
Mixed-Initiative Interaction = Mixed Computation

Naren Ramakrishnan
Dept. of Computer Science
Virginia Tech, Blacksburg

VA 24061, USA

naren@cs.vt.edu

Robert Capra
Dept. of Computer Science
Virginia Tech, Blacksburg

VA 24061, USA

rcapra@vt.edu

Manuel A. Pérez-Quiñones
Dept. of Computer Science
Virginia Tech, Blacksburg

VA 24061, USA

perez@cs.vt.edu

ABSTRACT
We show that partial evaluation can be usefully viewed as a
programming model for realizing mixed-initiative function-
ality in interactive applications. Mixed-initiative interac-
tion between two participants is one where the parties can
take turns at any time to change and steer the flow of in-
teraction. We concentrate on the facet of mixed-initiative
referred to as ‘unsolicited reporting’ and demonstrate how
out-of-turn interactions by users can be modeled by ‘jump-
ing ahead’ to nested dialogs (via partial evaluation). Our
approach permits the view of dialog management systems
in terms of their support for staging and simplifying inter-
actions; we characterize three different voice-based interac-
tion technologies using this viewpoint. In particular, we
show that the built-in form interpretation algorithm (FIA)
in the VoiceXML dialog management architecture is actu-
ally a (well disguised) combination of an interpreter and a
partial evaluator.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
F.3.2 [Semantics of Programming Languages]: Partial
Evaluation; H.4 [Information Systems Applications]:
Communications Applications; H.5.2 [User Interfaces]: In-
teraction Styles

Keywords
Mixed-initiative interaction, partial evaluation, interaction
sequences, dialog management, VoiceXML.

1. INTRODUCTION
Mixed-initiative interaction [8] has been studied for the

past 30 years in the areas of artificial intelligence (AI) plan-
ning [17], human-computer interaction [5], and discourse
analysis [6]. As Novick and Sutton point out [13], it is
‘one of those things that people think that they can rec-
ognize when they see it even if they can’t define it.’ It can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM ’02,Jan. 14-15, 2002 Portland, OR, USA
Copyright 2002 ACM 1-58113-455-X/02/0001 ...$5.00.

be broadly viewed as a flexible interaction strategy between
participants where the parties can take turns at any time to
change and steer the flow of interaction. Human conversa-
tions are typically mixed-initiative and, interestingly, so are
interactions with some modern computer systems.

Consider the two dialogs in Figs. 1 and 2 with a tele-
phone pizza delivery service that has voice-recognition ca-
pability (the line numbers are provided for ease of refer-
ence). Both these conversations involve the specification of
a {size,topping,crust} tuple to complete the pizza ordering
procedure but differ in important ways. In Fig. 1, the caller
responds to the questions in the order they are posed by the
system. The system has the initiative at all times (other
than, perhaps, on line 0) and such an interaction is thus
referred to as system-initiated. In Fig. 2, when the system
prompts the caller about pizza size, he responds with infor-
mation about his choice of topping instead (sausage; see line
3 of Fig. 2). Nevertheless, the conversation is not stalled and
the system continues with the other aspects of the informa-
tion gathering activity. In particular, the system registers
that the caller has specified a topping, skips its default ques-
tion on this topic, and repeats its question about the size
(see line 5 of Fig. 2). The caller thus gained the initiative
for a brief period during the conversation, before returning
it to the system. Such a conversation that mixes system-
initiated and user-initiated modes of interaction is said to
be mixed-initiative.

1.1 Tiers of Mixed-Initiative Interaction
It is well accepted that mixed-initiative provides a more

natural and personalized mode of interaction. A matter of
debate, however, are the qualities that an interaction must
possess to merit its classification as mixed-initiative [13]. In
fact, determining who has the initiative at a given point in
an interaction can itself be a contentious issue! The role of
intention in an interaction and the underlying task goals also
affect the characterization of initiative. We will not attempt
to settle this debate here but a few preliminary observations
will be useful.

One of the basic levels of mixed-initiative is referred to as
unsolicited reporting in [3] and is illustrated in Fig. 2. In this
facet, a participant provides information out-of-turn (in our
case the caller, about his choice of topping). Furthermore,
the out-of-turn interaction is not agreed upon in advance by
the two participants. Novick and Sutton [13] stress that the
unanticipated nature of out-of-turn interactions is important
and that mere turn-taking (perhaps in a hardwired order)
does not constitute mixed-initiative. Finally, notice that in
Fig. 2 there is a resumption of the original questioning task

119

0 Caller: ≺calls Joe’s Pizza on the phone�
1 System: Thank you for calling Joe’s pizza ordering system.
2 System: What size pizza would you like?
3 Caller: I’d like a medium, please.
4 System: What topping would you like on your pizza?
5 Caller: Pepperoni.
6 System: What type of crust do you want?
7 Caller: Uh, deep-dish.
8 System: So that is a medium pepperoni pizza with deep-dish crust. Is this correct?
9 Caller: Yes.
(conversation continues to get delivery and payment information)

Figure 1: Example of a system-directed conversation.

0 Caller: ≺calls Joe’s Pizza on the phone�
1 System: Thank you for calling Joe’s pizza ordering system.
2 System: What size pizza would you like?
3 Caller: I’d like a sausage pizza, please.
4 System: Okay, sausage.
5 System: What size pizza would you like?
6 Caller: Medium.
7 System: What type of crust do you want?
8 Caller: Deep-dish.
9 System: So that is a medium sausage pizza with deep-dish crust. Is this correct?
10 Caller: Yes.
(conversation continues to get delivery and payment information)

Figure 2: Example of a mixed-initiative conversation.

once processing of the unsolicited response is completed. In
other applications, an unsolicited response might shift the
control to a new interaction sequence and/or abort the cur-
rent interaction.

Another level of mixed-initiative involves subdialog invo-
cation; for instance, the computer system might not have
understood the user’s response and could ask for clarifica-
tions (which amounts to it having the initiative). A final,
sophisticated, form of mixed-initiative is one where partici-
pants negotiate with each other to determine initiative (as
opposed to merely ‘taking the initiative’) [3]. An example
is given in Fig. 3.

In addition to models that characterize initiative, there
are models for designing dialog-based interaction systems.
Allen et al. [2] provide a taxonomy of such software mod-
els — finite-state machines, slot-and-filler structures, frame-
based methods, and more sophisticated models involving
planning, agent-based programming, and exploiting contex-
tual information. While mixed-initiative interaction can be
studied in any of these models, it is beyond the scope of this
paper to address all or even a majority of them.

Instead, we concentrate on the view of (i) a dialog as a
task-oriented information assessment activity requiring the
filling of a set of slots, (ii) where one of the participants in
the dialog is a computer system and the other is a human,
and (iii) where mixed-initiative arises from unsolicited re-
porting (by the human), involving out-of-turn interactions.
This characterization includes many voice-based interfaces
to information (our pizza ordering dialog is an example)
and web sites modeling interaction by hyperlinks [15]. In
Section 2, we show that partial evaluation can be usefully
viewed as a programming model for such applications. Sec-

tion 3 presents three different voice-based interaction tech-
nologies and analyzes them in terms of their native support
for mixing initiative. Finally, Section 4 discusses other facets
of mixed-initiative and mentions other software models to
which our approach can be extended.

2. PROGRAMMING A MIXED-INITIATIVE
APPLICATION

Before we outline the design of a system such as Joe’s
Pizza (ref. Figs. 1 and 2), we introduce a notation [7, 11]
that captures basic elements of initiative and response in
an interaction sequence. The notation expresses the local
organization of a dialog [14] as adjacency pairs; for instance,
the dialog in Fig. 1 is represented as:

(Ic Rs) (Is Rc) (Is Rc) (Is Rc) (Is Rc)
0 1 2 3 4 5 6 7 8 9

The line numbers given below the interaction sequence refer
to the utterance numbers in Fig. 1. The letter I denotes who
has the initiative — caller (c) or the system (s) — and the
letter R denotes who provides the response. It is easy to see
from this notation that the dialog in Fig. 1 consists of five
turns and that the system has the initiative for the last four
turns. The initial turn is modeled as the caller having the
initiative because he or she chose to place the phone call in
the first place. The system quickly takes the initiative after
playing a greeting to the caller (which is modeled here as
the response to the caller’s call). The subsequent four in-
teractions then address three questions and a confirmation,
all involving the system retaining the initiative (Is) and the
caller in the responding mode (Rc).

120

(with apologies to O. Henry)
Husband: Della, Something interesting happened today that I want to tell you.
Wife: I too have something exciting to tell you, Jim.
Husband: Do you want to go first or shall I tell you my story?

Figure 3: Example of a mixed-initiative conversation where initiative is negotiated.

0 Caller: ≺calls Joe’s Pizza on the phone�
1 System: Thank you for calling Joe’s pizza ordering system.
2 System: What size pizza would you like?
3 Caller: I’d like a sausage pizza, medium, and deep-dish.
4 System: So that is a medium sausage pizza with deep-dish crust. Is this correct?
5 Caller: Yes.
(conversation continues to get delivery and payment information)

Figure 4: Example of a mixed-initiative conversation with a frequent customer.

Likewise, the mixed-initiative interaction in Fig. 2 is rep-
resented as:

(Ic Rs) (Is (Ic Rs) Rc) (Is Rc) (Is Rc)
0 1 2,5 3 4 6 7 8 9 10

In this case, the system takes the initiative in utterance 2
but instead of responding to the question of size in utter-
ance 3, the caller takes the initiative, causing an ‘insertion’
to occur in the interaction sequence (dialog) [11]. The sys-
tem responds with an acknowledgement (‘Okay, sausage.’)
in utterance 4. This is represented as the nested pair (Ic
Rs) above. The system then re-focusses the dialog on the
question of pizza size in utterance 5 (thus retaking the ini-
tiative). In utterance 6 the caller responds with the desired
size (medium) and the interaction proceeds as before, from
this point.

There are various other possibilities for mixing initiative.
For instance, if a user is a frequent customer of Joe’s Pizza,
he might take the initiative and specify all three pizza at-
tributes on the first available prompt, as shown in Fig. 4.
Such an interaction would be represented as:

(Ic Rs) (Is Rc) (Is Rc)
0 1 2 3 4 5

Notice that even though this dialog consists of only three
turns it constitutes a complete instance of interaction with
the pizza ordering service.

The notation aids in understanding the structure and stag-
ing of interaction in a dialog. By a post-analysis of all in-
teraction sequences described in this manner, we find that
utterances 0 and 1 have to proceed in order. Utterances
dealing with selection of {size,topping,crust} can then be
nested in any order and provide interesting opportunities
for mixing initiative. Finally, the utterances dealing with
confirmation of the user’s request can proceed only after
choices of all three pizza attributes have been made.

While the notation doesn’t directly reflect the computa-
tional processing necessary to achieve the indicated struc-
ture, it can be used to express a set of requirements for
a dialog system design. There are 13 possible interaction
sequences (discounting permutations of attributes specified
in a given utterance): 1 possibility of specifying everything
in one utterance, 6 possibilities of specification in two ut-
terances, and 6 possibilities of specification in three utter-
ances. If we include permutations, there are 24 possibilities

(our calculations do not consider situations where, for in-
stance, the system doesn’t recognize the user’s input and
reprompts for information). Of these possibilities, all but
one are mixed-initiative sequences.

Many programming models view mixed initiative sequences
as requiring some special attention to be accommodated. In
particular, they rely on recognizing when a user has pro-
vided unsolicited input1 and qualify a shift-in-initiative as a
‘transfer of control.’ This implies that the mechanisms that
handle out-of-turn interactions are often different from those
that realize purely system-directed interactions. Fig. 5 (left)
describes a typical software design. A dialog manager is in
charge of prompting the user for input, queueing messages
onto an output medium, event processing, and managing
the overall flow of interaction. One of its inputs is a dialog
script that contains a specification of interaction and a set
of slots that are to be filled. In our pizza example, slots
correspond to placeholders for values of size, topping, and
crust. An interpreter determines the first unfilled slot to
be visited and presents any prompts for soliciting user in-
put. A responsive input requires mere slot filling whereas
unsolicited inputs would require out-of-turn processing (in-
volving a combination of slot filling and simplification). In
turn, this causes a revision of the dialog script. The inter-
preter terminates when there is nothing left to process in
the script. While typical dialog managers perform miscella-
neous functions such as error control, transferring to other
scripts, and accessing scripts from a database, the architec-
ture in Fig. 5 (left) focusses on the aspects most relevant to
our presentation.

Our approach, on the other hand, is to think of a mixed-
initiative dialog as a program, all of whose arguments are
passed by reference and which correspond to the slots com-
prising information assessment. As usual, an interpreter in
the dialog manager queues up the first applicable prompt
to an output medium. Both responsive and unsolicited in-
puts by a user now correspond (uniformly) to values for
arguments; they are processed by partially evaluating the
program with respect to these inputs. The result of partial
evaluation is another dialog (simplified as a result of user
input) which is handed back to the interpreter. This novel

1We use the term ‘unsolicited input’ here to refer to expected
but out-of-turn inputs as opposed to completely unexpected
(or out-of-vocabulary) inputs.

121

out−of−turn
processing

slot
filling

STOPInterpreter

user
input?

Dialog
Manager

user input
Dialog script

unsolicitedresponsive

nothing
to process STOPInterpreter

user
input?

partial
evaluator

Dialog
Manager

user input
Dialog script

to process

yes

nothing

Figure 5: Designs of software systems for mixed-initiative interaction. (left) Traditional system architecture,
distinguishing between responsive and unsolicited inputs. (right) Using partial evaluation to handle inputs
uniformly.

pizzaorder(size,topping,crust)

{

if (unfilled(size)){

/* prompt for size */

}

if (unfilled(topping)){

/* prompt for topping */

}

if (unfilled(crust)){

/* prompt for crust */

}

}

Figure 6: Modeling a dialog script as a program
parameterized by slot variables that are passed by
reference.

design is depicted in Fig. 5 (right) and a dialog script repre-
sented in a programmatic notation is given in Fig. 6. Partial
evaluation of Fig. 6 with respect to user input will remove
the conditionals for all slots that are filled by the utterance
(global variables are assumed to be under the purview of
the interpreter). The reader can verify that a sequence of
such partial evaluations will indeed mimic the interaction
sequence depicted in Fig. 2 (and any of the other mixed-
initiative sequences).

Partial evaluation serves two critical uses in our design.
The first is obvious, namely the processing of out-of-turn
interactions (and any appropriate simplifications to the dia-
log script). The more subtle advantage of partial evaluation
is its support for staging mixed-initiative interactions. The
mix-equation [9] holds for every possible way of splitting
inputs into two categories, without enumerating and ‘trap-
ping’ the ways in which the computations can be staged. For
instance, the nested pair in Fig. 2 is supported as a natural
consequence of our design, not by anticipating and reacting
to an out-of-turn input.

Another way to characterize the system designs in Fig. 5
is to say that Fig. 5 (left) makes a distinction of respon-
sive versus unsolicited inputs, whereas Fig. 5 (right) makes
a more fundamental distinction of fixed-initiative (interpre-
tation) versus mixed-initiative (partial evaluation). In other

words, Fig. 5 (right) carves up an interaction sequence into
(i) turns that are to be handled in the order they are modeled
(by an interpreter), and (ii) turns that can involve mixing
of initiative (handled by a partial evaluator). In the latter
case, the computations are actually used as a representation
of interactions. Since only mixed-initiative interactions in-
volve multiple staging options and since these are handled
by the partial evaluator, our design requires the least amount
of specification (to support all interaction sequences). For
instance, the script in Fig. 6 models the parts that involve
mixing of initiative and helps realize all of the 13 possible
interaction sequences. At the same time it does not model
the confirmation sequence of Fig. 2 because the caller cannot
confirm his order before selecting the three pizza attributes!
This turn must be handled by straightforward interpreta-
tion.

To the best of our knowledge, such a model of partial eval-
uation for mixed-initiative interaction has not been proposed
before. While computational models for mixed-initiative in-
teraction remain an active area of research [8], such work
is characterized by keywords such as ‘controlling mixed-
initiative interaction,’ ‘knowledge representation and rea-
soning strategies,’ and ‘multi-agent co-ordination.’ There
are even projects that talk about ‘integrating’ mixed initia-
tive interaction and partial evaluation to realize an archi-
tecture for planning and learning [17]. We are optimistic
that our work has the same historical significance as the re-
lation between explanation-based generalization (a learning
technique in AI) and partial evaluation established by van
Haremelen and Bundy in 1988 [16].

2.1 Preliminary Observations
It is instructive to examine the situations under which a

concept studied in a completely different domain is likened
to partial evaluation. Establishing a resemblance to partial
evaluation is usually done by mapping from an underlying
idea of specialization or customization in the original do-
main. This is the basis in [16] where specialization of do-
main theories is equated to partial evaluation of programs.
The motivating theme is one of re-expressing the given pro-
gram (domain theory) in an efficient but less general form,
by recognizing that parameters have different rates of vari-
ation [9]. This theme has also been the primary demonstra-
tor in the partial evaluation literature, where inner loops

122

call−in confirmsized2d1 d3
topping

crust

Figure 7: Modeling requirements for unsolicited re-
porting as traversals of a graph.

interpretation
layer

call−ind1 confirm
pizza

sized2 d3
topping

crust

partial evaluation
layer

Figure 8: Layering interaction sequences for unso-
licited reporting.

in heavily parameterized programs are optimized by partial
evaluation.

Our model is grounded on the (more basic) view of pa-
rameters as involving different times of arrival. By captur-
ing the essence of unsolicited reporting as merely differences
in arrival time (specification time) of aspects, we are able to
use partial evaluation for mixed-initiative interaction. The
property of partial evaluation that is pertinent here is not
just that it is a specialization technique, but also that a
sequence of such specializations corresponds to a valid in-
stance of interaction with the dialog script. Moreover, the
set of valid sequences of specializations is exactly the set of
interactions to be supported. The program of Fig. 6 can thus
be thought of as a compaction of all interaction sequences
that involve mixing initiative.

2.1.1 Decomposing Interaction Sequences
An important issue to be addressed is the decomposition

of interaction sequences into parts that should be handled
by interpretation and parts that can benefit from partial
evaluation. We state only a few general guidelines here.
Fig. 7 describes the set of valid interaction sequences for
the pizza example as traversals of a graph. Nodes in the
graph correspond to stages of specification of aspects. Thus,
taking the outgoing edge from the call-in node implies that
this stage of the interaction has been completed (the need
for the dummy nodes such as d2 and d3 will become clear
in a moment). The rules of the traversal are to find paths
such that all nodes are visited and every node is visited
exactly once. It is easy to verify that with these rules, Fig. 7
models all possibilities of mixing initiative (turns where the
user specifies multiple pizza aspects can be modeled as a
sequence of graph moves).

Expressing our requirements in a graph such as Fig. 7 re-
veals that the signature bushy nature of mixing initiative
is restricted to only a subgraph of the original graph. We
can demarcate the starting (d2) and ending points (d3) of

bakery
item

coffeeeggsd2 d3

Figure 9: Modeling subdialog invocation.

call−ind1 confirm

breakfast

d2 d3eggs
coffee

bakery
item

layer

layer

first interpretation

second interpretation

partial evaluation
layer

Figure 10: Layering interaction sequences for sub-
dialog invocation.

the subgraph and layer it in the context of a larger inter-
action sequence as shown in Fig. 8. The nodes in the top
layer dictate a strict sequential structure, thus they should
be modeled by interpretation. The nodes in the bottom
layer encapsulate and exhibit the bushy characteristic; they
are hence candidates for partial evaluation. The key lesson
to be drawn from Fig. 8 is that partial evaluation effectively
supports the mixed-initiative subgraph without maintaining
any additional state (for instance after a node has been vis-
ited, this information is not stored anywhere to ensure that
it is not visited again). In contrast, the interpretation layer
has an implicit notion of state (namely, the part of the in-
teraction sequence that is currently being interpreted). The
layered design can be implemented as two alternating pieces
of code (for interpretation and partial evaluation, respec-
tively) where the interpreter passes control to the partial
evaluator for the segments involving pizza attribute speci-
fication and resumes after these segments have been evalu-
ated.

For some applications, the alternating layer concept might
need to be extended to more than two layers. Consider a
hotel telephone service for ordering breakfast. Assume that
ordering breakfast involves specifications of {eggs, coffee,
bakery item} tuples. The user can specify these items in any
order, but each item involves a second clarification aspect.
After the user has specified his choice of eggs, a clarification
of ‘how do you like your eggs?’ might be needed. Similarly,
when the user is talking about coffee, a clarification of ‘do
you take cream and sugar?’ might be required, and so on.
This form of mixed-initiative was introduced in Section 1.1
as subdialog invocation. The set of interaction sequences
that address this requirement can be represented as shown
in Fig. 9 (only the mixed-initiative parts are shown). In

123

call−in confirmsized2d1 d3
topping

crust

Figure 11: A requirement for mixing initiative that
cannot be captured by partial evaluation.

this case, it is not possible to achieve a clean separation of
subgraphs into interpretation and partial evaluation in just
two layers.

One solution is to use three layers as shown in Fig. 10.
If we implement both interpretation layers of this design
by the same code, some form of scope maintenance (e.g., a
stack) will be necessary when moving across the bottom two
layers. Pushing onto the stack preserves the context of the
original interaction sequence and is effected for each step
of partial evaluation. Popping restores this context when
control returns to the partial evaluator. The semantics of
graph traversal remain the same. Once the nodes in the
second and third layers are traversed, interpretation is re-
sumed at the top layer to confirm the breakfast order. It is
important to note that once again, the semantics of transfer
of control between the interpreter and partial evaluator are
unambiguous and occur at well defined branch points.

The above examples highlight the all-or-nothing role played
by partial evaluation. For a dialog script parameterized in
terms of slot variables, partial evaluation can be used to sup-
port all valid possibilities for mixing initiative, but it cannot
restrict the scope of mixing initiative in any way. In particu-
lar this means that, unlike interpretation, partial evaluation
cannot enforce any individual interaction sequence! Even a
slight deviation in requirements that removes some of the
walks in the bushy subgraph will render partial evaluation
inapplicable.

For instance, consider the graph in Fig. 11 that is the
same as Fig. 7 with some edges removed. Mixing initiative
is restricted to visiting the size, topping, and crust nodes in
a strict forward or reverse order. Partial evaluation cannot
be used to restrict the scope of mixing initiative to just these
two possibilities of specifying the pizza attributes. We can
model this by interpretation but this requires anticipation,
akin to the design of Fig. 5 (left).

This is the essence of partial evaluation as a programming
model; it makes some tasks extremely easy but like every
other programming methodology, it is not a silver bullet. In
a realistic implementation for mixed-initiative interaction,
partial evaluation will need to be used in conjunction with
other paradigms (e.g., interpretation) to realize the desired
objectives.

In this paper, we concentrate on only the unsolicited re-
porting facet of mixed initiative for which the decomposition
illustrated by Fig. 8 is adequate. In other words, these are
the applications where the all-or-nothing role of partial eval-
uation is sufficient to realize mixed-initiative interaction.

Our modeling methodology is concerned only with the in-
teraction staging aspect of dialog management, namely de-
termining what the next step(s) in the dialog can or should
be. We have not focused on aspects such as response gener-
ation. In the pizza example, responses to successful partial
evaluation (or interpretation) can be easily modeled as side-

Traditional Browser

partial input specification window

Figure 12: Sketch of an interface for mixed-initiative
interaction with web sites.

effects. In other cases, we would need to take into account
the context of the particular interaction sequence. The same
argument holds for what is known as tapered prompting [4].
If the prompt for size needs to be replayed (because the user
took the initiative and specified a topping), we might want
to choose a different prompt for a more natural dialog (i.e.,
instead of repeating ‘What size pizza would you like?,’ we
might prompt as ‘You still haven’t specified a size. Please
choose among small, medium, or large.’). We do not discuss
these aspects further except to say that they are an impor-
tant part of a production implementation of dialog based
systems.

2.1.2 Implementation Technologies
We now turn our attention to implementing our partial

evaluation model for existing information access and deliv-
ery technologies. As stated earlier, our model is applicable
to voice-based interaction technologies as well as web access
via hyperlinks. In [15], we study the design and implemen-
tation of web site personalization systems that allow the
mixing of initiative. In contrast to a voice-based delivery
mechanism, (most) interactions with web sites proceed by
clicking on hyperlinks. For instance, a pizza ordering web
service might provide hyperlinks for choices of size so that
clicking on a link implies a selection of size. This might
refresh the browser to a new page that presents choices for
topping, and so on. Since clicking on links implies a response
to the initiative taken by the web page author, a different
communication mechanism needs to be provided to enable
the user to take the initiative.

Our suggested interface design is shown in Fig. 12. An
extra window is provided for the user to type in his speci-
fication aspects. This is not fundamentally different from a
location toolbar in current browsers that supports the spec-
ification of URL. Consider that a web page presents hyper-
links for choices of pizza size. Using the interface in Fig. 12,
the user can either click on her choice of size attribute in
the top window (effectively, responding to the initiative), or
can use the bottom window to specify, say, a topping out-
of-turn. To force an interpretation mode for segments of
an interaction sequence, the bottom window can be made
inactive. Modeling decisions, implementation details, and
experimental results for two web applications developed in
this manner are described in [15]; we refer the reader to this
reference for details.

Our original goal for this paper was to study these con-
cepts for voice-based interaction technologies and to see if
our model can be used for the implementation of a voice-

124

Microphone
extraction
Feature

Digital Converter
Analog to

Speech
Recognizer

Language
model

HMM
accoustic
models

Language
Processing

Natural

Management
Dialog

Dialog
model

analog
signal

digital
signal

feature
vector

response result(s)results+

Figure 13: Basic components of a spoken language processing system.

Internet Server
HTTP

.html pages

http
protocol

PC with
web browser

Voice
Browser
Platform

Telephone
Network

Internet Server
HTTP

http
protocol

.vxml pages
grammar files

Figure 14: (left) Accessing HTML documents via a HTTP web server. (right) Accessing VoiceXML docu-
ments via a HTTP web server.

based mixed-initiative application. A variety of commercial
technologies are available for developing voice-based appli-
cations; as a first choice of a representational formalism, we
proceeded to use the specification language of the Voice-
XML dialog management architecture [4]. The idea was to
describe dialogs in VoiceXML notation and use partial eval-
uation to realize mixed-initiative interaction. After some
initial experimentation we realized that VoiceXML’s form
interpretation algorithm (FIA), which processes the dialogs,
provides mixed-initiative interaction using a script very sim-
ilar to the one we presented for use with a partial evaluator
(see Fig. 6)! In other these, there is no real advantage to
partially evaluating a VoiceXML specification! This pointed
us to the possibility that perhaps we can identify an instan-
tiation of our model in VoiceXML’s dialog management ar-
chitecture and especially, the FIA. The rest of the paper
takes this approach and shows that this is indeed true.

We also identify other implementation technologies where
we can usefully implement a voice-based mixed-initiative
system using our model. We merely identify the opportuni-
ties here and hope to elaborate on a complete implementa-
tion of our model in a future paper.

3. SOFTWARE TECHNOLOGIES FOR
VOICE-BASED MIXED-INITIATIVE
APPLICATIONS

Before we can study the programming of mixed-initiative
in a voice-based application, it will be helpful to under-
stand the basic architecture (see Fig. 13) of a spoken lan-
guage processing system. As a user speaks into the sys-
tem, the sounds produced are captured by a microphone
and converted into a digital signal by an analog-to-digital
converter. In telephone-based systems (the VoiceXML ar-
chitecture covered later in the paper is geared toward this
mode), the microphone is part of the telephone handset and

the analog-to-digital conversion is typically done by equip-
ment in the telephone network (in some cellular telephony
models, the conversion would be performed in the handset
itself).

The next stage (feature extraction) prepares the digital
speech signal to be processed by the speech recognizer. Fea-
tures of the signal important for speech recognition are ex-
tracted from the original signal, organized as an attribute
vector, and passed to the recognizer.

Most modern speech recognizers use Hidden Markov Mod-
els (HMMs) and associated algorithms to represent, train,
and recognize speech. HMMs are probabilistic models that
must be trained on an input set of data. A common tech-
nique is to create sets of acoustic HMMs that model phonetic
units of speech in context. These models are created from a
training set of speech data that is (hopefully) representative
of the population of users who will use the system. A lan-
guage model is also created prior to performing recognition.
The language model is typically used to specify valid com-
binations of the HMMs at a word- or sentence-level. In this
way, the language model specifies the words, phrases, and
sentences that the recognizer can attempt to recognize. The
process of recognizing a new input speech signal is then ac-
complished using efficient search algorithms (such as Viterbi
decoding) to find the best matching HMMs, given the con-
straints of the language model. The output of the speech
recognizer can take several different forms, but the basic
result is a text string that is the recognizer’s best guess of
what the user said. Many recognizers can provide additional
information such as a lattice of results, or an N-best ranked
list of results (in case the later stages of processing wish to
reject the recognizer’s top choice). A good introduction to
speech recognition is available in [10].

The stages after speech recognition vary depending on the
application and the types of processing required. Fig. 13
presents two additional phases that are commonly included

125

in spoken language processing systems in one form or an-
other. We will broadly refer to the first post-recognition
stage as natural language processing (NLP). NLP is a large
field in its own right and includes many sub-areas such as
parsing, semantic interpretation, knowledge representation,
and speech acts; an excellent introduction is available in
Allen’s classic [1]. Our presentation in this paper has as-
sumed NLP support for slot-filling (i.e., determining values
for slot variables from user input).

Slot-filling is commonly achieved by defining parts of a
language model and associating them with slots. The lan-
guage model could be specified as a context-free grammar
or as a statistically-based model such as n-grams. Here we
focus on the former: in this approach, slots can be specified
within the productions of a context-free grammar (akin to
a attribute grammar) or they can be associated with the
non-terminals in the grammar.

We will refer to the next phase of processing as simply
‘dialog management’ (see Fig. 13). In this phase, augmented
results from the NLP stage are incorporated into the dialog
and any associated logic of the application is executed. The
job of the dialog manager is to track the proceedings of the
dialog and to generate appropriate responses. This is often
done within some logical processing framework and a dialog
model (in our case, a dialog script) is supplied as input that
is specific to the particular application being designed. The
execution of the logic on the dialog model (script) results in a
response that can be presented back to the user. Sometimes
response generation is separated out into a subsequent stage.

3.1 The VoiceXML Dialog Management
Architecture

There are many technologies and delivery mechanisms
available for implementing Fig. 13’s basic components. A
popular implementation can be seen in the VoiceXML dialog
management architecture. VoiceXML is a markup language
designed to simplify the construction of voice-response ap-
plications [4]. Initiated by a committee comprising AT&T,
IBM, Lucent Technologies, and Motorola, it has emerged as
a standard in telephone-based voice user interfaces and in
delivering web content by voice. We will hence cover this
architecture in detail.

The basic idea is to describe interaction sequences using
a markup notation in a VoiceXML document. As the Voice-
XML specification [4] indicates, a VoiceXML document con-
stitutes a conversational finite state machine and describes
a sequence of interactions (both fixed- and mixed-initiative
are supported). A web server can serve VoiceXML doc-
uments using the HTTP protocol (Fig. 14, right), just as
easily as HTML documents are currently served over the
Internet (Fig. 14, left). In addition, voice-based applica-
tions require a suitable delivery platform, illustrated by a
telephone in Fig. 14 (right). The voice-browser platform
in Fig. 14 (right) includes the VoiceXML interpreter which
processes the documents, monitors user inputs, streams mes-
sages, and performs other functions expected of a dialog
management system. Besides the VoiceXML interpreter,
the voice-browser platform typically includes a speech rec-
ognizer, a speech synthesizer, and telephony interfaces to
help realize these aspects of voice-based interaction.

Dialog specification in a VoiceXML document involves or-
ganizing a sequence of forms and menus. Forms specify a
set of slots (called field item variables) that are to be filled

by user input. Menus are syntactic shorthands (much like
a case construct); since they involve only one field item
variable (argument), there are no opportunities for mixing
initiative. We do not discuss menus further in this paper.
An example VoiceXML document for our pizza application
is given in Fig. 15.

As shown in Fig. 15, the pizza dialog consists of two forms.
The first form (welcome) merely welcomes the user and tran-
sitions to the second. The place order form involves four
fields (slot variables) — the first three cover the pizza at-
tributes and the fourth models the confirmation variable (re-
call the dialogs in Section 1). In particular, prompts for
soliciting user input in each of the fields are specified in
Fig. 15.

Interactions in a VoiceXML application proceed just like
a web application except that instead of clicking on a hyper-
link (to goto a new state), the user talks into a microphone.
The VoiceXML interpreter then determines the next state
to move to. Any appropriate responses (to user input) and
prompts are delivered over a speaker. The core of the in-
terpreter is a so-called form interpretation algorithm (FIA)
that drives the interaction. In Fig. 15, the fields provide
for a fixed-initiative, system-directed interaction. The FIA
simply visits all fields in the order they are presented in the
document. Once all fields are filled, a check is made to en-
sure that the confirmation was successful; if not, the fields
are cleared (notice the clear namelist tag) and the FIA
will proceed to prompt for the inputs again, starting from
the first unfilled field — size.

The form in Fig. 15 is referred to as a directed one since
the computer has the initiative at all times and the fields
are filled in a strictly sequential order. To make the in-
teraction mixed-initiative (with respect to size, crust, and
topping), the programmer merely has to specify a form-level
grammar that describes possibilities for slot-filling from a
user utterance. An example form-level grammar file (size
toppingcrust.gram) is given in Fig. 16. The productions
for sizetoppingcrust cover all possibilities of filling slot
variables from user input, including multiple slots filled by
a given utterance, and various permutations of specifying
pizza attributes. The grammar is associated with the dialog
script by including the line:

<grammar src="sizetoppingcrust.gram"

type="application/x-jsgf"/>

just before the definition of the first field (size) in Fig. 15.
The form-level grammar contains productions for the var-

ious choices available for size, topping, and crust and also
qualifies all possible parses for a given utterance (modeled
by the non-terminal sizetoppingcrust). Any valid combi-
nation of the three pizza aspects uttered by the user (in any
order) is recognized and the appropriate slot variables are
instantiated. To see why this also achieves mixed-initiative,
let us consider the FIA in more detail.

Fig. 17 reproduces the salient aspects of the FIA relevant
for our discussion. Compare the basic elements of the FIA
to the stages in Fig. 5 (right). The Select phase corresponds
to the interpreter, the Collect phase gathers the user input,
and actions taken in the Process phase mimic the partial
evaluator. Recall that ‘programs’ (scripts) in VoiceXML
can be modeled by finite-state machines, hence the mechan-
ics of partial evaluation are considerably simplified and just
amount to filling the slot and tagging it as filled. Since the

126

<?xml version="1.0"?>

<vxml version="1.0">

<!-- pizza.vxml

A simple pizza ordering demo to illustrate some basic elements

of VoiceXML. Several details have been omitted from this demo

to help make the basic ideas stand out. -->

<form id="welcome">

<block name="block1">

<prompt> Thank you for calling Joe’s pizza ordering system. </prompt>

<goto next="#place_order" />

</block>

</form>

<form id="place_order">

<field name="size">

<prompt> What size pizza would you like? </prompt>

</field>

<field name="topping">

<prompt> What topping would you like on your pizza? </prompt>

</field>

<field name="crust">

<prompt> What type of crust do you want? </prompt>

</field>

<field name="verify">

<prompt>

So that is a <value expr="size"/> <value expr="topping"/> pizza

with <value expr="crust"/> crust.

Is this correct?

</prompt>

<grammar> yes | no </grammar>

</field>

<filled>

<if cond="verify==’no’">

<clear namelist="size topping verify crust"/>

<prompt> Sorry. Your order has been canceled. </prompt>

<else/>

<prompt>Thank you for ordering from Joe’s pizza.</prompt>

</if>

</filled>

</form>

</vxml>

Figure 15: Modeling the pizza ordering dialog in a VoiceXML document.

127

#JSGF V1.0;

grammar sizetoppingcrust;

public <sizetoppingcrust> =

<size> {this.size=$} [<topping> {this.topping=$}] [<crust> {this.crust=$}] |

<size> {this.size=$} <crust> {this.crust=$} <topping> {this.topping=$} |

<topping> {this.topping=$} [<crust> {this.crust=$}] [<size> {this.size=$}] |

<topping> {this.topping=$} <size> {this.size=$} <crust> {this.crust=$} |

<crust> {this.crust=$} [<size> {this.size=$}] [<topping> {this.topping=$}] |

<crust> {this.crust=$} <topping> {this.topping=$} <size> {this.size=$};

<size> = small | medium | large;

<topping> = sausage | pepperoni | onions | green peppers;

<crust> = regular | deep dish | thin;

Figure 16: A form-level grammar to be used in conjunction with the script in Fig. 15 to realize mixed-initiative
interaction.

While (true)

{

// SELECT PHASE

Select the first form item with an unsatisfied guard condition

(e.g., unfilled)

If no such form item, exit

// COLLECT PHASE

Queue up any prompts for the form item

Get an utterance from the user

// PROCESS PHASE

foreach (slot in user’s utterance)

{

if (slot corresponds to a field item) {

copy slot values into field item variables

set field item’s ‘just_filled’ flag

}

}

// some code for executing any ‘filled’ actions triggered

}

Figure 17: Outline of the form interpretation algorithm (FIA) in the VoiceXML dialog management archi-
tecture. Adapted from [4].

#JSGF V1.0;

grammar sizetoppingcrust;

public <sizetoppingcrust> = <word>*;

<word> = <size> {this.size=$} |

<crust> {this.crust=$} |

<topping> {this.topping=$};

<size> = small | medium | large;

<topping> = sausage | pepperoni | onions | green peppers;

<crust> = regular | deep dish | thin;

Figure 18: A alternative form-level grammar to realize mixed-initiative interaction with the script in Fig. 15.

128

FIA repeatedly executes while there are unfilled form items
remaining, the processing phase (Process) is effectively pa-
rameterized by the form-level grammar file. In other words,
the form-level grammar file not only enables slot filling, it
also implicitly directs the staging of interactions for mixed-
initiative. When the user specifies ‘peperroni medium’ in an
utterance, not only does the grammar file enable the recog-
nition of the slots they correspond to (topping and size), it
also enables the FIA to simplify these slots (and mark them
as ‘filled’ for subsequent interactions).

The form-level grammar file shown in Fig. 16 (which is
also a specification of interaction staging) may make Voice-
XML’s design appear overly complex. In reality, however,
we could have used the vanilla form-level grammar file in
Fig. 18. While helping to realize mixed-initiative, the new
form-level file (as does our model) also allows the possi-
bility of utterances such as ‘pepperoni pepperoni,’ or even,
‘pepperoni sausage!’ Suitable semantics for such situations
(including the role of side-effects) can be defined and ac-
commodated in both the VoiceXML model and ours. It
should thus be obvious to the reader that VoiceXML’s dialog
management architecture is actually implementing a mixed
evaluation model (for conversational finite state machines),
comprising interpretation and partial evaluation.

The VoiceXML specification [4] refers to the form-level
file as a ‘grammar file,’ when it is actually also a specifica-
tion of staging. Even though the grammar file serves the
role of a language model in a voice application, we believe
that recognizing its two functionalities is important in un-
derstanding mixed-initiative system design. A case in point
is our study of personalizing interaction with web sites [15]
(see also Fig. 12). There is no requirement for a ‘grammar
file,’ as there is usually no ambiguity about user clicks and
typed-in keywords. Specifications in this application thus
serve to associate values with program variables and do not
explicitly capture the staging of interactions. The advanta-
geous of partial evaluation for interaction staging are thus
obvious.

3.2 Other Implementation Technologies
VoiceXML’s FIA thus includes native support for slot fill-

ing, slot simplification, and interaction staging. All of these
are functions enabled by partial evaluation in our model.
Table 1 contrasts two other implementation approaches in
terms of these aspects. In a purely slot-filling system, na-
tive support is provided for simplifying slots from user ut-
terances but extra code needs to be written to model the
control logic (for instance, ‘the user still didn’t specify his
choice of size, so the question for size should be repeated.’).
Several commercial speech recognition vendors provide APIs
that operate at this level. In addition, many vendors sup-
port low-level APIs that provide basic access to recognition
results (i.e., text strings) but do not perform any additional
processing. We refer to these as recognizer-only APIs. They
serve more as raw speech recognition engines and require sig-
nificant programming to first implement a slot-filling engine
and, later, control logic to mimic all possible opportunities
for staging. Examples of the two latter technologies can be
seen in the commercial telephone-based speech recognition
market (from companies such as Nuance, SpeechWorks, and
IBM). The study presented in this paper suggests a system-
atic way by which their capabilities for mixed-initiative in-
teraction can be assessed. Table 1 also shows that in the lat-

ter two software technologies, our partial evaluation model
can be implemented to achieve mixed-initiative interaction.

4. DISCUSSION
Our work makes contributions to both partial evaluation

and mixed-initiative interaction. For the partial evaluation
community, we have identified a novel application where
the motivation is the staging of interaction (rather than
speedup). Since programs (dialogs) are used as specifica-
tions of interaction, they are written to be partially eval-
uated; partial evaluation is hence not an ‘afterthought’ or
an optimization. An interesting research issue is: Given
(i) a set of interaction sequences, and (ii) addressable in-
formation (such as arguments and slot variables), determine
(iii) the smallest program so that every interaction sequence
can be staged in a model such as Fig. 5 (right). As stated
earlier, this requires algorithms to automatically decompose
and ‘layer’ interaction sequences into those that are best ad-
dressed in the interpreter and those that can benefit from
representation and specialization by the partial evaluator.

For mixed-initiative interaction, we have presented a pro-
gramming model that accommodates all possibilities of stag-
ing, without explicit enumeration. The model makes a dis-
tinction between fixed-initiative (which has to be explicitly
programmed) and mixed-initiative (specifications of which
can be compacted for subsequent partial evaluation). We
have identified instantiations of this model in VoiceXML
and slot-filling APIs. We hope this observation will help
system designers gain additional insight into voice applica-
tion design strategies.

It should be recalled that there are various facets of mixed-
initiative that are not addressed in this paper. Besides sub-
dialog invocations, VoiceXML’s design can support dialogs
such as shown in Fig. 19. Caller 1’s request, while demon-
strating initiative, implies a dialog with an optional stage
(which cannot be modeled by partial evaluation). Such a
situation has to be trapped by the interpreter, not by partial
evaluation. Caller 2 does specify a staging, but his staging
poses constraints on the computer’s initiative, not his own.
Such a ‘meta-dialog’ facet [5] requires the ability to jump
out of the current dialog; VoiceXML provides many elements
for describing such transitions. Extending our programming
model to cover these facets is an immediate direction of fu-
ture research.

VoiceXML also provides certain ‘impure’ features and side-
effects in its programming model. For instance, after select-
ing a size (say, medium), the caller could retake the initiative
in a different part of the dialog and select a size again (this
time, large). This will cause the new value to override any
existing value in the size slot. In our model, this implies
the dynamic substitution of an earlier, ‘evaluated out,’ stage
with a functional equivalent. Obviously, the dialog manager
has to maintain some state (across partial evaluations) to
accomplish this feature or support a notion of despecializa-
tion. This suggests new directions for research in program
transformation.

It is equally possible to present the above feature of Voice-
XML as a shortcoming of its implementation of mixed ini-
tiative. Consider that after selection of a size, the scope of
any future mixing of initiative should be restricted to the re-
maining slots (topping and crust). The semantics of graph
traversal presented earlier capture this requirement. Such
an effect is cumbersome to achieve in VoiceXML and would

129

Software Support for Support for
Technology Slot Simplification Interaction Staging
VoiceXML

√ √

Slot Filling Systems
√

×
Recognizer-Only APIs × ×

Table 1: Comparison of software technologies for voice-based mixed-initiative applications.

1 System: Thank you for calling Joe’s pizza ordering system.
2 System: What size pizza would you like?
3 Caller 1: What sizes do you have?
3 Caller 2: Err.. Why don’t you ask me the questions in topping-crust-size order?

Figure 19: Other mixed-initiative conversations that are supported by VoiceXML.

probably require transitioning to progressively smaller forms
(with correspondingly restrictive form-level grammars). Our
model provides this feature naturally; after size has been
partially evaluated ‘out,’ the scope of future partial evalua-
tions is automatically restricted to involve only topping and
crust.

Our long-term goal is to characterize mixed initiative facets,
not in terms of initiative, interaction, or task models but
in terms of the opportunities for staging and the program
transformation techniques that can support such staging.
This means that we can establish a taxonomy of mixed-
initiative facets based on the transformation techniques (e.g.,
partial evaluation, slicing) needed to realize them. Such a
taxonomy would also help connect the facets to design mod-
els for interactive software systems. We also plan to extend
our software model beyond slot-and-filler structures, to in-
clude reasoning and exploiting context.

5. NOTES
The work presented in this paper is supported in part

by US National Science Foundation grants DGE-9553458
and IIS-9876167. After this paper was submitted, a new
version (version 2.00) of the VoiceXML specification was
released [12]. Our observations about the instantiation of
our model in the VoiceXML dialog management architecture
also apply to the new specification.

6. REFERENCES
[1] J. Allen. Natural Language Understanding. Benjamin

Cummings, 1995. Second Edition.

[2] J. Allen, D. Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent. Towards Conversational
Human-Computer Interaction. AI Magazine, 2001. to
appear.

[3] J. Allen, C. Guinn, and E. Horvitz. Mixed-Initiative
Interaction. IEEE Intelligent Systems, Vol.
14(5):pages 14–23, Sep-Oct 1999.

[4] L. Boyer, P. Danielsen, J. Ferrans, G. Karam,
D. Ladd, B. Lucas, and K. Rehor. Voice eXtensible
Markup Language: VoiceXML. Technical report,
VoiceXML Forum, May 2000. Version 1.00.

[5] H. Brunner, G. Whittemore, K. Ferrara, and J. Hsu.
An Assessment of Written/Interaction Dialogue for
Information Retrieval Applications. Human-Computer
Interaction, Vol. 7:pages 197–249, 1992.

[6] M. Coulthard. An Introduction to Discourse Analysis.
Longman, London, 1977.

[7] E. Goffman. Replies and Responses. Language in
Society, Vol. 5:pages 257–313, 1976.

[8] S. Haller and S. McRoy. Computational Models for
Mixed Initiative Interaction (Papers from the 1997
AAAI Spring Symposium). Technical Report SS-97-04,
AAAI/MIT Press, 1997.

[9] N. Jones, C. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice Hall International, 1993.

[10] D. Jurafsky and J. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall, 2000.

[11] S. Levinson. Pragmatics. Cambridge University Press,
1983. Cambridge Textbooks in Linguistics.

[12] S. McGlashan, D. Burnett, P. Danielsen, J. Ferrans,
A. Hunt, G. Karam, D. Ladd, B. Lucas, B. Porter,
K. Rehor, and S. Tryphonas. Voice eXtensible Markup
Language: VoiceXML. Technical report, VoiceXML
Forum, October 2001. Version 2.00.

[13] D. Novick and S. Sutton. What is Mixed-Initiative
Interaction? In S. Haller and S. McRoy, editors,
Procedings of the AAAI Spring Symposium on
Computational Models for Mixed Initiative
Interaction, pages 114–116. AAAI/MIT Press, 1997.

[14] Pérez-Quiñones, M.A. and Sibert, J.L. A
Collaborative Model of Feedback in Human-Computer
Interaction. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI’96),
pages 316–323. Vancouver, BC, Canada, 1996.

[15] N. Ramakrishnan and S. Perugini. The Partial
Evaluation Approach to Information Personalization.
ACM Transactions on Information Systems, August
2001. Communicated for publication. Also available as
Technical Report cs.IR/0108003, Computing Research
Repository (CoRR) at http://xxx.lanl.gov/abs/

cs.IR/0108003.

[16] F. van Harmelen and A. Bundy. Explanation-Based
Generalisation = Partial Evaluation. Artificial
Intelligence, Vol. 36(3):pages 401–412, 1988.

[17] M. Veloso, J. Carbonell, A. Pérez, D. Borrajo,
E. Fink, and J. Blythe. Integrating Planning and
Learning: The PRODIGY Architecture. Journal of
Experimental and Theoretical Artificial Intelligence,
Vol. 7(1):pages 81–120, 1995.

130

	Introduction
	Tiers of Mixed-Initiative Interaction

	Programming a Mixed-Initiative Application
	Preliminary Observations
	Decomposing Interaction Sequences
	Implementation Technologies

	Software Technologies for Voice-Based Mixed-Initiative Applications
	The VoiceXML Dialog Management Architecture
	Other Implementation Technologies

	Discussion
	Notes
	REFERENCES -9pt

