challenging conditions, where increased
context length, dispersion, and structural density begin to
degrade recovery.

IV. MEMORY DRIFT AND DEGRADATION

To assess a model’s ability to recover relational structure
from noisy input, we report standard edge-level retrieval metrics,
precision, recall, and FI score alongside a primary diagnostic
measure we call memory drift. While the former reflect local
prediction quality, memory drift is designed to capture global
performance degradation under increasing context length and
relational complexity.

Memory Drift quantifies deviation from ideal relational
reconstruction using a weighted sum of true positives (TP), false
positives (FP), and false negatives (FN), ignoring true negatives
due to their overwhelming presence and low informativeness.
The metric is defined as:

wTtp * TP + WeEgp * FP + WEN * FN
Memory Drift = 1 — max 0,

2P
where P is the number of gold-standard edges in the prompt.
The weights wrp = 2, wpp = —0.5, and wpny = —1.0 reflect

our view that forgetting (missed edges) is more damaging
than hallucination (spurious edges), though both degrade
structural integrity. The max(0,-) clamp ensures that large
numbers of errors do not yield negative values. This formulation
produces a bounded value in [0, 1], where 0 indicates perfect
structural recovery and 1 indicates maximal degradation. To
build intuition for how memory drift behaves in practice,
Table II shows example predictions with varying combinations
of true positives, false positives, and false negatives. These
examples illustrate how memory drift increases as models
forget edges, hallucinate new ones, or both, even when standard
precision and recall appear reasonable.

Importantly, memory drift is not equivalent to recall. A
model may exhibit reasonable recall but still show high drift
if it frequently introduces incorrect structure. By incorporating
both types of errors, the metric captures a broader notion of
degradation relevant to downstream reasoning tasks.

To support interpretability, we also report standard metrics:

TP
TP + FP

TP

Recall = —
= TP EN

Precision =

Fl — 2 - Precision - Recall

Precision 4+ Recall

These standard retrieval metrics allow us to disentangle false
positives and false negatives. All four measures are tracked
across token lengths and connection densities to characterize
long-context relational reasoning.

A. When Does Memory Drift Begin?

We analyze how structural recovery degrades with increasing
input length. Memory drift refers to this performance decay as
related entities become more contextually separated.

As shown in Figure 6a for GPT-40 and Figure 6b for Gemini-
2, memory drift increases sharply after 2000 tokens across
all connection densities. Low-density prompts suffer the fastest
degradation, while higher-density ones appear more stable but
begin with worse initial performance.

Figure 5a for GPT-40 shows that degradation is driven
by declining recall, while precision remains stable. This
suggests that models increasingly miss true edges rather than
hallucinating new ones. The onset of memory drift at around
2000 tokens marks a practical upper bound on effective context
for relational reasoning. However, Gemini-2 shows a more
balanced behavior but still suffers high memory drift after
2000 tokens.

B. Does Information Density Help or Hurt?

Information density, measured by the number of con-
nections per sample, negatively affects model performance.
As density increases, the task becomes more difficult due to
greater relational complexity.

Both Figure 6 and Figure 4 show that high-density prompts
begin with lower F1 score and higher memory drift, even at
short context lengths. This indicates that models struggles to
recover dense structures regardless of token count. The effect
compounds over longer contexts, but the primary impact is
already visible in the initial token bins. The degradation for
higher density prompts is more prominent in GPT-40. Gemini-2
shows a more stable behavior for higher density prompts.

C. Hallucination vs Forgetting

We assess how models balance false positives and false neg-
atives under increasing context length and connection density.
Specifically, we examine whether performance degradation is
driven by hallucinated edges (low precision) or missed ones
(low recall).

As shown in Figure 4a, GPT-40 maintains consistently high
precision across all token bins, even as recall decline sharply
with longer contexts. This pattern holds across densities and
is further supported by the radar plot in Figure 5a, where
precision dominates all other metrics.

These results suggest that the model adopts a conservative
prediction strategy. It prefers to omit uncertain connections
rather than risk false positives. Hallucination remains rare, even
in dense or noisy prompts, and does not increase with token
count. Instead, most errors arise from failure to recover true
edges, particularly under dispersion and structural complexity.



TABLE II: Examples of the memory drift metric under different graph reconstruction scenarios. Drift penalizes both hallucinations
(FP) and forgetting (FN), offering a more comprehensive signal than standard precision and recall alone.

Example Gold Edges Predicted Edges TP FP FN Precision Recall Memory Drift
Perfect (0.00) {(A,B), (B,O)} {(AB), B,C)} 2 0 0 1.00 1.00 0.00
Mid-case (0.50) {(A,B), (B,O), (C.D)} {(A,B), (C,D)} 2 0 1 1.00 0.67 0.50
Balanced (0.75) {(A,B), (B,C), (C,D), (D,E)} {(A,B), (C,D)} 2 0 2 1.00 0.50 0.75
Hallucinated (0.875) {(A,B), B,O)} {(A,B), (A,O)} 1 1 1 0.50 0.50 0.875
{(A,B), (B,O)} {} 0 0 2 0.00 0.00 1.00

None (1.00)
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Fig. 5: Metrics for different model and discovery cases, “Score”

precision, recall, and F1.

In summary, hallucination is not the dominant failure mode
in long-context relational reasoning. The model prioritizes
precision at the expense of recall, leading to underprediction
rather than overgeneration.

D. Does Chain-of-thought (CoT) Prompting Help?

We test whether Chain-of-Thought (CoT) [50] prompting
improves structural extraction by comparing regular prompting,
basic CoT, and expanded CoT on the edge discovery task.
As shown in Figure 5c¢ for GPT-40, both CoT variants
underperform the regular strategy across all key metrics.
Expanded CoT performs the worst, with notably lower score,
recall, and F1. Basic CoT shows slightly better recall than
regular, but at the cost of reduced overall accuracy.
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corresponds to (1 — Memory Drift), allowing comparison with

We conclude that CoT prompting is not helpful for this
task. For relational recovery in long contexts, simple prompting
remains the most effective approach.

E. LLMs’ Behavior across Different Graph Discovery Subtasks

We compare GPT-40’s performance across the three rela-
tional reasoning subtasks: edge discovery, subgraph (degree-
based) discovery, and clique discovery. These differ in structural
complexity and the type of inductive reasoning required.

Figure 5a and 5b show metric profiles for each task under
the same connection density (5 connections per sample).
Edge recovery yields the highest precision but lowest recall,
suggesting that the model avoids hallucination but misses many
valid edges. Degree-based subgraph discovery shows more
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TABLE III: Model comparison across long-context relational reasoning benchmarks.

Capability GPT-40 Gemini-2 Llama-3 Mistral-7B
Memory Drift Onset ~2000 tokens ~2500 tokens ~1800 tokens <1000 tokens
Precision Very High (stable) High (slightly unstable) Low (inconsistent)
Recall Low (declines early) High (adaptive) Low (noisy)
F1 Score Stability Balanced (peaks mid-context) Unstable
Density Robustness Poor beyond 5 connections Robust up to 7 connections Moderate (degrades after 5+)  Fails even at 3+ connections
Prediction Strategy Conservative (high precision) Balanced (recall-oriented) Slightly conservative Inconsistent

Best Use Case Precision-critical tasks

Broad structure recovery

General-purpose tasks Lightweight/fine-tuned use

balanced recall and precision, though overall scores remain
low. Clique recovery exhibits the highest recall and F1, but
struggles with precision due to the combinatorial challenge of
predicting fully connected structures.

Memory drift curves (Figure 6a, 7a, and 7b) reveal that drift
patterns vary by task. Edge and degree-based subtasks degrade
quickly beyond 2000-2500 tokens, while clique recovery
declines more slowly, likely due to redundancy among densely
connected entities. These findings highlight that task structure
strongly affects how LLMs handle long-context reasoning.
Sparse graphs lead to brittle recall, dense graphs trigger

hallucination risk, and mid-level structures offer moderate
balance but still degrade under dispersion.

F. Recommendations for Different LLMs

Our evaluation reveals that different models exhibit distinct
tradeoffs in how they handle long-context relational reasoning.
Table III summarizes these trends across key behavioral axes,
including memory drift onset, precision-recall balance, and
robustness to relational density. While no model is uniformly
superior, each demonstrates strengths in specific regimes.
Further figures and details are available in our codebase.
Based on these observations, we offer the following practical
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recommendations for model selection, tailored to the needs of
different real-world use cases:

o GPT-4o is well-suited for high-precision tasks where hal-
lucination must be minimized, such as legal, intelligence
vetting, or safety critical settings. However, it sacrifices
recall as context length and complexity grow.

e Gemini-2 is ideal for exploratory tasks that prioritize
coverage, such as the construction of a knowledge graph
or intelligence discovery. It shows high recall and better
robustness under structural noise.

o Llama-3 offers strong precision with moderate recall,
making it suitable for general-purpose long-context rea-
soning. It handles moderate relational density well but
begins to degrade with structural complexity and extended
dispersion.

o Mistral-7B struggles in zero-shot relational recovery but
may serve as a lightweight base for fine-tuning or retrieval-
augmented pipelines, particularly when resources are
constrained.

G. Can Reasoning-Oriented Models Like OpenAl ol Overcome
Memory Drift?

OpenAl ol does not outperform general-purpose models
on memory drift, and suffers similar or worse degradation
as context length increases.

We assess whether reasoning-specialized models, such as ol
[12], [13], are more robust to memory drift on long-context
relational reasoning tasks.

As shown in Figure 1, which presents memory drift for
all models, ol performs comparably to GPT-4o0 at short
context lengths. However, as the token count increases, ol’s
memory drift rises steadily, matching or exceeding that of the
other models. Notably, for the longest contexts, ol does not
outperform general-purpose models and even displays higher
drift than GPT-40 and Llama-3 in several bins.

A direct comparison in Figure 9 (ol vs. GPT-40) shows
that ol remains similar to GPT-40 for shorter inputs but its
memory drift surpasses GPT-40 for prompts longer than 2000
tokens, confirming that the onset of degradation is not delayed
for reasoning-tuned models.

The radar plot in Figure 8 further illustrates this gap. ol
maintains reasonable precision but lags behind GPT-40 in both
recall and F1, indicating that while it avoids hallucination,
it fails to recover a significant portion of the true relational
structure—especially as input length and complexity increase.

Overall, reasoning-oriented models like ol do not overcome
the limitations of memory drift or context fragmentation in
long, noisy inputs. The results indicate that current advances
in model reasoning are insufficient for reliable relational graph
induction at scale.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduced a benchmark for evaluating long-context
reasoning in LL.Ms through the task of graph reconstruction
from noisy text. Our results show that models degrade much
earlier than their context limits suggest, especially under
structural complexity and dispersion. The proposed memory
drift metric offers a more accurate view of this degradation
than standard retrieval metrics. Our benchmark reveals key
tradeoffs across model families and provides a practical lens for
assessing real-world reasoning capabilities. These findings offer
concrete guidance for both model development and deployment
in structure-sensitive applications.

Several limitations should be acknowledged. Our evaluation
is limited to zero-shot and few-shot prompting, without explor-
ing the effects of fine-tuning or retrieval-based approaches.
We also recognize that prompt sensitivity is an important
consideration and leave a more systematic study of this aspect
to future work.

Looking ahead, we will investigate how retrieval-based
and memory-augmented systems influence memory retention,
forgetting, and drift in long-context relational reasoning. More
broadly, we hope this benchmark and metric provide a valuable
diagnostic for the nuanced failure modes of current LLMs,
moving beyond “needle in a haystack” evaluations toward more
realistic, structure-based reasoning tasks. By establishing new



evaluation settings and highlighting model-specific behaviors,
we aim for this work to support continued advances in long-
context understanding and structured reasoning.
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