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Abstract

Group or collective identity is an individual’s cognitive, moral, and emotional connection with a broader community, cat-

egory, practice, or institution. There are many different contexts in which collective identity operates, and a host of appli-

cation domains where collective identity is important. Collective identity is studied across myriad academic disciplines. 

Consequently, there is interest in understanding the collective identity formation process. In laboratory and other settings, 

collective identity is fostered through priming a group of human subjects. However, there have been no works in develop-

ing agent-based models for simulating collective identity formation processes. Our focus is understanding a game that is 

designed to produce collective identity within a group. To study this process, we build an online game platform; perform 

and analyze controlled laboratory experiments involving teams; build, exercise, and evaluate network-based agent-based 

models; and form and evaluate hypotheses about collective identity. We conduct these steps in multiple abductive iterations 

of experiments and modeling to improve our understanding of collective identity as this looping process unfolds. Our work 

serves as an exemplar of using abductive looping in the social sciences. Findings on collective identity include the observa-

tion that increased team performance in the game, resulting in increased monetary earnings for all players, did not produce 

a measured increase in collective identity among them.

Keywords Online social experiments · Agent-based models · Abduction · Abductive loop · Collective identity

1 Introduction

1.1  Background and motivation

1.1.1  Collective identity: types, contexts, and applications

Group or collective identity (CI) is an individual’s cognitive, 

moral, and emotional connection with a broader commu-

nity, category, practice, or institution (Polletta and Jasper 

2001).1 There are several themes of, and implications for, CI, 

including: (1) an individual’s willingness to place the needs 

of the group above personal needs [e.g., contributions to 

Public Goods Games (PGGs) (Charness et al. 2014; Brewer 

and Gardner 1996)]; (2) a person’s susceptibility to positive 

social influence from group members [e.g., sensitivity to 

evaluations from a collective group (Charness et al. 2014; 

Brewer and Gardner 1996)]; (3) one’s desire to differentiate 

from others not in the collective [e.g., allocation between 

in-group/out-group (Bornstein and Yaniv 1998)]; (4) an 

individual’s willingness to enforce conformity to group 

norms established by the collective identity  (McAuliffe and 

Dunham 2015; Brewer and Gardner 1996; Kozlowski and 
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1 There are other definitions for collective identity (CI). For example,  

McFarland et al. (2014) state that collective identity means that mem-

bers become more familiar and equal. Wendt (1994) defines CI as the 

positive identification with the welfare of another, such that the other 

is seen as a cognitive extension of the self, rather than independent. 

See  Owens (2006) for a discussion of various definitions of CI.

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-019-0620-8&domain=pdf
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Ilgen 2006; DeChurch and Mesmer-Magnus 2010); and (5) a 

person deriving self-esteem from the group (Tajfel 1974; 

Kozegi 2006). Hence, there are many behavioral and attitu-

dinal manifestations as consequences of CI.

There are many types of, and contexts for, collective 

identity, including: (1) religious identity (Peek 2005; Ben-

jamin et al. 2016), (2) philosophical identity (Muller 1996; 

Greene 2000), (3) gender identity (Cameron 1997; But-

ler 1988), (4) (sports) fan identity (Snow 2001), (5) labor 

movements (Goldberg 2003), (6) social movements such 

as African-American civil rights, women’s suffrage, gay 

rights (Taylor and Whittier 1992; Polletta and Jasper 2001; 

Snow and McAdams 2000), (7) political identities (Plutzer 

and Zipp 1996; Juergensmeyer 2003), (8) racial and ethnic 

identities (Tatum 2003; Alexander et al. 2004; Nagel 1996; 

Eriksen 2010), (9) national and cultural identities (Manches-

ter 1993; Alexander et al. 2004; MacGregor 2018), and (10) 

ideologies (van Dijk 2000).

CI is a widely studied concept across academic disci-

plines. Extensive experimental research in social science, 

political science, psychology, biology, geography, anthro-

pology, religion, criminology, philosophy, and economics 

shows that CI influences human decision making (Kahn and 

Ryen 1972; Paris et al. 1972; Goldman et al. 1977; Worchel 

et al. 1977; Erikson 1980; Oldenquist 1982; Brewer and 

Gardner 1996; Perdue et al. 1990; Brody 2000; Rousseau 

and van der Veen 2005; Currarini et al. 2009; van Zomeren 

et al. 2008; Lustick 2000; Silke 2008; Eriksen 2010; Pilny 

et al. 2017; Suri and Watts 2011; Shank et al. 2015; Brewer 

1991; Benjamin et al. 2016).

There is a host of applications for which CI is important, 

including team formation, maintenance, and behavior in 

organizations and communities (Kozlowski and Ilgen 2006; 

DeChurch and Mesmer-Magnus 2010). The ability to gen-

erate identity within (marginalized) groups, e.g., through 

sacred values, is an important aspect of violent group for-

mation (Silke 2008; Atran et al. 2014a, b). These are com-

pounded by effects of culture and ethnicity (Gilwhite 2001; 

Atran et al. 2007; Ginges and Atran 2013). International rela-

tions are affected by CI among independent states (Wendt 

1994). Political leaders of minority or marginalized groups 

may control identity narratives to persuade their constituents 

of posturing with governments (Choup 2008). Relatedly, CI 

is a cohesive force for groups fighting governments to secure 

rights and indigenous lands (Snow and McAdams 2000; 

Brody 2000). Religious identity can be a source of stability 

for immigrants assimilating into a new country (Peek 2005). 

Language and preservation of culture are intimately tied to 

collective or group identity (Brody 2000). Ramifications of 

a lack of identity are studied in Stout et al. (2017).

Individuals may possess several group identities, with dif-

ferent degrees of salience (strength of affinity and associa-

tion), such that multiple identities may be simultaneously 

operative (Snow 2001; Peek 2005; Benjamin et al. 2016). 

There may be a hierarchy of identities, with different iden-

tities coming to the fore in different situations (Stryker 

1980). [The ability to use different identities in different 

situations has been referred to as freedom in a philosophi-

cal context (Heller 2019)]. Multiple identities may also be 

negatively correlated, e.g., religious and national identities 

(Verkuyten and Yildiz 2007). Furthermore, identities and 

their saliences may be transient over short time scales, and 

may ebb and flow over longer time scales (Butler 1988; 

Snow 2001; Vryan et  al. 2003; Owens 2006; Benjamin 

et al. 2016). Consequently, a person’s identity may include 

a combination of dynamically changing, hierarchical col-

lective identities.

Relationships between CI and other phenomena can be 

intricate. We take collective action (CA), for which there is 

a massive literature (e.g., Olson 1965; Granovetter 1978; 

Schelling 2006; Tarrow 2010), as an example. Causal rela-

tions between CI and CA are very complicated, with the 

causal direction between the two changing for different cir-

cumstances (Wendt 1994; Polletta and Jasper 2001; Snow 

2001; Choup 2008; Fominaya 2010).

1.1.2  Dimensions of collective identity to study

These issues make the study of CI both interesting and chal-

lenging. It is the generality of the concept of CI, its appli-

cation in a wide range of contexts, its many types and its 

ramifications for humans and their behaviors that have led 

to myriad CI studies since the term collective identity was 

first coined by Durkheim some 65-plus years ago (Durkheim 

1951). Our focus here is the CI formation process: how CI 

is formed among a group of people. We now overview work 

on the CI formation process to set up what is entailed in our 

“focus on the CI formation process”.

CI formation is studied in several works (Wendt 1994; 

Brewer and Gardner 1996; Peek 2005; Choup 2008; Green-

hill 2008; Chen and Li 2009; Ackland and O’Neil 2011; 

Charness et  al. 2014; Swanson 2015; Brunsdon 2017; 

Pilny et al. 2017). See Related Work, Sect. 3.3. All of these 

works, except one, are empirical, examining events in the 

field, under varying circumstances. Surveys, questionnaires, 

and interviews with human subjects are used to establish, 

through expert judgment, whether CI has formed within a 

group.

The work by  Charness et al. (2014) also studies CI for-

mation, but is quite different from these other works. They 

use controlled experiments to produce CI among human sub-

jects through priming using team anagram games, wherein 

players work cooperatively to form words from a collection 

of letters that they are given. For example, letters t, c, a, and 

s can be used to form words such as cat and cats. There are 

many other aspects to their game. Group identity was then 
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measured after the anagram game using a public goods game 

(PGG). The greater the PGG contributions of individuals to 

the team, the greater the collective identity of these individu-

als. It was found that the priming activity increased PGG 

contributions. To the best of our knowledge, these are the 

only controlled experiments that seek to produce CI through 

priming (in an anagram game) and measure CI quantitatively 

(through the proxy of PGG contributions). Charness et al. 

(2014) influence our work herein.

We note in passing that priming tasks are central in social 

and economic experiments (e.g., Drouvelis et al. 2010; Feher 

et al. 2016; Smith et al. 2017) and are therefore worthy of 

study for this reason alone.

In addition to the references above, CI formation is dis-

cussed and theorized about in Melucci (1995), Melucci 

(1989), Snow and McAdams (2000), Snow (2001), Polletta 

and Jasper (2001), Tarrow (2010), Fominaya (2010). We 

note that these theoretical works are descriptive and quali-

tative in nature and are not concerned with computational 

modeling.

1.1.3  Dimensions of our work for collective identity

From the foregoing, we specify what is entailed in “focus-

ing on the CI formation process” for this work. First, there 

is no agreed-upon method for generating CI. So specifying 

a priming or CI-producing activity is non-trivial. Our prim-

ing game is motivated by the one in  Charness et al. (2014), 

but our game is significantly different, and we describe how, 

and the technical challenges that exist, in Sect. 1.4. Since we 

want to study CI formation, we must measure it quantita-

tively. This, also, is non-trivial and is discussed in Sect. 1.4. 

Only  Charness et al. (2014) measures CI quantitatively 

in a game; other CI-producing works resort to qualitative 

methods, which is surely an indication of its difficulty. We 

want not only to experimentally study CI, but also to model 

the process. Despite all of the work on CI (described here 

and in Related Work, Sect. 3), we know of no works that 

quantitatively model any CI formation process.2 In sum-

mary, a focus on the CI formation process includes speci-

fying experiments; conducting and analyzing experimental 

data; quantitatively measuring CI; and modeling both the CI 

formation and measurement processes. We also use CI as an 

exemplar for using abductive iterations in the CI formation 

process. This work makes contributions in all of these areas. 

After our work is overviewed in the next two subsections, 

we address, in turn, technical challenges, the novelty of our 

work, and our contributions, and these address all of the 

topics just itemized. In the next section, we translate these 

topics into work tasks.

1.2  Overview of work scope

Our work has three broad elements. First, we develop an online 

experiment, motivated by the work of Charness et al. (2014), 

that is designed to produce CI within a group of participants, 

through priming, and then measure the CI produced. See 

Fig. 1. Specifically, the priming activity consists of players 

cooperating in a group anagram game, where participants 

share letters with their neighbors in order to help all players 

form more words. Specifically, the main player actions are: (1) 

requesting letters from neighbors, (2) replying to letter requests 

of neighbors, and (3) forming words. This activity is intended 

to produce CI among a group of players. This priming activity 

is accompanied by a dynamic identity fusion index (DIFI) task 

that measures how much a person associates with the team or 

group as a result of playing the group anagram game (it is a 

proxy for CI). Unlike the group anagram game, the DIFI task 

is done individually, in isolation. This DIFI task is to measure 

the CI formed in the group anagram game.

For the second element of our work, we construct models 

of the CI priming process (the group anagram game) and of 

the DIFI task, and compare predictions of player behavior 

against experiments in the group anagram game. We develop 

and evaluate three agent-based models for the group anagram 

game, and a statistical model for the DIFI task. Because the 

group anagram game is much more intricate than the DIFI 

task, more effort is devoted to the former activity.

As the third element of our work, we use abduction 

as our framework for this study where both experimental 

work and modeling work take place within an abductive 

Fig. 1  The main components of the experimental setup: (i)  play-

ers are recruited through Amazon Mechanical Turk; (ii) players col-

lectively participate as a team in a priming activity in the form of a 

group anagram game with the goal of producing collective identity 

among the players; and (iii) players individually state their affinity for 

(i.e., identity with) the team through a dynamic identity fusion index 

(DIFI) task (Swann et al. 2009) that we take as quantifying or meas-

uring the level of CI formed in the anagram game. The modeling 

effort is to model the second and third steps of this process. Note that 

because the group anagram game is more complex than the DIFI task, 

more work is required to produce the experimental platform, to con-

duct experiments and to analyze the experimental data, and to build 

models of player actions in this priming activity. Furthermore, it is in 

the priming activity that game conditions are altered, and it is these 

conditions that we seek to correlate with CI

2 We use the term model to mean a representation of equations and 

algorithms to compute some result. In contrast, in the social and some 

other sciences, model often refers to a qualitative (textual) description 

of some process that is much more conceptual and not computational. 

Our models that we present herein are of the first type. We use the 

term model in the former (quantitative) sense, unless otherwise speci-

fied.
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loop framework. We now address abductive iterations, 

since they tie together experiments and modeling.

1.3  Overview of our experiment and modeling 
approach: abductive iterations

Abduction is an inference approach that uses data and 

observations to identify plausible (preferably, best) expla-

nations for phenomena (Pierce 1931; Flach and Kakas 

2010). That is, abduction is reasoning from effects to 

causes (Chamiak and Santos 1992). Effects are often gen-

erated by results from (laboratory) experiments or in situ 

observations of systems. One then constructs hypotheses 

and identifies or develops theories that explain these 

observations.

Much of the work on abduction has focused on topics 

such as producing explanations for different logic settings 

(e.g., Echenim et al. 2013); determining the computational 

complexity of abduction problems (e.g., Wei-Kleiner 

et al. 2014); and generating solutions for special problems 

or transformations that are useful in obtaining solutions 

(e.g., Pfandler et al. 2013). Abduction has broad application 

in robotics, genetics, automated systems, and image under-

standing (Shanahan 2005; Andrews and Bonner 2011; Van-

derhaegen and Caulier 2011; Juba 2016).

However, in contrast to the above notion of abduction, our 

focus is the specification and implementation of an abduc-

tive looping process, wherein abduction is executed in suc-

cessive iterations. Every iteration builds off of all previous 

ones, so that explanations may evolve from accumulated 

data from experiments and observations. As a differentiator 

from previous work, our interests are behaviors and human 

interactions within networked groups in the social sciences 

(Contractor 2019). In particular, our exemplar is to under-

stand whether a cooperative game can produce collective 

identity (CI) within a group.

The abductive loop (AL) process that we employ is 

described in Sect. 2, but among its components are experi-

ments and modeling, and we make note of works on cou-

pling experiments and modeling here. There have been sev-

eral controlled experimental studies of comparable size to 

our experiments (e.g., Kearns et al. 2009; Judd et al. 2010; 

Kearns et  al. 2012). Also, empirically grounded, data-

driven modeling of human behavior is done (Mason and 

Watts 2012; Li et al. 2014; Nguyen et al. 2017; Zhang et al. 

2016). We combine these two ideas, in a particular way 

that is guided by abduction, and perform them iteratively. 

The proposed abductive analysis is to form hypotheses to 

evaluate theories as part of the looping process, and develop 

new insights about CI. Our approach provides an exemplary 

case of coupling theory development/evaluation with real 

problems.

1.4  Technical challenges

There are several technical challenges in our work. The first 

two, and foremost, challenges are generating and measuring 

CI in a group setting. CI can be a transient phenomena, so it 

can be generated in a group that is newly formed. A group 

anagram game has been successfully used to produce CI 

among people that do not know each other (see Sect. 3.6 of 

Related Work). This is the only previous work in a group set-

ting where CI was produced over a single game or encounter 

of relatively short duration and then quantitatively measured. 

To our knowledge, ours is the first work to attempt CI forma-

tion under similar conditions, but in addition, in an online 

setting. We also use a group anagram game (our game is 

different from the one referred to above, but is motivated 

by that work). In our setting, however, a team’s or group’s 

members do not have the benefit of observing facial expres-

sions and body language as was done in  Charness et al. 

(2014). By comparison, other works seek to form CI within 

groups that meet regularly over periods weeks or months 

[see Sect. 3.3, e.g.,  Swanson (2015)]. Still other works [see 

Sect. 3.3, e.g.,  Peek (2005), Choup (2008)] rely on CI being 

formed over years, based on cultural and other factors. The 

point is that there are many works that seek to produce CI 

in different ways, so studying methods of producing CI is 

important. A second point is that our requirement to produce 

CI quickly in an online game, with no use of visual cues or 

body language, is novel and extremely challenging.

Also, our method of measuring CI quantitatively has 

never been used in relatively short-duration settings. Spe-

cifically, we use the DIFI score (Jiménez et al. 2016) to 

measure CI formed in the group anagram game. Previously, 

DIFI score has been used to pre-select people from a larger 

population that have already formed CI, often based on cul-

tural or other long-lived attributes that germinate and grow 

over years, and that was formed in situ [see Sect. 3.4, e.g.,  

Swann et al. (2010a)]. In  Charness et al. (2014), a public 

goods game was used to quantify CI among group members. 

Several other works (e.g.,  Swanson 2015) use a binary scale 

of determining the existence of CI (i.e., “no CI formed,” or 

“CI formed”) based on opinions of experts that, for example, 

base their subjective determinations on language used by 

group members. Our challenge here is to determine whether 

we can use DIFI score to characterize CI; we are using the 

DIFI method for a different class of CI, for which it has not 

been used. Quantitative methods of measuring CI, are few, 

and it has very rarely been done.

From this description thus far, it should be clear that we 

have unique and challenging setups and goals for producing 

and measuring CI. There are other challenges.

Our goal is to study quantitatively CI within an abduc-

tive loop setting. Looping over abductive analyses is rela-

tively rare (see the robotics work Shanahan (2005) as an 
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exception), and the use of abduction and abductive iterations 

in the social sciences is very rare.

Furthermore, our abductive analyses involve both experi-

ments and modeling. Most abductive work focuses solely on 

using experiments within loops. Here, we make modeling 

a first-class element of the abductive process. In fact, we 

know of no work whatsoever in modeling a priming activ-

ity designed to produce CI among interacting members of 

a group. Developing models is all the more challenging 

because our game consists of multiple player actions (versus 

binary choice games) that can be repeated over time (versus 

one-shot games) in any user-defined sequence of repeated 

actions, where neighboring player actions (or inaction) can 

influence action choices among players.

Also, there are finite resources and a finite pool of candi-

date players for conducting experiments, using the constraint 

that we want participants to play the game only one time. 

(Amazon Mechanical Turk does not provide a gateway into 

an infinite pool of players). A challenge is to specify game 

conditions that produce measurable CI while also provid-

ing data over a range of input conditions to enable develop-

ment of models that are more general than the experimental 

conditions.

We believe that this work pushes the state of the art in all 

of these dimensions. Moreover, we attempt to interpret our 

CI results in a way that focuses on player interactions, and 

not specifically on our group anagram game. Consequently, 

while we believe that this work achieves several firsts (see 

the novelty section immediately below), this work is not the 

final word on CI, abductive analyses, and conducting and 

modeling group CI experiments. Rather, we view it as a 

beginning: a beginning that opens new avenues for produc-

ing and quantitatively measuring CI.

1.5  Novelty of our work

The novelty of our work is in the areas of research process 

(through abductive iterations), experiments, modeling, and 

social science (through CI). Specific novelties include:

1. Performing the first online group anagram game (for 

producing CI) and using a dynamic fusion index (to 

measure CI);

2. Conducting experiments where players can choose 

actions from a candidate set; these actions can be 

repeated any number of times over a specified time 

duration; players interact, cooperate, and can affect oth-

ers’ subsequent actions (versus binary choice, one-shot 

games);

3. First-of-their-kind experimental results and implications 

for CI from online experiments;

4. First modeling of this temporal, multi-action, interacting 

group anagram game;

5. First evaluation of these models by comparing model 

predictions with experimental results;

6. One of the first uses of abductive looping in a social 

science context, and the first use in the study CI.

7. One of the first demonstrations of abductive looping to 

test (social) theories.

Figure 2 shows the unique context of our work along 

three dimensions of experiments, modeling, and types of 

experimental subjects. Table 1 makes this more concrete 

by presenting representative works along various combina-

tions of values along the three dimensions of Fig. 2. It is 

clear that our work—identified at the bottom right of the 

table—is unique.

1.6  Contributions

Our major contributions follow.

1. Insights on the collaborative anagram game (Sect. 4) We 

present novel experimental data that illustrate how players 

interact in group anagram games played through an online 

game/experimental platform. We focus on experimental 

data that are useful in modeling. We find that letter requests 

and letter replies are made throughout the game, rather than 

solely at the outset. However, if there are few neighbors 

( k = 2 ) and consequently fewer available letters (3 letters per 

neighbor), there are fewer letter requests and letter replies 

near the end of the game. Also, players generally respond 

relatively quickly to their neighbors’ letter requests: replies 

are typically made within 30 s of the request. In the same 

Fig. 2  Conceptual view of three dimensions of this work, illustrat-

ing how our group anagram game study (for producing CI) and our 

approach for measuring the CI produced is situated. Our experiments 

consist of online web-based human subjects experiments. Our mod-

eling component consists of model and algorithm development, and 

agent-based modeling. We study groups of interacting individuals. To 

our knowledge, this combination of study features is unique. These 

dimensions are used in Table  1 to compare our work with those of 

others
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way as letter requests and letter replies, word submissions 

are made throughout the 5-min game, but the numbers of 

neighbors and available letters do not affect this type of 

action.

2. Data-driven networked agent-based models (ABMs) of 

experiments: design, construction, and evaluation (Sect. 5) 

We design, construct, and evaluate three data-driven ABMs 

of the group anagram game experiment. We adapt a condi-

tional random fields (CRF) (Sutton and McCallum 2011) 

modeling approach with four parameters to flexibly incor-

porate history effects on agent actions that evolve in time. 

That is, our models predict time histories of player actions 

in the group anagram game. These actions are: (1) request-

ing letters from neighbors, (2) replying to letter requests of 

neighbors, (3) forming words, and (4) thinking (or idling). 

We capture these activities through a state transition matrix 

approach, where, in our most sophisticated model, the action 

at time (t + 1) is based on the action at time t and on a feature 

vector that captures an individual’s state. Our approach can 

alleviate the overfitting problem that would arise with, e.g., 

a static Markov model that would require capturing many 

more state transitions.

ABM is used as our simulation modeling approach 

because of its fine granularity and for its generative proper-

ties (Epstein 2007). That is, local interactions produce popu-

lation-level dynamics. We use inductive and deductive infer-

ence in three ways, use KL divergence to compare model 

predictions with experimental data, and compare results 

across multiple ABMs. For example, our KL-divergence 

evaluations are broken down by ABM, player action, and 

number of neighbors in a game. For each combination, we 

use overall data at the end of the 5-min group anagram game 

and at 1-min intervals during the game to evaluate temporal 

effects. All of these are used to demonstrate that the ABMs 

successively improve with the process of incorporating more 

data that enables greater modeling sophistication.

Our three successive ABMs are named M0, M1, and 

M2. Our work in evaluating the ABMs shows that ABM 

M1 reduces KL-divergence values by 4× or more, over those 

for ABM M0, in many cases. (Smaller KL-divergence values 

are better; they indicate that model predictions are in better 

agreement with experimental data. A KL-divergence value 

of zero means that a distribution from a model and from 

data are interchangeable.) Our work also shows that in many 

cases, ABM M2 has KL-divergence values that are 4× or 

more reduced from those of ABM M1. Interestingly, ABM 

M1 does slightly better than our most sophisticated model 

(ABM M2) for a small range of parameters that were used 

in generating M1, but M2 does much better over the entire 

input parameter space.

3. Specification and demonstration of iterative abductive 

analysis process (Sects. 2 and 7) We perform experiments 

(Contribution 1), and modeling and evaluation (Contribu-

tion 2), within an iterative abductive process. Using  Haig 

(2005), Timmermans and Tavory (2012) as a starting point, 

we explicitly incorporate modeling and iterations into the 

abductive process. The latter necessitates specifying what 

is to be done in the next iteration. The iterative process 

is successfully demonstrated through the group anagram 

experiments, agent-based modeling, and hypothesis gen-

eration and testing. The proposed abductive process can 

be considered as a general methodology for other social 

science researches. Although the methodology is general, 

we provide considerable detail in both the experiments and 

modeling, and their interactions (e.g., how they comple-

ment each other), that we believe will be helpful for other 

social science studies. For example, our method of model 

construction from data (see Contribution 2 above) can be 

Table 1  A hierarchy of different collective identity (CI) experiments 

in the literature, which puts the uniqueness of our work on anagram 

game experiments and modeling into the context of the works of oth-

ers. For each of in-laboratory and online environments, there are cat-

egories of works on individual subjects and groups of subjects. With 

groups of subjects, we are interested in interactions among these sub-

jects. Then, for each of these four categories, we break those works 

that are experiments only (i.e., Exp. Only), and those works that 

combine experiments and modeling (i.e., Exp. & Modeling). The 

last row has one representative work within each category; some cat-

egories have no work. Our work (labeled This Work) studies online 

experiments of collective identity with modeling and interaction 

among subjects. It is the only work that combines experiments and 

modeling of human subjects in a group setting. (These references are 

not exhaustive; more detail is included in the related work of Sect. 3. 

However, for the categories labeled with No Work, there is no work in 

the literature, to the best of our knowledge)

In-laboratory Online

Individual subjects Group of subjects Individual subjects Group of subjects

Exp. Only Exp. & Modeling Exp. Only Exp. & Mod-

eling

Exp. Only Exp. & Mod-

eling

Exp. Only Exp. & Modeling

Brewer and 

Silver (1978)

Rousseau and 

van der Veen 

(2005)

Worchel et al. 

(1977)

No work Pilny et al. 

(2017)

Ackland and 

O’Neil (2011)

No work This work
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used to capture other temporal human action sets among 

interacting agents.

4. Statistical analysis of numbers of samples required for 

modeling (Sect. 6) We evaluate the quality of our state tran-

sition matrices of our ABMs using a root of mean squared 

errors (RMSE) approach. Specifically, we are interested in 

how many test samples are required to achieve a specified 

small error in predicted transition probabilities, which are 

an integral part of our ABMs, as compared to measured 

transition probabilities. We use our feature vector from the 

ABM and break each element down into bins, and add to 

it the dimension of number of neighbors that a player has 

in a game. By evaluating all of the successive state transi-

tion pairs among the actions, i.e., action a(t) at time t and 

the next action a(t + 1) at time (t + 1) , within each of the 

resulting 324 distinct bins of data, we find that the minimum 

number of observations (samples) for each state transition 

clearly demarcates small from large RMSE. The data show 

that small RMSE values result when a state transition has at 

least 100 observations.

5. New experimental understanding of the formation of col-

lective identity (CI), (Sects. 4 and 7) First, we demonstrate 

that our group anagram game can prime game players to 

form CI (Sect. 7.3). Second, we discover three novel insights 

on the formation of CI by coupling the team anagram game 

and DIFI score. (a) Players’ DIFI scores increase with 

increasing numbers of neighbors in the anagram game. Since 

DIFI score is our proxy for CI, this implies that a player’s 

sense of CI increases with increasing numbers of neighbors 

(Sect. 7.4). (b) The number of interactions increases as 

number of neighbors of a player increases from two to four. 

However, the numbers of interactions, relatively speaking, 

saturates with further increases in degree, up to a degree 

of eight (Sect. 7.4). (c) Despite this saturation in numbers 

of interactions, the DIFI score continues to increase with 

degree, suggesting complicated interactions among game 

parameters (Sect. 7.4).

Third, what we did not find is interesting (Sect. 7.3). Spe-

cifically, the number of words formed does not correlate with 

players’ feelings of CI (as measured by the DIFI score). We 

conjectured that since players’ earnings are directly tied to 

the number of words that they generate, players would deem 

this outcome important. That is, the more words formed by 

the group, the greater their earnings and hence the greater 

the success achieved by the group. Success breeds cohesion. 

We therefore hypothesized that the greater the number of 

words formed, the greater the CI among team members. We 

found that this is not the case: number of words formed is 

not significantly correlated with DIFI score. Rather, num-

bers of interactions correlated more strongly with DIFI score 

(Sect. 7.3).

Fourth, these experimental observations, and hypoth-

eses that go along with them, are made in the context of the 

abductive loop (see Sect. 7). To the best of our knowledge, 

these are the first experimental results of this kind. In this 

process of conducting two iterations, we demonstrate: con-

structing hypotheses, testing theories, falsifying hypotheses, 

finding support for hypotheses in full or partially, and find-

ing support for multiple hypothesis from the same observa-

tions that require disambiguation in more abductive itera-

tions. We cast our hypotheses in general terms, using only 

degrees of players in networks, numbers of interactions in 

games, and game rewards, i.e., abstracting away our particu-

lar game conditions, thus enabling testing of our findings by 

other researchers, potentially using different games.

1.7  Extensions from the conference paper

This paper was originally published as  Ren et al. (2018). 

Extensions of that work, presented herein, are summarized 

as follows. (1) Introduction has been expanded to give fuller 

treatment of background, motivation, and problem context. 

(2) Related work is expanded with more detail and new top-

ics. (3) Game description has more detail. (4) Experimental 

data from the game are given with new insights on player 

behavior. (5) Fuller treatment of the development of each 

of the three ABMs (M0, M1, and M2). (6) Fuller treatment 

of comparisons of model predictions with experimental 

data. (7) Additional model evaluation and data, comparing 

model predictions to experimental results across games. (8) 

Enhanced description and results in error analysis, compar-

ing experiments and models.

1.8  Paper organization

Figure 3 shows the technical sections of this paper, and their 

relationships. An overview of the abductive loop process is 

presented in Sect. 2, providing a framework for the rest of 

the paper. Related work is in Sect. 3. The group anagram 

experiments and results are described in Sect. 4. Models 

of the experiments are developed in Sect. 5. Model predic-

tions are compared to experimental data. Section 6 contains 

error analyses of the models. Sections 4 through 6 contain 

the major technical components of the abductive loop that 

is overviewed in Sect. 2. These analyses and results enable 

a more streamlined description of the particular abductive 

loops executed in this work in studying CI in Sect. 7, so 

that the abductive process is clear. In Sect. 7, the relevant 

sections of the experiments and modeling are referenced. 

This also makes the experiments and modeling more clear. 

Furthermore, we discuss the generalizable knowledge gained 

from the CI study, how CI is formed and not formed, and 

because we state our hypotheses in terms of interactions, 

how other experiments can be undertaken to confirm or 
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contradict our results. Limitations of this work are pre-

sented in Sect. 8. Section 9 summarizes. Sections 4 and 5 are 

substantial in size. Consequently, we provide tables within 

these sections to organize the work and guide the reader, 

and we present many of the results in the Ph.D. dissertation 

of Cedeno (2019).

2  Overview of Abductive Loop

Figure 4 illustrates our iterative abductive process, which 

includes inductive and deductive steps and hypothesis test-

ing. All work in this paper takes place within this frame-

work. This structure follows that of   Haig (2005), Tim-

mermans and Tavory (2012), which are based on Piercian 

abduction (Pierce 1931), but augments it in key areas. Note 

that in contrast to confirmatory (deductive) analyses, where 

theories, hypotheses, and models are developed first, and 

used to predict results of future candidate experiments, one-

step abduction first generates data through experiments or 

observations. (Abduction uses data to drive the scientific 

discovery process.) Then, data analysis consists of searching 

for patterns and generalizing these into phenomena, which 

is an inductive step. These results are used to formulate 

hypotheses based on theories whose purpose is to explain 

the data. Hypotheses may exist (e.g., from a previous loop) 

or may be proposed in this step, and can be removed (e.g., 

via falsification). Multiple candidate theories may be posed 

for a given phenomena. Models are developed from the data, 

with the objective of generating outputs that help evaluate 

hypotheses and theories, and/or help guide experiments for 

the next loop. The best explanation, or hypothesis/theory 

appraisal, is the process of identifying the best explanation 

for the phenomena (Thagard 1989); this includes hypoth-

esis falsification. Finally, the last step in an iteration is to 

determine what to do next, in terms of designing new experi-

ments. The iterative process may terminate for any number 

of reasons; e.g., a best explanation has been found.

This description provides the structure for the rest of 

the paper. The experimental work of Fig. 4 is described in 

Sect. 4, after related work. The modeling work in Fig. 4 is 

presented in Sects. 5 and 6. We provide the experimental and 

modeling methodologies, data and results in these sections 

because they are too large to fit within a discussion of results 

from the abductive iterations. Following these sections, we 

return to the abductive loop and reference experimental and 

modeling results as appropriate, to make the looping pro-

cess and results more streamlined and cogent (and provide 

additional results).

3  Related work

Related work topics are provided in Table 2, along with each 

topic’s relevance to our work. Each subsection below pro-

vides research for one row in the table.

3.1  Overviews of CI

Overviews of CI are provided in Tajfel (1974), Abrams and 

Hogg (1990), Owens (2006), Vryan et al. (2003), Fiske et al. 

(2010), Hogg and Abrams (2007), Snow (2001). Peek (2005) 

provides an interesting view of CI as a combination of social 

structure (through roles) and processes (via perceptions and 

interactions) (Melucci 1995).

Fig. 3  Relationships among the sections of the paper that describe the 

technical work. Section 4 presents both the CI formation game (group 

anagram game) and the CI measurement task (DIFI). Section  5 

describes the CI formation models. The model for predicting CI 

measurement (DIFI score) is given within the abductive iterations in 

Sect. 7. Section 6 analyzes errors in the anagram model predictions, 

compared to experimental data. Section 7 takes key points from the 

experiments and modeling and presents them within the framework 

of abductive looping. This section also contains additional analyses 

of experimental data, hypotheses about CI and their evaluations, and 

selected modeling results. Section 7 is a culmination of all the work 

in the preceding sections. Sections not appearing in the figure are 

Related Work (Sect. 3), Limitations of the work (Sect. 8), and Sum-

mary (Sect. 9)

Fig. 4  Steps in our iterative abductive analysis/loop
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3.2  Individual anagram games: experiments

Over 20 experimental works use anagram games—with 

individual players (e.g., Mayzner and Tresselt 1958; Rus-

sell and Sarason 1965; Tresselt 1968; Warren and Thomson 

1969; Dominowski 1969; Feather 1969; Feather and Simon 

1971a, b; Davis and Davis 1972; Sarason 1973b, a; Miller 

and Ross 1975; Goldman et al. 1977; Gilhooly and Johnson 

1978; Stones 1983; Locke and Latham 1990; Latham and 

Locke 1991; Vance and Colella 1990; Schweitzer et al. 2004; 

Cadsby et al. 2007, 2010)). An individual game means no 

interactions (e.g., sharing letters) between subjects playing 

a game at the same time.

We review anagram game studies that are purely experi-

mental. In  Stones (1983), experiments of anagram games are 

used to test player’s specification of causality for their perfor-

mance (e.g., did a player attribute good performance to skill or 

luck?). It was found that people more likely to be responsible 

Table 2  Research literature topics addressed in Sect. 3, related work. Selected sections are presented here, while others appear in “Appendix A”

Section 

of related 

work

Name Relevance

3.1 Overviews of CI CI is a broad topic. These are surveys of CI for the interested 

reader

3.2 Individual Anagram Games: Experiments Individual anagram games are precursors to group anagram 

games and have been extensively studied for more than 60 

years to analyze the effects of goal setting, compensation types, 

internal-external attributions, and test anxiety. It includes a 

broad range of disciplines like sociology, economics, manage-

ment science, and (social) psychology. For our work, anagram 

games are priming activities

A.1 Individual Anagram Games: Modeling With all of the experimental work on anagram games, it is 

surprising that very little work has been done in modeling and 

simulating these games

A.2 Individual Anagram Games: Experiments and Modeling Few works combining experiments and modeling of individual 

anagram games exist (Feather 1969; Feather and Simon 1971a, 

b)

3.3 Collective Identity-Based Experiments: Formation of CI Our work is motivated by CI, and in particular the CI formation 

process. These works study different methods from ours in 

generating CI

3.4 Collective Identity-Based Experiments: Implications of CI Along with the Introduction, this section provides works that 

demonstrate the implications of CI, thus motivating why we 

study it

3.5 Measurement of CI Methods used in research to measure (quantify) CI are important.

3.6 Combined Group Anagram and CI Experiments This section emphasizes that there is only one work on group 

anagram game. That work motivated our work. However, there 

are differences between that work and ours

A.3 Modeling of CI Demonstrates that there are few modeling studies of CI, and no 

works like ours

A.4 Agent-Based Models of Anagram Games and Formation of CI This puts our preliminary results into context. The first and only 

work, to our knowledge, in modeling human group anagram 

games is our work  Ren et al. (2018)

A.5 Studies of Phenomena Related to CI As described in the Introduction, CI is relevant for and closely 

related to, many other phenomena like cooperation and collec-

tive action. These works provide some background on these 

works

A.6 Data-Driven: Combining Experiments and Data-Driven Mod-

eling

Demonstrates that combined experimental and modeling studies, 

as we do here, are used for other phenomena besides CI

3.7 Modeling of Time Sequences of Actions These are studies that investigate time series models. Our mod-

eling and ABMs are essentially time series models

3.8 Evaluation of Model Predictions Methods for comparing experimental and model prediction distri-

butions, as we do here, are presented

3.9 Abduction and Abductive Loop We use abductive iterations as a framework for our experimental 

and modeling work. We survey other abductive works
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for their own actions attributed success or failure to their own 

behavior, versus assigning outcomes to chance.   Miller and 

Ross (1975) analyzed how individuals engage in attributions 

of causality. Situational factors were studied through anagram 

games in  Davis and Davis (1972).

Effects of goal setting are analyzed with anagram tasks 

in Locke and Latham (1990), Vance and Colella (1990), 

Latham and Locke (1991), Schweitzer et al. (2004). In Vance 

and Colella (1990) players played the anagram game and their 

assigned goals became increasingly difficult. For example, for 

each goal trial, subjects were assigned a goal for the num-

ber of words they have to form. After each goal trial, subjects 

recorded their performance (i.e., the number of words formed) 

as well as their assigned goal for the next trial. Difficulty of 

assigned goal was increased by two words per trial. Before 

beginning the next trial, subjects completed a form on which 

they calculated their GDF (goal discrepancy feedback: per-

formance minus assigned goal) and PDF (performance dis-

crepancy feedback: performance this trial minus performance 

last trial). Assigned goals were rejected when GDF became 

sufficiently negative. GDF and PDF differed both in sign and 

magnitude of effects on acceptance and personal goals, indi-

cating that subjects used these feedback discrepancies dif-

ferently in the goal evaluation process. Unusually, personal 

goals and performance remained high even after assigned 

goals were rejected. In Locke and Latham (1990), Latham 

and Locke (1991), theories of goal settings are developed. In  

Schweitzer et al. (2004), it was found that people with unmet 

goals were more likely to engage in unethical behavior than 

people attempting to do their best.

Goldman et al. (1977) use the anagram task to examine 

three factors and their effects on group performance: inter-

group competition or cooperation, intragroup competition or 

cooperation, and task means interdependence. In Russell and 

Sarason (1965), Sarason (1973b), Sarason (1973a), studies 

look at anxiety generated from performing a task, where the 

task is the anagram game. In  Cadsby et al. (2007), pay-for-

performance and fixed-salary compensation were compared 

using an anagram task. In  Cadsby et al. (2010), an anagram 

game was employed as the experimental task to evaluate a 

target-based compensation system, a linear piece-rate sys-

tem and a tournament-based bonus system. Larger amounts 

of cheating occurred under target-based compensation. 

In Mayzner and Tresselt (1958), Dominowski (1969), War-

ren and Thomson (1969), Gilhooly and Johnson (1978), the 

effects of letter order and word frequency on anagram game 

performance are analyzed.

3.3  Collective identity‑based experiments: 
formation of CI

The following references study or theorize on the CI forma-

tion process. That is, they study processes by which a group 

of individuals that does not possess CI can form CI by, for 

example, interacting or undergoing a priming task.

In Brewer and Gardner (1996), laboratory experiments 

of CI with no interactions between subjects are performed 

using priming. They argue that the personal, relational, and 

collective levels of self-definition (shift from personal to col-

lective) represent distinct forms of self-representation with 

different origins, sources of self-worth, and social motiva-

tions. They suggest the concept “we” primes social repre-

sentations of the self that are more inclusive than that of the 

personal self-concept. In a preliminary investigation of the 

implications of different levels of the social self-concept, 

a set of three experiments were conducted to explore the 

effects of priming various “we” schemas on individual judg-

ments and self-descriptions. In the priming task, participants 

read a descriptive paragraph with instructions to circle all 

the pronouns that appeared in the text, as part of a proofread-

ing and word search task. After completing this word search 

task, participants were escorted to another room and asked 

to judge, as quickly as possible, whether the statements were 

similar or dissimilar to their own views by pressing a number 

key on the keyboard, ranging from 1 (very dissimilar) to 4 

(very similar). They found that individuals primed with “we” 

would entail an expanded sense of self that would lower 

thresholds for agreement and assimilation.

In  Chen and Li (2009), laboratory experiments with no 

interactions between subjects measure the effects of induced 

group identity on participant social preferences. They show 

that participants are more altruistic toward an in-group 

match. They evaluate different ways of creating group iden-

tity in the laboratory, to explore the formation of groups 

and to investigate the foundation of what group identity is. 

When participants are matched with an in-group member 

(as opposed to an out-group member) they show a 47% 

increase in charity concerns when they have a higher payoff 

and a 93% decrease in envy when they have a lower payoff. 

Also, participants are 19% more likely to reward an in-group 

match for good behavior, but 13% less likely to punish an in-

group match for misbehavior. Participants are significantly 

more likely to choose social-welfare-maximizing actions 

when matched with an in-group member.

In Pilny et al. (2017), online experiments with no inter-

actions between subjects are performed. To expand upon 

perspectives on the commons dilemma (e.g., do I contrib-

ute to the common resource or do I free ride), Pilny et al. 

(2017) developed an online experiment grounded on group 

decision making. They create manipulations based on 

three modalities of structure: dense versus sparse networks 

(domination), collective versus individual identity (signi-

fication), and social sanction versus non-social sanction 

(legitimation). The online experiments reveal that modali-

ties of signification positively influence contribution rates 

on the commons dilemma, when participants were provided 
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information meant to stimulate a CI. This is analogous to the 

findings of  Charness et al. (2014); see Sect. 3.6. They men-

tion how challenging it is for an online experiment to create 

CI, because the individual is sitting alone playing the game 

on a computer. In their experiments they try to stimulate CI 

by communicating three additional pieces of information 

regarding collective outcomes: (1) total collective score, 

rather than just an individual collective score, (2) collective 

rank compared to previous sessions, and (3) the score of the 

highest collective score from previous sessions. By includ-

ing more collective, rather than individual, information, the 

user may come to behave more in a collective fashion and 

contribute to the public good.

In Ackland and O’Neil (2011), an online experiment 

using data collected from the websites of over 160 envi-

ronmental activist organizations is developed. A model is 

presented where social movement actors exchange practical 

and symbolic resources in the guise of website text content 

and hyperlinks, as part of a process of online CI formation. 

The hyperlink and online frame networks are compared on 

three measures of centralization: degree, betweenness and 

closeness.

Wendt (1994) argues that international cooperation 

among independent states can be fostered through CI. He 

describes different mechanisms that may lead to CI, and 

takes examples from past events or general ideas. For exam-

ple, he states that trade relations among states can foster 

CI through the emergence of the feeling of a common fate, 

but there are no experiments nor historical observations. 

It focuses more directly on identities and interests as the 

dependent variable and investigates whether, how, and why 

identities change.

Greenhill (2008) evaluates self and recognition theo-

ries—recognition theory states that an individual or group 

places recognition of itself by others as a very high-priority 

goal—to determine whether these two ideas can combine to 

produce CI. The reasoning is that as the self acknowledges 

others, and this process is replicated by all participants, a 

collective identity is formed. However, social identity the-

ory-based experiments do not support this line of reason-

ing. This work is more akin to a meta-study, summarizing 

existing results.

Peek (2005) studies CI generation among Muslims in the 

USA. It is an empirical study of the formation of religious 

CI among 127 subjects, using focus groups, individual inter-

views, and participant observations. She presents three con-

secutive steps to form CI: religion as an ascribed identity; 

religion as chosen identity; and finally religion as declared 

identity.

Choup (2008) studies the relationships among specific 

(poor) constituent groups and governments, and how these 

groups use their shared (collective) identity to position 

themselves. She also uses observations (of group meetings) 

and interviews of group leaders to produce a model of CI 

formation and its effect on collective action.

Swanson (2015) uses small groups of music students 

(sizes of 2–5 students) to study the formation of CI. Again, 

as with several previous works, surveys, interviews, and 

observational studies are used to document the CI forma-

tion processes as students work together.

Brunsdon (2017) examines South Africa and the frac-

turing of the nation among different societal groups. Fac-

tors contributing to the lack of a national CI (e.g., a lack 

of trust among sub-groups and misunderstandings) are also 

discussed. Finally, the article posits that one way to heal 

these divisions and form a national CI is through religious 

understanding.

A final work in CI formation is experiments with interac-

tions among subjects performed in Charness et al. (2014). 

This work, in a general way, motivated our anagram game 

experiments (although there are many differences between 

our work and that in Charness et al. (2014)). Consequently, 

we address this work separately below.

Dismissing for the moment this last reference, it is clear 

that none of the above works on CI formation are like ours. 

In contrast, our work uses controlled online laboratory 

experiments to produce CI through priming groups of sub-

jects using a cooperative anagram game.

3.4  Collective identity‑based experiments: 
implications of CI

The effects of religious (group) identity on individual behav-

ior is studied in   Benjamin et al. (2016). Subjects (self-

identified as Protestant, Jew, Catholic, or agnostic/atheist) 

were primed or not primed with respect to religion. Priming 

consisted of having players unscramble a set of words that 

form a sentence, and that sentence has religious content. The 

unprimed subjects unscrambled words to form a sentence 

with no religious content. The purpose of priming is to make 

salient the religious identities of players, if they exist. Sub-

jects then played a number of games, including public goods 

games, risk aversion games, discount rate elicitation games 

(i.e., delayed gratification games), among others. In a public 

goods game, players are given some amount of money. They 

have the option of contributing a portion of their money 

to the group. The pooled money that is contributed to the 

group by all members is then typically multiplied by some 

factor and redistributed to the players. Hence, there may be 

some incentive to contribute to the group. There are several 

interesting results. Among them is that religious identity 

salience (i.e., priming) produced an increase in Protestant 

subjects’ contributions to Public Goods Games (PGG), while 

it generated a decrease in Catholic subjects’ contributions.

In related experimental economics work using Indian 

caste and other nonreligious identities, Eckel and 
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Grossman (2005), Hoff and Pandey (2006, 2014), Char-

ness et al. (2007), Chen and Chen (2011), Cohn et al. 

(2014), Chen et al. (2014), Cohn et al. (2015) find that 

group identity effects on behavior strengthen with the sali-

ence of group membership. Chen and Yeh (2014) manipu-

late the norms (expressed by legal rulings) that subjects 

are exposed to and study how these norms affect their 

self-identification.

The following works study the implications of identity 

fusion, where individuals may feel fused with (i.e., strongly 

connected to) a group (Swann et al. 2009, 2010a, b; Gomez 

et al. 2011a; Swann et al. 2014; Gomez et al. 2011b). We 

interpret identity fusion to be synonymous with, or very 

similar to, CI.

In Swann et al. (2009), the authors use online experiments 

to test the notion that fusion represents a distinctive form of 

allegiance to groups. They propose that when people become 

fused with a group, their personal and social identities 

become functionally equivalent. To measure identity fusion 

they used a modified version of a fusion scale developed by 

Schubert and Otten (2002). They prove that activating either 

personal or social identities of people who were fused with 

their group increased the extent to which they were willing 

to fight or even die for the group. Thus, even when people 

become deeply aligned with a group, their personal identi-

ties remain potent.

In Swann et al. (2010a), using an intergroup version of the 

trolley problem, the authors explored participants’ willing-

ness to sacrifice their lives for their group. Studies showed 

that nonfused participants expressed reluctance to sacrifice 

themselves, and identification with the group predicted noth-

ing. To measure identity fusion they used the same scale as 

in Swann et al. (2009).

In Swann et al. (2010b), they assume that autonomic 

arousal will increase agency (i.e., the capacity to initiate 

and control intentional behavior) for fused and nonfused 

persons. In four experiments, increasing autonomic arousal 

through physical exercise elevated heart rates among all par-

ticipants. Fused participants, however, uniquely responded 

to arousal by translating elevated agency into endorsement 

of pro-group activity. To measure identity fusion they used 

the same scale as in Swann et al. (2009).

In Gomez et al. (2011b), online experiments showed that 

when people are ostracized (i.e., rejected and excluded) by 

either an out-group or an in-group, they may either with-

draw or engage in compensatory activities designed to reaf-

firm their social identity as a group member. The authors 

proposed that individual differences in identity fusion (an 

index of familial orientation toward the group) would mod-

erate the tendency for people to display such compensatory 

activity. Four experiments showed that irrevocable ostracism 

increased endorsement of extreme, pro-group actions (fight-

ing and dying for the in-group) among fused persons but not 

among nonfused persons. To measure identity fusion they 

used the same scale as in Swann et al. (2009).

In Gomez et al. (2011a), the authors determine what 

fusion is and the mediating mechanisms that lead fused indi-

viduals to make extraordinary sacrifices for their group. For 

measure of group identification, they proposed a seven-item 

verbal scale with greater fidelity than the earlier pictorial 

measure of identity fusion from Swann et al. (2009).

In Swann et  al. (2014), online experiments explored 

the cognitive and emotional mechanisms that underlie the 

endorsement of self-sacrifice. Using participants responses 

to moral dilemmas, they found that only those who were 

strongly fused with the group preferentially endorsed self-

sacrifice. Identity fusion was measured using the seven-item 

verbal fusion scale from Gomez et al. (2011a).

3.5  Measurement of CI

Researchers measure or declare the existence of CI in differ-

ent ways. This is in part because there are many definitions 

for, and types of, CI (see Sect. 1.1).

Many references on CI formation (Wendt 1994; Peek 

2005; Choup 2008; Greenhill 2008; Swanson 2015), pre-

sented in Sect. 3.3, pronounce that CI has been formed 

based on expert evaluation of textual comments of partici-

pants, survey responses, and interviews. These are subjec-

tive approaches for determining the existence of CI. They 

require an expert to interpret the data, and multiple experts 

may arrive at different conclusions.

In PGGs (Ledyard 1994), players are given some amount 

of money. They have the option of contributing a portion of 

their money to the group. The pooled money that is contrib-

uted to the group by all members is then typically multiplied 

by some factor and redistributed to the players. Hence, there 

may be some incentive to contribute to the group. Charness 

et al. (2014), Chen and Li (2009) use PGG contributions as 

a proxy for CI. In Charness et al. (2014), the percentage of a 

persons money that they contribute to the group is taken as 

their identification with the group: those with greater group 

identity contribute more of their money to the team.

In  Swann et al. (2009) a modified version of a fusion 

scale developed by Schubert and Otten (2002) is proposed. 

To capture fusion in a manner that emphasized perceived 

overlap and nothing else, participants choose from five pic-

tures which best represented the way they perceived their 

relationship with the group. Each figure in the scale shows 

two circles of different sizes. The small circle represents 

“the self”, the big circle represents “the group”. When par-

ticipants need to choose from the scale, five figures with 

symmetrical degrees of overlap (0%, 25%, 50%, 75%, and 

100%) are presented. For example, the first figure shows the 

two circles not intercepting, the second figure show a 25% 

interception and the fifth figure show a 100% interception 
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with the small circle. To measure identity fusion, the fol-

lowing works use this scale (Swann et al. 2009, 2010a, b; 

Gomez et al. 2011a).

In Gomez et al. (2011a), a seven-item verbal scale is pro-

posed to obtain greater fidelity in the measurement of iden-

tity fusion, compared to the pictorial measure from Swann 

et al. (2009). The levels in the verbal scale are represented 

with the following sentences (1) “I am one with my group”, 

(2) “I feel immersed in my group”, (3) “I have a deep emo-

tional bond with my group”, (4) “My group is me”, (5) “I’ll 

do for my group more than any of the other group members 

would do”, (6) “I am strong because of my group”, (7) “I 

make my group strong”. Swann et al. (2014) use this scale 

to measure identity fusion.

In Jiménez et al. (2016) the DIFI is introduced to com-

bine the simplicity of the single pictorial item (Swann et al. 

2009) with the higher predictive fidelity of the verbal scale 

(Gomez et al. 2011a). The scales presented in Swann et al. 

(2009), Gomez et al. (2011a) are not dynamic. In Jiménez 

et al. (2016) the DIFI is defined as a continuous measure of 

identity fusion, introducing a dynamic behavior for web-

based questionnaires. The DIFI shows a figure formed by 

two circles of different sizes in the screen of the computer. 

The small circle represents “the self”, and the big circle rep-

resents “the team”. The player can move the small circle by 

clicking and dragging with the mouse to measure the degree 

to which the player feels part of the team.

3.6  Combined group anagram and CI experiments

A group anagram game entails cooperation in requesting 

and receiving letters, with the goal of forming more words 

with additional letters received from teammates. The only 

face-to-face cooperative team-play of an anagram game is 

reported in  Charness et al. (2014). Their goal, like ours, is 

to foster CI among teammates. While this motivated our 

experiment, there are several differences in procedures and 

context. Major differences include (1) the game setup: we 

used larger fixed team compositions, while in Charness et al. 

(2014), the four-person team composition varied in time (by 

people voting themselves and others onto and off of teams); 

(2) in Charness et al. (2014), games were played face-to-face 

among participants in the same room cooperatively manipu-

lating Scrabble-like tiles on a table, while we used remote 

players interacting in a game through a web application; 

and (3) in  Charness et al. (2014), they measure CI with the 

proxy of PGG contributions, while we use DIFI score.

3.7  Modeling of time sequences of actions

We review modeling of time sequences because our ABMs 

are essentially in this class of models.

Many complex action sequences from human behavior 

are being collected from different environments, like sen-

sors (Guralnik and Haigh 2002; Aipperspach et al. 2006; 

Bergmann et al. 2014; Tanaka et al. 2018) or computer-

based applications (Kinnebrew et al. 2013; Chierichetti et al. 

2014; Kurashima et al. 2018). Sequence mining techniques 

to model and predict human behavior in the real world can 

be used in different types of applications to improve a per-

son’s life (e.g., mobile health  (Kurashima et al. 2018), edu-

cation patterns (Kinnebrew et al. 2013), smart-home optimi-

zation  (Guralnik and Haigh 2002; Aipperspach et al. 2006)).

Sequence analysis is an important task to understand 

human behavior (Abbott 1995). The sequential pattern min-

ing problem was first introduced by Agrawal and Srikant 

(1995), where the main focus is on the patterns present in the 

sequential order of different transactions. But the complexity 

of human behavior with time-varying, interdependent and 

periodic action sequences  (Kurashima et al. 2018) makes 

accurate analysis and predictions a challenging task.

Kurashima et al. (2018) use activity data from logging 

applications to model the task of predicting future user 

actions and their timing through a mixture of Gaussian 

intensities. The model captures short-term and long-term 

periodic interdependencies between actions through Hawkes 

process-based self-excitations (Hawkes 1971). Accurate rec-

ommendations could improve a person’s health through the 

personalization of these applications. In Kinnebrew et al. 

(2013), a combination of sequence mining techniques uses 

data from computer-based learning environments to model 

students learning behavior patterns. Guralnik and Haigh 

(2002) use sequential pattern learning to model an agent-

based system to aid elderly people in living longer in their 

homes. Aipperspach et al. (2006) use pervasive home sen-

sors, like motion sensors, door close sensors, and floor pres-

sure pads, to model and predict discrete human actions with 

smoothed n-grams.

We are not modeling specific actions in our work. Rather, 

we are modeling the sequencing of actions during an ana-

gram game. The above works use primarily data from in situ 

environments, while our data come from human subjects 

experiments.

3.8  Evaluation of model predictions

Predictive models can have many forms. For example, 

simple classifier algorithms try to predict discrete class 

labels. Another technique used in predictive modeling is 

regression analysis, which tries to predict the mean value 

of a quantitative response variable. Also, the factor analy-

sis approach, tries to predict the distribution of a set of 

correlated quantitative variables (i.e., predicts the values 

of some variables from knowing the values of others). The 

evaluation of prediction models can be developed using a 
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variety of different methods and metrics. For classifica-

tion, the usual measure of error is the fraction of cases 

mis-classified, called the mis-classification rate or the 

error rate. For linear regression, the measure of accuracy 

is R2 and the measure of error is the sum of squared errors 

or 1 − R
2 . For the method of factor analysis, when a model 

predicts a whole distribution, the negative log-likelihood 

is the usual measure of error, but sometimes a direct meas-

ure of the distance between the predicted and the observed 

distribution is used (Hand et al. 2001).

In this work, we are primarily concerned with using 

well-known measures to characterize the difference 

between two statistical distributions. In our work, one 

distribution is generated from experimental data, and one 

distribution is generated from predictions of models from 

Sect. 5. Gibbs and Su (2002) list ten metrics on prob-

ability measures: (1) Discrepancy, (2) Hellinger distance, 

(3) Relative entropy (or Kullback–Leibler divergence), 

(4) Kolmogorov (or Uniform) metric, (5) Lévy metric, (6) 

Prokhorov metric, (7) Separation distance, (8) Total vari-

ation distance, (9) Wasserstein (or Kantorovich) metric, 

and (10) �2 distance.

It is clear that there are many measures for comparing 

two probability distributions, and different ones are used in 

different settings. For our needs, we have chosen to use KL 

divergence (also called relative entropy). The KL diver-

gence was introduced by Solomon Kullback and Richard 

Leibler in 1951 as the directed divergence between two 

distributions (Kullback and Leibler 1951).

The most important measure in information theory is 

called entropy and measures the uncertainty associated 

with a random variable. The entropy of a random variable 

X denoted H(X) is a lower bound on the average length 

of the shortest description of the random variable (Cover 

and Thomas 1991). The concept of information entropy 

was introduced by Shannon (1948). The Shannon entropy, 

defined in Shannon (1948), measures how close a ran-

dom variable is to being uniformly distributed. Shannon 

entropy estimates the average minimum number of bits 

needed to encode a string of symbols based on an alpha-

bet size, and the frequency of the symbols is calculated 

using the following formula H(X) = −
∑

x∈X
P(x) log P(x). 

The KL divergence measures the discrepancy between two 

probability distributions, and from which Shannon entropy 

can be constructed. For discrete probability distributions 

P and Q defined on the same probability space, the KL 

divergence between P and Q is defined to be

In the simple case, a KL divergence of 0 indicates that 

the two distributions in question are identical. The KL 

DKL(P||Q) = −
∑

x∈X

P(x) log
(

Q(x)

P(x)

)
.

divergence is not symmetric. The evaluations of our models 

are described in Sect. 6.

3.9  Abduction and abductive loop

Works on constructive procedures for implementing abduc-

tive analyses include  Haig (2005), Timmermans and Tavory 

(2012). We extend those works for abductive looping by 

making modeling a first-class process, and by adding the 

task of determining what to do in the next iteration. In addi-

tion to the applications cited in the Introduction, abduction 

was used to understand emergency room personnel’s efforts 

to save injured people in terms of “social viability” (Tim-

mermans 1999). Perhaps the work closest to ours is  Singla 

and Mooney (2011) in that they develop models and make 

predictions based on data. However, their data are either 

artificially generated or address isolated individuals, and 

they use abduction rather than abductive iterations. Several 

additional works are provided in Sect. 1.3.

4  Experiments

In Sect. 4.1, we provide a description of the experiment and 

overview the web application (web app) software system for 

running games. An experiment consists of an anagram game 

and two executions of the dynamic identity fusion index 

(DIFI) procedure. We present analyses of the experimen-

tal data that illustrate how players interact in the anagram 

games in Sect. B.

4.1  Experiment description

The elements of an experiment, as specified in Fig. 5, are:

1. Players are recruited from Amazon Mechanical Turk 

(AMT), to play our anagram game.

2. Players receive directions on how to use the platform, 

including a description of the game and how to play it, 

and information about remuneration at the end of the 

game.

3. Players play the Dynamic Identity Fusion Index (DIFI) 

1, DIFI1, procedure individually.

Fig. 5  Steps for the overall online game include: recruitment of play-

ers from Amazon Mechanical Turk (AMT), directions for the use of 

the platform, DIFI1 score procedure, anagram game, and DIFI2 score 

procedure. This figure directly maps onto the experimental compo-

nents in Fig. 1
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4. Players play the anagram game in a cooperative group 

setting.

5. Players play the DIFI2 procedure individually.

The terms DIFI1 and DIFI2 are used to indicate the first and 

second uses of the DIFI procedure (Fig. 5). The two DIFI 

procedures are the same.

4.1.1  Group anagram game description

The group anagram game is a word construction game, 

where n players cooperate in sharing letters to form and 

submit words of length ≥ 3 letters. Communication chan-

nels between pairs of agents mean that they can request 

and share letters with each other. An edge between nodes 

(players) v
i
 and vj means that v

i
 and vj can share letters with 

each other; v
i
 and vj are neighbors. We use random regular 

graphs of degree k on the n players so that everyone has the 

same number of neighbors. A random k-regular graph on n 

players is an undirected graph such that each player has k 

neighbors assigned uniformly at random. Over all abduc-

tive loops, experiments are run in groups with nominal val-

ues of 10 ≤ n ≤ 20 and with regular degrees 2 ≤ k ≤ 8 . We 

describe our motivation for using random regular graphs in 

Sect. 4.1.2.

An example game configuration and system states are 

provided in Fig. 6. The game configuration can be repre-

sented as a graph G(V, E) where V is the set of nodes that 

represent players and E is the set of edges that are commu-

nication channels between pairs of nodes. Red channels are 

for letter request and green channels are for letter replies. 

The number of players is n = 4 with players v
1
 , v

2
 , v

3
 , and v

4
 , 

the degree of each player is k = 2 , and the number of initial 

letters per player is n
L
= 3 . The players have the following 

initial letters: Linit

v
1

= {RID} , Linit

v
2

= {AGR} , Linit

v
3

= {HNO} , 

and Linit

v
1

= {UTY} . Key (#) shows the sequence of actions by 

all the players during a game. In Fig. 6, the sequence of 

actions is detailed in Table 3, which narrates the actions. The 

To-Reply-Buffer and the Request-Sent-Buffer of Fig. 6 are 

buffers, per player, that contain outstanding requests-to-be-

fulfilled and requests of letters, respectively. For example, in 

step (5) of Table 3, v
2
 has a request from v

3
 for the letter A. 

Therefore, v
3
 has an entry A in its Request-Sent-Buffer and 

v
2
 has an entry A in its To-Reply-Buffer. If/when v

2
 fulfills 

that request [in the example this happens in step (7)], v
3
 ’s 

“received letters” will contain an A, A will be removed from 

v
3
 ’s Request-Sent-Buffer, and v

2
 ’s To-Reply-Buffer will 

become empty.

Team members earn money by forming as many words as 

possible. Players are told that the total team earnings e
t
 are 

split evenly; each player receives e
t
∕n , so that it is in their 

interests to assist their neighbors. Players must form words 

with at least three letters. A single letter can be used any 

number of times in a word, e.g., a player can form the word 

TOT if she has a T and an O among her current letters (own 

letters and those received from neighbors) because the T 

can be used twice. Moreover, players do not lose letters that 

they use. Hence, a player has infinite multiplicity of each 

letter they possess so that letters can be reused any number 

of times. This means that a player only has to request a let-

ter (and receive it) one time. Therefore if a player forms 

TOT, she still possesses T and O with which to form more 

words. A player can only share their initial letters with her 

neighbors; letters received from neighbors cannot be shared 

with others. These rules were designed to foster word 

Fig. 6  Group anagram game configuration with a k = 2 regular graph 

on n = 4 players ( v1, v2, v3, v4 ) with number of initial letters n
L
= 3 

assigned to each player, as shown in the boxes next to the players. 

Requests for letters and replies are sent across the channel links (red 

to request letters, green to reply with letter). Request-Sent-Buffer 

keeps track of player v
i
 ’s letter requests. To-Reply-Buffer contains let-

ter requests from other players to v
i
 . Numbers (#) denote actions by 

players during a game, and a table illustrating the time sequencing of 

the actions appears at right. Table 3 shows a detailed description of 

these actions (color figure online)

Table 3  Action table detailing the sequences of actions by all players 

during the group anagram game example from Fig. 6. The first col-

umn defines the number of the sequence of actions during the game, 

appearing in Fig. 6. For this example, the duration of the game is 10 

actions. The second column shows the player initiating the action. 

The third column shows the name of the action. The fourth column 

provides a description of the action

(#) Player Action Description

(1) v
1

Form word v
1
 forms word “RID”

(2) v
2

Form word v
2
 forms word “RAG”

(3) v
1

Request letter v
1
 requests v

2
 for letter “G”

(4) v
2

Reply letter v
2
 replies v

1
 with letter “G”

(5) v
3

Request letter v
3
 requests v

2
 for letter “A”

(6) v
1

Form word v
1
 forms word “GRID”

(7) v
2

Reply letter v
2
 replies v

3
 with letter “A”

(8) v
3

Request letter v
3
 requests v

4
 for letter “T”

(9) v
4

Reply letter v
4
 replies v

3
 with letter “T”

(10) v
3

Form word v
3
 forms word “HAT”



 Social Network Analysis and Mining           (2020) 10:11 

1 3

   11  Page 16 of 43

construction, to increase earnings potential, and to foster 

team cohesion.

A total of 105 players participated in 47 games. The ana-

gram game is played for 5 min; Table 4 shows all the game 

configurations played.

We provide an overview of the web application (app) 

game platform that we built. The web app software platform 

consists of the oTree infrastructure (Chen et al. 2016) for 

recruiting players from Amazon Mechanical Turk (AMT) 

and interactions during the game; Django Channels for 

player interactivity; and JavaScript and HTML for generat-

ing the screens for a consent form, instructions, informa-

tion, a survey, and game interactions. Experiments and data 

analyses are part of the abductive loop of Sects. 2 and 7 

and Fig. 4. This game platform was constructed as part of 

our work.

A screen shot of one player’s screen at one point in time 

is shown in Fig. 7. Each player is given n
L
= 3 letters that 

she can use to form words and that she can share with others. 

She has an infinite supply of letters so that sharing letters 

does not inhibit her own use of letters. A player can also 

request letters from her neighbors and if the neighbors pro-

vide those letters, then she can use those letters in words, but 

she cannot pass on the received letters.

Initially, a player sees her n
L
 own letters and those of all 

of her neighbors, but has access only to her own letters. Over 

the 5-min anagram game duration, players can form words, 

request letters from their neighbors and reply to requests.

4.1.2  Choice of random regular networks for experiments

There may be many possible network configurations to 

explore in some games. These include Erdos–Renyi random 

graphs, small-world networks, and scale-free networks. We 

select random regular networks for the following reasons.

First, since all players in a game have the same degree, 

all players have the same number of neighbors and the same 

maximum number of interactions. No player can be viewed 

as special.

Second, our experiments use between five and twenty 

players per game, consistent with other studies of this 

kind. With these numbers of players, one cannot construct 

Erdos–Renyi, scale-free, and exponential decay graphs 

with the requisite degree distributions because there is an 

insufficient number of nodes. For example, to generate a 

scale-free or power law degree distribution, one needs about 

5000 to 10,000 nodes in a graph. (One can demonstrate this 

by generating a scale-free network on 1000 nodes in Net-

workX, and you will see that the degree distribution is quite 

“choppy”). Hence, instances of these latter classes of graphs 

cannot be generated with roughly five to twenty nodes. Criti-

cally, though, we can model these classes of network. That 

is, we can specify, say, a scale-free network on n = 5000 

players and model each player based on their degree in the 

graph, as described below.

Third, our analyses and modeling in Sect. 5 are based 

on representations of individual agents. We account for the 

local structure of a node (agent) in a game by considering 

its closed neighborhood (i.e., its degree, plus one), which 

consists of itself and its immediate neighbors. Consequently, 

our models account for each player, and each player’s 

closed neighborhood. This is, in particular, the Model M2 

of Sect. 5.6. In this way, we can “connect” agents and their 

neighborhoods to form larger networks for modeling than 

the sizes of graphs we were able to test.

Fourth, by controlling degree in each experiment, we can 

conduct experiments at k = 2 , 4, 6, and 8, and build models 

that interpolate for intermediate values of k (see Sect. 5). 

This enables a systematic approach to model building for 

Table 4  Description of anagram game configurations played with 

players recruited from Amazon Mechanical Turk (AMT). There were 

47 games with 289 players, of which 34 games and 224 players were 

used in analysis and modeling. Others were scoping experiments

Degree, k No. Players, n No. Games

2 10 18

2 20 10

3 15 1

4 15 9

5 15 2

6 15 3

8 15 4

Fig. 7  The anagram game screen of the web app for one player. This 

player has own letters “S,” “O,” and “L” and has requested an “E” 

and “A” from neighbors. The “E” is green, so this player’s request has 

been fulfilled and so “E” can be used any number of times in forming 

words. But the request for “A” is still outstanding so cannot be used in 

words. Below these letters, it shows that player 2 has requested “O” 

and “L” from this player; this player has to reply to these requests, if 

this player so chooses. Below that is a box where the player types and 

submits new words, like “SEE” (color figure online)
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individual agent behavior. Note that this systematic approach 

includes the ability to model systems where numbers of 

neighbors is heterogeneous across agents, as in Erdos–Renyi, 

scale-free, and other network classes, precisely because we 

generate individual agent models. For example, with our 

models, we can simulate a single game where players have 

arbitrarily assigned node degrees, and the model assigned 

to each player is based on that node’s degree.

Fifth, eight neighbors is used as the upper end of the 

degree range. With each player sharing three letters, a player 

with degree eight has access to 27 letters (including their 

own three letters), and hence a high probability of having 

access to almost all letters of the alphabet. In our models, 

as a first approximation, if a player has degree greater than 

eight, we use the k = 8 model for that agent.

Sixth, using a uniform degree for all players in a game 

enables us to generate multiple (replicate) sets of data across 

multiple individuals within one game. The importance of 

this replication in degree values is demonstrated in Sect. 6. 

In that section, we conduct rigorous analyses to identify the 

number of experimental observations required to drive down 

errors between model predictions and experimental data. An 

important result is that had we experimented with different 

network structures and hence a greater number of values 

for k (node degree), then the errors in our models would 

have been greater because of the “dispersion” (i.e., wider 

range of degree k) in experimental conditions that would 

have resulted. For example, if we had created one network 

with node degrees of 2, 3, 5, and 7 (among others), then we 

would have generated data over more k values, which would 

have dispersed the data over more k, and led to fewer data 

points at each k. This would result in larger errors in model 

predictions.

Seventh and finally, there is a real-time, pragmatic issue. 

We recruit game players through AMT. But not all players 

who promise to show up for the game do so at the appointed 

time and date. By using even regular degree values, we can 

produce valid random regular graphs as long as n > k . With 

graph structures such as scale-free (were it even possible), 

if players do not show up, one is faced with the ambiguous 

decision about which nodes in the communication graph to 

delete.

For all of these reasons, we chose to use random regular 

graphs in our study: it enables us to study behavior based on 

player degree and to construct and evaluate models. Addi-

tional graph structures (i.e., heterogeneous degree graphs) 

may be studied as part of future work.

4.1.3  DIFI description

The DIFI procedure precedes and follows the anagram 

game. Each player executes individually the DIFI proce-

dure (Swann et al. 2010b), to measure the degree to which 

a player feels part of a team (i.e., associates their identity 

with that of a team). Each player does this individually by 

moving a circle in a browser, relative to a fixed team circle. 

The DIFI score is in the range [ − 100, 125 ], with a score < 0 

representing no overlap of circles, and therefore indicating 

no CI; = 0 representing the circles just touching; and > 0 

indicating overlap of the two circles and hence formation of 

some level of CI. See Fig. 8. There are screens in the web 

app that also step each player through the steps in the DIFI 

game/procedure.

4.2  Experimental data

Experimental data are provided in “Appendix B”.

5  Agent‑based models (ABMs) of the group 
anagram game and modeling results

We present three progressively more sophisticated ABMs 

of the anagram game that are used in the abductive loop 

analyses to follow in Sect. 7. All models were developed as 

part of the abductive loop process, but are presented here to 

emphasize their construction and evaluation, and to obviate 

the need for a large digression for the models in the descrip-

tion of the AL process in Sect. 7. Each model represents 

the behavior of one player or agent. The models are data-

driven, and hence inductive inference is used with data in 

three ways: to inform model structure, model parameters, 

and to compute parameter values. Some of the figures appear 

in “Appendix C”.

In all models, we represent the set V of players and the set 

E of their communication channels (edges) as an undirected 

graph G(V , E) . The game is modeled as a discrete-time 

Fig. 8  DIFI game where player v
i
 moves the smaller circle, represent-

ing the player, either over (partially), or away from, the bigger circle 

that represents the team. The team circle is stationary. The distance 

� between centroids of circles is measured. The distance is such that 

� = 0 corresponds to the small and large circles just touching; 𝛿 < 0 

means that the two circles are disjoint; and 𝛿 > 0 means the two cir-

cles overlap. The distance � is transformed into a DIFI value. The 

range in DIFI value is: − 100 ≤ � ≤ 125 . The DIFI score is a proxy 

for CI. This is an individual player game, played in isolation; results 

are never shared among players, so there is no concern over reprisals 

by other players, to foster honest actions
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stochastic process, where at each time step, a player per-

forms one of the actions from the action set A, consisting 

of: (1) a
1
 : idling (i.e., thinking); (2) a

2
 : replying to a neigh-

bor with a requested letter, (3) a
3
 : requesting a letter from a 

neighbor, and (4) a
4
 : forming and submitting a word. Table 5 

shows the actions.

5.1  Discrete‑time stochastic process

In all ABMs, actions are taken at integer numbers of sec-

onds; that is, simulations of interacting agents take place 

as time advances in discrete 1-second increments from 0 to 

300. This time increment is based on the experimental data 

where no player takes two or more actions in one second.

We chose ABMs for their generative properties, fine gran-

ularity, and ability to model temporal effects. These enable 

us to more readily quantify “what if” scenarios (counter fac-

tuals) as part of parametric studies and sensitivity analyses. 

Also, ABM maps well onto the actual experiments: players 

have connections in a network arrangement and they inter-

act through their edges, taking actions at discrete times as 

in Fig. 6.

The choice of discrete time or discrete event simulation 

arises. If we selected discrete event simulations, then we 

would also have to predict the time at which the next action 

for a player takes place (at some �t into the future). How-

ever, with discrete time, we know we are always predict-

ing for the next time unit (here, one second). We also used 

a multinomial logistic regression model; other approaches 

could have been employed.

5.2  KL‑divergence

To measure the performance of our models, we use Kull-

back–Leibler divergence between our model prediction on 

x and the experimental observation of x, throughout this 

manuscript. That is, we are comparing distributions of 

data: distributions of experimental data against distribu-

tions of model predictions. Most relevant for our work is 

Boltzmann’s (Bach 1990) concept of generalized entropy, 

where the entropy of a physical system is a measure of 

disorder related to it. Kullback and Leibler (1951) derived 

an information measure, now referred to as the KL diver-

gence, the negative of Boltzmann’s entropy. The motivation 

for Kullback and Leibler’s work was to provide a rigorous 

definition of information. The Kullback–Leibler distance 

can be conceptualized as a directed distance between two 

models, say a and b (Kullback 1959). This is a measure of 

discrepancy. It is not a simple distance because the measure 

from a to b is not the same as the measure from b to a. It is a 

directed, or oriented, distance. The KL divergence DKL(a, b) 

is always positive, except when the two distributions a and 

b are identical (i.e., DKL(a, b) = 0 if and only if a(x) = b(x) 

everywhere). Entropy is zero if there is unit probability at 

a single point. If the distribution is widely dispersed over a 

large number of individually small probabilities, then the 

entropy is high (e.g., D
KL

> 1).

5.3  Overview of the three agent‑based models

ABM M0 is a baseline model, where each player makes a 

probabilistic transition from action a
i
∈ A to action aj ∈ A . 

The transition matrix is time invariant and is the same for all 

players. Data from the experiments is used to infer the model 

parameters using a ring topology (degree of each node is 

2) of player connectivity within an anagram game. Model 

M1 is similar to M0 but with the crucial difference that the 

transition matrix is time variant. Model M2 is similar to M1 

but now instead of a ring topology, we used other topologies 

and infer model parameters (degree from 2 to 8). Models 

M0, M1 and M2 predict the actions of A for a player but are 

generic in that letter request a
3
 , letter reply a

2
 , and submit 

word a
4
 are not associated with particular letters. For exam-

ple, if the player action is a
4
 , then the model assumes that 

the player can form a word. Table 6 shows a description of 

the three progressively sophisticated models.

Models M0, M1, and M2 are presented in Sects. 5.4, 5.5, 

and 5.6, respectively. In each of these subsections, model 

development and results are provided.

Throughout, we use k to denote the number of neighbors 

(degree) of an agent v ∈ V  . Also, we evaluate five variables 

and their distributions, across all players in a set of games, 

in comparing models and experiments: x = (x1, x2, x3, x4, x5) , 

where x
1
 is the number of letter replies received (RplR); x

2
 

is the number of replies sent (RplS); x
3
 is the number of let-

ter requests received (RqsR); x
4
 is the number of requests 

sent (RqsS); and x
5
 is the number of words formed (Wrds). 

Table 7 summarizes these variables.

In the results sections for each model, simulations are per-

formed using ABMs that implement each of the described 

models. These simulations produce, for each player, time 

histories of the actions in Table 7. One hundred simula-

tions are run and results are averaged across these simula-

tions, i.e., are averaged across all players in each simulation. 

These data are post-processed to generate distributions of 

Table 5  Actions of players in the model. The set A of actions is 

A = {a1, a2, a3, a4}

Item Variable Name Description

1 a
1

Idling Thinking

2 a
2

Reply Replying to a neighbor with a requested 

letter

3 a
3

Request Requesting a letter from a neighbor

4 a
4

Words Forming and submitting a word
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the variables in Table 7. These distributions from ABM pre-

dictions are compared against corresponding distributions 

generated from experiments.

Note that fixing n = 10 in all simulations does not intro-

duce errors because the distributions that we use are density 

distributions, not counts. Thus, the number of players is nor-

malized out of all comparisons of distributions of experi-

mental data and model predictions.

Table 8 shows the structure of comparisons of results for 

each of the models M0, M1, and M2. First, comparisons 

are made between distributions of experimental results and 

model predictions, for each x
i
 of Table 7, at the end of a game 

(i.e., over all 5 min of an anagram game). Then, these data 

are broken down into 1-min intervals to assess temporally the 

distributions of data and predictions. Next, we compute KL-

divergence values that provide a scalar representing how well 

the model predictions of the distributions of x
i
 compare with 

those of the experimental data. From Sect. 5.2, D
KL

= 0 means 

the model distribution agrees very well with the corresponding 

experimental distribution. As D
KL

 increases from zero, model 

predictions worsen. Table 8 denotes that these comparisons 

are performed over all 5 min of the anagram game (number 

3), corresponding to the end of the group anagram game, and 

for each 1-min interval over the game (number 4) of Table 8. 

Finally, we compare these sets of computed D
KL

 across all 

x
i
 of Table 7. The reason for the temporal breakdown is to 

Table 6  Progressively 

sophisticated models of the 

group anagram game are 

developed in this work. Models 

were constructed in order M0, 

M1, and M2. The incremental 

improvements in models are 

given in columns two and 

three, in terms of transition 

probabilities and degrees of 

players in the games

Model Transition 

probabilities

Degree k

M0 Fixed 2

M1 Temporal 2

M2 Temporal 2, 4, 6, 8

Table 7  Variables that are measured in experiments for each 

player, and predicted with models for each agent, where vector 

x = (x1, x2, x3, x4, x5) . All x
i
 , 1 ≤ i ≤ 5 , are time dependent

Item Variable Name Description

1 x
1

RplR Number of replies received

2 x
2

RplS Number of replies sent

3 x
3

RqsR Number of requests received

4 x
4

RqsS Number of requests sent

5 x
5

Wrds Number of words formed

Table 8  Summary of the model comparison plots for each of the 

models M0, M1, and M2. For each model, we collect the data into 

the five groups shown. See the text for details and justification. The 

fifth column indicates the time period, in minutes, over which experi-

mental data are compared to model predictions. These plots facilitate 

comparisons of final outcomes and temporal performance of models

No. Method Plot Variables, player actions Time

1 Comparisons of distributions at end of game (a) x
1

0–5

(b) x
2

0–5

(c) x
3

0–5

(d) x
4

0–5

(e) x
5

0–5

2 Temporal comparisons of distributions (a) x1, x2, x3, x4, x5 0–1

(b) x1, x2, x3, x4, x5 1–2

(c) x1, x2, x3, x4, x5 2–3

(d) x1, x2, x3, x4, x5 3–4

(e) x1, x2, x3, x4, x5 4–5

3 Comparisons of KL-divergence distributions at end of game x1, x2, x3, x4, x5 0–5

4 Temporal comparisons of KL-divergence distributions (a) x1, x2, x3, x4, x5 0-1

(b) x1, x2, x3, x4, x5 1–2

(c) x1, x2, x3, x4, x5 2–3

(d) x1, x2, x3, x4, x5 3–4

(e) x1, x2, x3, x4, x5 4–5

5 Comparisons of KL-divergence distributions combining all variables x1, x2, x3, x4, x5 0–5
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examine model predictions over time. Temporal comparisons 

are hidden in numbers 1, 3 and 5 of Table 8, which examine 

aggregated data.

5.4  Baseline agent‑based model M0

5.4.1  ABM M0 development

The goal is to accurately quantify the transition probabil-

ity from one action a(t) = a
i
 at time t to the next action 

a(t + 1) = aj for each agent v ∈ V , i, j ∈ [1..4] and a(t) ∈ A . 

For clarity, we use i and j to represent the actions a
i
 and aj . 

Agent v executes a stochastic process driven by transition prob-

ability matrix � = (�ij)m×m , where m = |A| (here, m = 4 ) and

The transition matrix � is formed from the data by using 

successive pairs of actions of players in experiments so 

that the 16 values of �ij in Eq. (1) are constant, i.e., time 

invariant. The matrix in Eq. (2) shows the transition prob-

abilities for Model M0 (the baseline model) generated from 

experiment data with n = 10, k = 2 . For example, given that 

the action of a player v
i
 at time t is a

2
 (replying to a letter 

(1)�ij = Pr(a(t + 1) = j|a(t) = i) with

m∑

j=1

�ij = 1.

request), the probability that v
i
 ’s next action, at time (t + 1) , 

is a
1
 (thinking) is 0.84.

5.4.2  ABM M0 (baseline) results

We address all of the results in Table 8 for model M0.

Comparisons of distributions between model and 

experiments for individual variables at the end of the 

anagram game Figure 9 shows the ABM M0 predictions 

of the k = 2 experiments. Figure 9a shows the distribu-

tion of replies received, Fig.  9b  shows the distribution 

of replies sent, Fig. 9c shows the distribution of requests 

received, Fig. 9d shows the distribution of requests sent, 

and Fig. 9e shows the distribution of words formed, each 

at the end of the 5-min anagram game (gray bars) for all 

k = 2 experiments, compared to Baseline M0 predictions 

(green) for 100 simulations of an n = 10 player game. It 

is clear from visual inspection that model M0 predictions 

Π =

a1 a2 a3 a4

a1 0.93 0.01 0.02 0.04

a2 0.84 0.16 0 0

a3 0.98 0.01 0.01 0

a4 0.93 0.01 0 0.06

(2)

0.0

0.1

0.2

0.3

1 0 1 2 3 4 5 6

Replies Received

D
e
n
s
it
y

(a)

0.0

0.1

0.2

0.3

1 0 1 2 3 4 5 6

Replies Sent

D
e
n
s
it
y

(b)

0.0

0.1

0.2

0.3

1 0 1 2 3 4 5 6

Requests Received

D
e
n
s
it
y

(c)

0.0

0.1

0.2

0.3

1 0 1 2 3 4 5 6

Requests Sent

D
e
n
s
it
y

(d)

0.000

0.025

0.050

0.075

0.100

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Words Submitted

Baseline

Experiments

D
e
n
s
it
y

(e)

Fig. 9  ABM baseline model M0 predictions of the k = 2 experiments (in green) and experimental data (in gray), over the entire 5-min group 

anagram game. The probability density function is show for a distribution of replies received, b distribution of replies sent, c distribution of 

requests received, d distribution of requests sent, and e distribution of words formed, each at the end of the 5-min anagram game (gray bars are 

experimental data) for all k = 2 experiments. The Baseline model M0 predictions are from 100 simulations of a n = 10 player game. It is clear 

from visual inspection that model M0 predictions are in better agreement with the experiment data for the requests received and requests sent 

variables. We make this comparison more precise using KL divergence below in Fig. 10 (color figure online)
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are in better agreement with the experimental data for the 

requests received and requests sent variables. We make this 

comparison more precise using KL divergence in Fig. 10.

Temporal comparisons of distributions between model 

and experiments for individual player actions Appendix 

B.1.5 in Cedeno (2019) shows the figures resulting from 

the temporal analysis by minute of distributions between 

Model M0 and experiments for k = 2 . Each plot contains 

data over a time window for each variable of x from Table 7. 

Often, but not always, the largest discrepancies between the 

model predictions and experiments occur in the first minute 

of the game.

Comparisons of KL-divergence values between model 

and experiments for individual variables at the end of the 

anagram game. Figure 10 shows the KL-divergence values 

for the baseline M0 across the five parameters of x: lower 

values are better. M0 does a better job predicting the number 

of requests received and requests sent at the end of a game. 

These data span the entire 5-min game. That is, the request-

related operations are better predicted than reply operations.

Temporal comparisons of KL-divergence values between 

model and experiments for individual player actions. Fig-

ure 26 shows the temporal KL-divergence values for the 

baseline M0 across the five parameters of x, at 1-min inter-

vals: lower values are better. Each figure contains data over 

a time window: Fig. 26a shows the 0–1 min, Fig. 26b shows 

the 1–2 min, Fig. 26c shows the 2–3 min, Fig. 26d shows 

the 3–4 min, and Fig. 26e shows the 4–5 min results of the 

5-min anagram game. These plots show that request-related 

predictions are better than reply-related predictions for the 

first 3 min, but are worse for the last 2 min, based on KL-

divergence. Reply-related predictions are better in the sec-

ond half of the 5-min anagram games, but Fig. 23 shows 

that in experiments, there are fewer replies in the second 

half of the games.

Comparisons of KL-divergence values between model 

and experiments for combining all variables. Figure 3.15 in 

Cedeno (2019) shows the distribution of KL-divergence val-

ues for comparing distributions of model output with corre-

sponding distributions of experimental data for the anagram 

game. The model is the ( n = 10 , k = 2 ) baseline. The data 

sets used in the comparison are ( n = 10 , k = 2 ). There are 

30 values in the distribution, with five values for variables x
i
 

over the 5-min game, at the end of the game; and 25 values 

for the five variables of x over five intervals of 1 min dura-

tion. It shows that for model M0, some KL-divergence val-

ues are high (e.g., > 0.5 ), indicating poor agreement between 

model predictions and the experiment data. As we see in 

Figs. 10 and 26, M0 does not do a good job predicting the 

number of replies received, replies sent, and words formed.

5.5  Agent‑based model M1

Model M1 is similar to M0 but with the important enhance-

ment that the transition matrix � is time variant.

5.5.1  ABM M1 development

To make � [and its components �ij in Eq. (1)] dynamic in 

time and account for history effects, four variables are intro-

duced in Eq. (3): number zL(t) of letters that v has available 

to use (i.e., in hand) at t; number zW (t) of valid words that 

v has formed; size zB(t) of the buffer of letter requests that 

v has yet to reply to; and number zC(t) of consecutive time 

increments that v has taken the same action. See Table 9. 

Thus, letting z = (1, zL, zW , zB, zC)g×1 , we can model �ij as a 

function of these covariates, among other variables.

We use a multinomial logistic regression to model �ij—

the probability of a player taking action aj at time t + 1 , given 

that the player took action a
i
 at time t—as

where �
(i)

j
= (�

(i)

j1
,… , �

(i)

j,g
)� , for j ≠ i , and �

(i)

i
= 0 , prime 

indicates vector transpose, and �
(i)

j,h
 are the elements of �

(i)

j
 , 

with 1 ≤ h ≤ g being the index of the element of the z vector. 

For a given i, the parameter set can be expressed as

with matrix entries �
(i)

j,h
 . Parameters in Eq. (4) are inferred 

from the k = 2 experimental data using the framework of 

maximum likelihood estimation for the multinomial 

distribution.

(3)�ij =
exp(z��

(i)

j
)

1 +
∑

l≠i exp(z��
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Fig. 10  KL-divergence values for the Baseline Model M0 across the 

five parameters of x: lower values are better. M0 does a better job pre-

dicting the number of Requests Received and Requests Sent. Analy-

ses are based on the data of Fig. 9, over 5 min, at the end of a game
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5.5.2  Inductive inference

We address the three dimensions of inference stated above: 

(1) model structure; (2) model parameters; and (3) parameter 

values. First, the model structure is informed by the k = 2 

data, by design, as described above. Second, the parameters 

identified in the feature vector z are described and justified 

in Table 9. In fact, we claim that identifying this feature 

vector has elements of art. Third, parameters in Eq. (4) are 

inferred from the k = 2 experimental data using the frame-

work of maximum likelihood estimation for the multinomial 

distribution.

The reason to emphasize inductive inference is because 

this is an integral part of the abductive looping process, and 

of abduction itself: the data drive the model and theory 

development and hypothesis identification, and not the 

other way around.

5.5.3  ABM M1 results

Results for Model M1 are provided according to Table 8 as 

was done for Model M0. In many cases, we compare KL-

divergence values for M0 and M1 to show improvements in 

performance. These results, like those for model M0, are 

compared against the k = 2 data in Table 4.

Comparisons of distributions between models and experi-

ments for individual variables at the end of the anagram 

game Figure 11 shows M0 and M1 model predictions and 

experimental data distributions for all variables in Table 7. 

These data are over all 5 min of the anagram game for all 

k = 2 experiments. Model predictions are averages over 100 

simulations with n = 10 players. Figure 11a shows the distri-

butions of replies received, Fig. 11b shows the distributions 

of replies sent, Fig. 11c shows the distributions of requests 

received, Fig. 11d shows the distributions of requests sent, 

and Fig. 11e shows the distributions of words formed. It is 

clear from visual inspection that model M1 predictions are 

in better agreement with the experiment data than are M0 

predictions. We make this comparison more precise using 

KL divergence in Fig. 12.

Temporal comparisons of distributions between models 

and experiments for individual variables Appendix B.1.6 in 

Cedeno (2019) shows the figures resulting from the temporal 

analysis by minute of distributions between Models M0, M1 

and Experiments for k = 2 . Each plot contains data over a 

1-min time window for each variable of x from Table 7. It 

is clear from visual inspection that model M1 predictions 

are in better agreement with the experiment data than are 

M0 predictions.

Comparisons of KL-divergence values between models 

for individual variables at the end of the anagram game 

Figure 12 shows KL-divergence values for comparing dis-

tributions of model outputs with corresponding distributions 

of experimental data for the anagram game. The models 

are (baseline) M0 and M1 for the ( n = 10 , k = 2 ) experi-

ments. The comparisons are at the end of the game, i.e., 

at t = 5 min, over the entire game. For each experiment/

model combination, the variables (and hence distributions) 

compared are: number of replies received, number of replies 

sent, number of requests received, number of requests sent, 

and number of words formed. Lower values are better. This 

figure shows that M1 generates predictions much closer to 

the experimental data than does M0. For example, M1 sig-

nificantly reduces the reply-related and words formed KL-

divergence values (weaknesses of model M0 as shown in 

Fig. 10).

Temporal comparisons of KL-divergence values between 

models for individual player actions Figure 27 shows the 

temporal KL-divergence values for the baseline M0 and M1 

across the five parameters of x: lower values are better. Each 

plot contains data over a time window: Fig. 27a for 0–1 min, 

Fig. 27b for 1–2 min, Fig. 27c for 2–3 min, Fig. 27d for 

3–4 min, and Fig. 27e for 4–5 min time intervals of the 

5-min anagram game.

The plots demonstrate that KL-divergence values for 

the model M1 predictions are closer to the experimentally-

determined data distributions than are those from model M0. 

While Model M0 has good predictions for the minute 3 and 

minute 5 (with the exception of the words formed), Model 

M1 has better predictions for the minute 3 and minute 5 for 

Table 9  The feature vector z = (zL(t), zW (t), zB(t), zC(t)) used in the models M1 and M2. These capture history effects in determining the next 

action of a player

Variable Name Description

zB Size of reply buffer Number of current letter requests to which this player may reply. Captures the notion that the more 

letter requests that have not been replied to, the more likely v is to reply

zL Number of letter in hand Number of unique letters in hand to form words. Captures the idea that the more letters v has in hand, 

the more likely the agent is to form words

zW Number of words formed Number of words formed. Captures the notion that the more words that have been formed, the larger 

the vocabulary of the player

zC Number of consecutive actions Number of consecutive time steps at which player takes the same action. Captures the notion that the 

more time v is idle (thinking), the more likely v will take some other action at the next timestep
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all five x variables of Table 7. These data are significant 

because they evaluate the quality of the models to predict 

behavior temporally. That is, just because a model can pro-

duce predictions at the end of some scenario, this does not 

mean that it can capture the trajectory (or time evolution) of 

phenomena. With these types of plots, we demonstrate that 

our models do capture temporal behavior.

Comparisons of KL-divergence distributions between 

models and experiments for combining all variables Fig-

ure 3.19 in Cedeno (2019) shows the distribution of KL 

divergence for comparing distributions of model output 

with corresponding distributions of experimental data for 

the anagram game. The models are (n = 10, k = 2) M0 and 

M1. The data sets used in comparison are experiments: 

(n = 10, k = 2) . There are 30 values in the distribution, with 

five values for each variable x at the end of the game, and 

25 values for the five variables x over five intervals of 1-min 

increment. It shows that for Model M1, the great majority 

of KL-divergence values are less than 0.2, while they can be 

much greater for Model M0.

Summary of M0 and M1 model comparisons. Clearly, 

ABM M1 is in better agreement with the experimental data 

compared to the baseline model. From KL-divergence values 

in Fig. 12, it is clear that the predictions of M1 represent the 

experimental data better than those of the baseline model.

In addition, we use M1 to make predictions for anagram 

games with k > 2 , resulting in more interactions. Coun-

terintuitively, as shown in Fig. 13, the number of replies 

does not change as k increases. These results call for more 

experiments at larger k. Note that we exercise M1 learned 

from experiments with k = 2 . The results in Fig. 13 indicate 

that M1 predicts no changes in the number of letter replies 

received as k increases, which seems counter intuitive. One 

would expect more letter requests and replies with increas-

ing numbers of neighbors. These types of data lead us to 

construct model M2.
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Fig. 11  Baseline Model M0 and Model M1 predictions of the k = 2 experiments, along with the experimental data. The probability density 

function is show for a distribution of replies received, b distribution of replies sent, c distribution of requests received, d distribution of requests 

sent, and e distribution of words formed, each at the end of the 5-min anagram game (gray bars) for all k = 2 experiments, compared to M1 

predictions (red) for 100 simulations of an n = 10 player game. M1 predictions (red) for 100 simulations of an n = 10 player game. The Base-

line Model M0 is shown in green for comparison. It is clear from visual inspection that model M1 predictions are in better agreement with the 

experiment data than are M0 predictions. We make this comparison more precise using KL divergence in Fig. 12 (color figure online)
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Fig. 12  KL-divergence values for the Baseline Model M0 and Model 

M1 across the five parameters of x: lower values are better. The mod-

eling conditions are those of the experiments with k = 2 . This figure 

shows that M1 greatly improves a weakness of model M0 in poorly 

representing RplR (number of replies received), RplS (number of 

replies sent), and Wrds (number of words formed)
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We remark that we also fitted M1 using experimental data 

with k = 4 (call this Model M1b), and consequently made 

predictions for the case of k = 2 . We compared the distribu-

tions of x between prediction and experimental results using 

KL-divergence, and determined values in the range 0.11 to 

0.46, indicating good predictions. Note that Model M1b is 

interpolating when it predicts k = 2 experimental data, while 

Model M1 is extrapolating to predict k = 4 experimental data.

5.6  Agent‑based model M2

5.6.1  ABM M2 development

Model M1 was developed with data where all game players 

have the same degree k = 2 . To generalize M1 to incorporate 

various k, we conducted additional experiments with 2 < k ≤ 8 

as a part of the second AL (Sect. 7.4). We resume from the 

description of Model M1 in Sect. 5.5 and Eqs. (3) and (4).

Recall that for Model M1, �
(i)

jh
 in B(i) denotes parameters 

that are used to compute the transition probability �ij based on 

a player taking action a
i
 at time t and action aj at (t + 1) . Since 

there are m = 4 possible player actions in action set A, 

1 ≤ i, j ≤ m . As in Sect. 5.5, h is the index of an element of the 

z vector with 1 ≤ h ≤ g . The �
(i)

jh
 are determined from analyses 

of the transitions in the experimental data.

Here, we build a hierarchical model to incorporate the effect 

of agent degree k . For different values of k , the parameter coef-

ficients in B(i) of Eq. (4), used in Eq. (3), are now a function of 

k , denoted as B(i)
(k) . We use an orthogonal polynomial basis 

to construct a continuous and smoothing function for �
(i)

jh
(k) 

for any given i, j, h, as

where �
l
 and �

q
 are the linear and quadratic functions of the 

orthogonal basis in terms of k . We have

(5)�
(i)

jh
(k) = �

(i,0)

j,h
+ �

(i,1)

j,h
�l(k) + �

(i,2)

j,h
�q(k),

where

correspond to the constant, linear, and quadratic coefficient 

matrices in Eq. (6), with �
(i,r)

ih
= 0 for any r and h. Here, �

(i,r)

jh
 

in Eqs. (5) and (7) are the elements of C(i)

r
 determined from 

the successive pairs of actions a
i
 at time t and aj at time t + 1 , 

with current values of z.

Equation (4) is a special case of Eq. (6) when C
(i)

1
= 0 

and C
(i)

2
= 0 , i.e., when the coefficient matrix B(i) is not a 

function of k.

5.6.2  Inductive inference

We address the three dimensions of inference, as for M1: 

(1) model structure; (2) model parameters; and (3) param-

eter values. In this case, the model structure we employ to 

capture the effect of k was identified a priori. However, if 

the model structure was found lacking, we would have tried 

another approach. The model parameters given in Eqs. (6) 

and (7) were also anticipated owing to the development of 

ABM M1. Hence, these first two steps were not solely driven 

by the data. To estimate the parameters sets C
(i)

0
, C

(i)

1
, C

(i)

2
 , we 

use maximum likelihood estimation across the experimen-

tal observations for k = 2 , 4, 6, and 8. For a given i and k , 

denote the corresponding observational data as D
(i)

k
 . Then 

we conduct parameter estimation by

where L(C
(i)

0
, C

(i)

1
, C

(i)

2
|D

(i)

k
) is the likelihood function with 

respect to the data D
(i)

k
 collected under the setting of k neigh-

bors in the experiments of Sect. 4.

5.6.3  ABM model M2 results

Results for model M2 are provided according to Table 8. 

Results are often compared to those for model M1.

Comparisons of distributions between models and experi-

ments for individual variables at the end of the anagram 

game Figure 14 shows data distributions at the end of the 

5-min anagram game (gray bars) for all k = 2 experiments, 

compared to M2 predictions of distributions (blue) for 100 

simulations of an n = 10 player game. These results are over 

all 5 min of the group anagram game. Figure 3.22 in Cedeno 

(6)B
(i)
(k) = C

(i)

0
+ C

(i)

1
�l(k) + C

(i)

2
�q(k),

(7)C
(i)

r
=

⎛
⎜
⎜
⎜
⎜
⎝

�
(i,r)

11
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… �
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1,g

�
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�
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Ĉ
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Fig. 13  M1 model distributions predicted for the number of replies 

received at the end of game ( n = 10 , 100 simulations), for different 

regular degrees k of the game network G. This partially motivated our 

development of ABM M2, since model M1 predictions do not vary 

significantly with the number of a player’s neighbors
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(2019) shows data distributions at the end of the 5-min ana-

gram game (gray bars) for all k = 4 . In Appendix B.1.7, in 

Cedeno (2019), Figure B.15 shows data distributions at the 

end of the 5-min anagram game (gray bars) for all k = 6 . 

Figure B.16 Model M1 is shown in red for comparison. 

In all of these figures, Figure (a) shows the distributions 

of replies received, Figure (b) shows the distributions of 

replies sent, Figure (c) shows the distributions of requests 

received, Figure (d) shows the distributions of requests sent, 

and Figure (e) shows the distributions of Words Formed. M2 

gives much better performance, as expected, as it explicitly 

accounts for agent degree. As expected, M1 and M2 perform 

equally well for k = 2 as M1 is learned from k = 2 experi-

mental data.

Temporal comparisons of distributions between models 

and experiments for individual variables Appendix B.1.8 

in Cedeno (2019) shows the temporal analysis by minute 

of distributions for models M1 and M2 and experiments for 

k = 2 . Each plot contains data over a time window of 1 min. 

For k = 2 experiments, Figure B.17 shows temporal analysis 

for the number of Replies Received at the end of each min-

ute. Figure B.18 shows temporal analysis for the number of 

Replies Sent at the end of each minute. Figure B.19 shows 

temporal analysis for the number of Requests Received at the 

end of each minute. Figure B.20 shows temporal analysis for 

the number of Requests Sent at the end of each minute. Fig-

ure B.21 shows temporal analysis for the number of Words 

Formed at the end of each minute.

Collections of plots for each of k = 4 , 6, and 8 are analo-

gously provided in Appendix B.1.8 in Cedeno (2019) . As 

expected, M1 and M2 perform equally well for k = 2 , as M1 

is learned from k = 2 experimental data. For k > 2 , M2 per-

forms better. We make this comparison more precise using 

KL divergence below.

Comparisons of KL-divergence distributions between 

models and experiments for individual variables at the end 

of the anagram game Figures 15 and 16 in this section, and 

Figures B.37 and B.38 in Appendix B.1.9 in Cedeno (2019) 

show KL-divergence values for comparing distributions of 

model outputs with corresponding distributions of experi-

mental data, for the group anagram game. The figures are 

for, respectively, k = 2 , k = 4 , k = 6 , and k = 8 experiments. 

The models are M1 (red) and M2 (blue). These four figures 

show clear and interesting behavior. Model M1 agrees bet-

ter with experiments than does Model M2 for k = 2 , since 

Model M1 was specifically developed with k = 2 data. How-

ever, for larger k ( 4 ≤ k ≤ 8 ), Model M2 does better than 

M1. This is because Model M2 was developed using data 
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Fig. 14  Model M1 and Model M2 predictions of the k = 2 experiments, and experimental data, over all 5 min of the group anagram games. The 

probability density distributions are shown for a distribution of replies received, b distribution of replies sent, c distribution of requests received, 

d  distribution of requests sent, and e  distribution of words formed, each at the end of the 5-min anagram game (gray bars are experimental 

data) for all k = 2 experiments, compared to M2 predictions (blue) for 100 simulations of an n = 10 player game. The Model M1 predictions 

are shown in red for comparison. It is clear from visual inspection that models M1 and M2 generate similar predictions, in agreement with the 

experiment data, as M1 is learned solely from k = 2 experimental data. We make this comparison more precise using KL divergence in Fig. 15 

(color figure online)



 Social Network Analysis and Mining           (2020) 10:11 

1 3

   11  Page 26 of 43

across all of these k values. Hence, to obtain a wider range 

in input space for simulations, our Model M2 does slightly 

worse for a particular k ( k = 2).

Temporal comparisons of KL-divergence distributions 

between models and experiments for individual player 

actions This section shows the temporal KL-divergence 

values for the model M1 and M2 predictions across the 

five parameters of x. Lower values are better. Figure 3.25 in 

Cedeno (2019) shows k = 2 experiments, and Figure 3.26 

in Cedeno (2019) shows k = 4 experiments. In Appendix 

B.1.10 in Cedeno (2019) Figure B.39 shows k = 6 experi-

ments, and Figure B.40 shows k = 8 experiments. Each plot 

contains data over a 1-min time window, as in previous 

analyses. It is clear from visual inspection that model M2 

predictions are in better agreement with the experiment data 

than are M1 predictions for k > 2 . As noted above, however, 

Model M1 does slightly better for k = 2 . That is, the com-

parisons between models M1 and M2, for temporal varia-

tions in 1-min time intervals over the 5-min group anagram 

game, are similar to those comparisons when combining all 

data into one analysis over the entire 5-min game.

Summary of M1 and M2 model comparisons In addition 

to Figure 3.27 in Cedeno (2019) discussed immediately 

above, Fig. 17 compares Model M1 and Model M2 for each 

of the five actions in x, accumulated through the 5-min group 

anagram game. Model M2 does not perform quite as well 

as Model M1 for the k = 2 data, but does better than M1 for 

k = 4 , 6, and 8. Thus we sacrifice some quality for k = 2 and 

get in return capabilities over a range of k. Hence, Model M2 

is of greater value, since it covers a broader range of inputs 

for simulations.

In Appendix B.1.11 in Cedeno (2019), Figure B.41 shows 

the boxplots grouped by type of k = 2, 4, 6, 8 , where each 

box contains five values of KLD corresponding to the five 

x variables at the end of each minute. The plot show that 

our models show highest median values on the first 2 min 

of the game.

6  Model evaluation

This section contains evaluations of Model M2 from Sect. 5. 

Our goal is to understand the conditions for which our esti-

mated model transition probabilities �ij are sufficiently 

accurate.

To evaluate the goodness of fitting for the proposed hier-

archical model, we compare the estimated (model) transition 

probability matrix �̂� = (�̂�ij) with the empirical (data) tran-

sition probability matrix �̃� = (�̃�ij) under different settings 

of covariates (the z vector of Table 9). Here, the empirical 

transition probability matrix �̃� is obtained under the settings 

by grouping the value of each covariate into three levels, 

as described in Table 10, to obtain comparable numbers of 

samples across bins.
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Fig. 15  The plot shows on the x-axis KL-divergence values for the 

M1 and M2 model predictions at the end of the 5 min anagram game. 

Here we compare k = 2 data for M1 and M2 model predictions with 

the experiments across the five parameters of x: lower values are bet-

ter. This figure shows that model M1 and M2 generate similar predic-

tions to the experimental data, with Model M1 slightly better (color 

figure online)

0.0

0.5

1.0

1.5

RplR RplS RqsR RqsS Wrds

K
L
 D

iv
e
rg

e
n
c
e

M1
M2

Fig. 16  The plot shows on the x-axis KL-divergence values for the 

M1 and M2 model predictions at the end of the 5 min anagram game. 

Here we compare M1 and M2 model predictions of the k = 4 data 

with the experiments across the five parameters of x: lower values are 

better. This figure shows that M2 gives much better performance than 

M1 in predicting the time to generate an action for an agent. M2 gives 

better performance, as expected, as it explicitly accounts for agent 

degree (color figure online)

Fig. 17  A scatter plot of KL divergence for M1 (x-axis) and M2 

(y-axis) for four k values and five x variables. For k > 2 , M2 performs 

better than M1, as M2 incorporates experimental data with 2 ≤ k ≤ 8 . 

Interestingly, M1 and M2 perform equally well (highlighted) for 

k = 2 as M1 is learned from k = 2 experimental data (M1 is slightly 

better). These are data over the total 300 s anagram game (color fig-

ure online)
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For each setting, there is a level combination of the four 

covariates. We compute a counting matrix N = (nij) , where 

nij is the number of data instances observed for the transition 

from action i to next action j across all players in group 

anagram games. (Here, actions i and j refer to actions a
i
 , 

aj ∈ A in Table 5.) We then calculate the empirical probabil-

ity �̂�ij =
nij

∑

j nij

 . There are 324 settings in total from the group-

ing of variables in Table 10 (three settings of each of four 

variables, and four k values), and 279 of them have valid 

empirical transition probability matrices. For the estimated 

transition probability matrix �̂� = (�̂�ij) , the value of �̂�ij is 

estimated by the proposed model under each setting of 

covariates, where the averaged value at each level of the 

covariate is used in the estimated model.

The squared Root of Mean Squared Errors (RMSE) 

is used to quantify the difference between �̂� = (�̂�ij) and 

�̃� = (�̃�ij) . RMSE is calculate as follows:

where I = {i ∶ minj nij > 0} is the index set of the rows 

where the empirical probability can be obtained.

Figure 18 shows the scatter plot between the RMSE and 

n
min

 for the 279 settings for which there are sufficient data, 

where the plot is in log10-log10 scale. From the figure, 

the proposed method generally provides an accurate esti-

mation of probability transition matrix in most of settings. 

Clearly, the value of RMSE decreases as the Min.Count n
min

 

increases. When n
min

≥ 100 , the value of RMSE is smaller 

than 0.069, showing a very good model fitting. When n
min

 is 

small, the RMSE is relatively high. One explanation is that 

the empirical probabilities cannot be calculated accurately 

when n
min

 is small.

7  Abductive loop analyses and results

7.1  Overview

In this section, we present the results of iterative abductive 

analyses, described in Fig. 4. First, we “unroll” the abductive 

(8)RMSE =

√√√√ 1

4|I|
∑

i∈I

4∑

j=1

(�̂�ij − �̃�ij)
2

loop to illustrate several iterations of abduction and differ-

ent analysis paths that can be taken, depending on results 

generated up to that point; see Sect. 7.2. Then, we present 

two ALs in the next two subsections. At the end of loop-2, 

we describe how ABM M2 can be used in further loops. We 

then summarize the findings of the abductive iterations, and 

discuss their generality, and candidate research questions 

for future work. We note that the experiments (Sect. 4) and 

modeling (Sect. 5) are major components of the abductive 

looping process, and were separated out to make this section 

more streamlined.

7.2  Abductive iterations with hypotheses

Figure 19 provides a tree structure representation of several 

candidate abductive loops. Specifically, an iteration or loop 

of the abductive looping process, shown in Fig. 4, is repre-

sented by a node in the graph of Fig. 19. Each loop (Fig. 4) 

specifies and evaluates at least one hypothesis. Figure 19 

emphasizes a hypothesis Hij at each node. These hypotheses 

are stated in Table 11. The last step in a loop is to determine 

what is to be done next, and the options are represented by 

the edges out of a node, extending toward its child nodes in 

Fig. 19 (a node may have any number of children). Hence, 

the tree graph in Fig. 19 is motivated by the usefulness of 

representing several abductive loops and their dependencies 

in a compact fashion, as opposed to writing down Fig. 4 for 

each loop.

The hypotheses in Fig. 19 and Table 11 are candidates 

because they depend on the data generated as successive 

abductive iterations are completed (Haig 2005; Timmermans 

and Tavory 2012). Hence, it may be modified with iterations. 

The tree here is not unique. Different analysts may compose 

different hypotheses and different trees, and a tree will gen-

erally need to be modified as analyses unfold. Nonetheless, it 

is a useful exercise to construct such trees as part of reason-

ing about a problem.

Table 10  Three bins and ranges of values for the z variables from 

Sect.  5.5. These bins are created for each of the four values of 

k ∈ {2, 4, 6, 8}

Level Buffer ( zB) Letter ( zL) Word ( zW) Consec. ( zC)

1 0 0–3 0–1 0–3

2 1 4–6 2–8 4–11

3 ≥ 2 ≥ 7 ≥ 9 ≥ 12
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Fig. 18  Scatter plot of RMSE against Min.Count in different settings 

of covariates in Table  10. See Eq.  (8) for RMSE and text for Min.

Count. One hundred observations in a category drives RMSE down 

to 0.069
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We now overview the two abductive iterations detailed in 

subsequent sections. The root node of the tree in Fig. 19 is 

the starting point. We conduct experiments with the Phase 1 

(group anagram priming game), so we take the left branch 

(edge) from the root node, labeled “With Phase 1 Priming”. 

We perform an abductive loop, where we form and evaluate 

hypothesis H
11

 . This loop is detailed in Sect. 7.3. Since it is 

clear that CI was formed, we follow the “CI detected” path 

out of H
11

 to arrive at the node hypothesis H
22

 . This AL-2 

is described in Sect. 7.4. Since we do obtain a CI signal 

from these experiments, we follow edge “CI detected” to 

hypothesis H
32

 . Details are provided below, and we note that 

modeling results guide decisions about what experiments 

to perform in the next abductive iteration, illustrating the 

value of modeling. This is one reason why our abductive 

loops promote modeling to a central role. We also note that 

a hypothesis can appear at multiple nodes within the abduc-

tive tree, e.g., the group anagram game conditions may be 

altered after particular loops. Finally, a node need not have 

two children; e.g., fewer or more children are possible.

7.3  Abductive Loop 1 (AL‑1)

We describe the steps of the abductive loop in Fig. 4, in turn.

Experiments A set of 18 experiments with a total of 87 

players was completed where k = 2 . See Sect. 4.

Data Analysis For this loop, data analysis and modeling 

are intertwined and so both are described under the models 

step below. It is critical to note that the data analyses below 

came before the specification of hypotheses, because a criti-

cal element of abduction is that patterns in the data drive the 

hypotheses—not the other way around.

Hypothesis/Theory Hypothesis H1 (H
11
) : In the team-

based anagram game, the CI formed is driven more by the 

number of words a player forms than the number of interac-

tions of a player (requests and replies). Social Exchange 

Theory (Homans 1961) focuses on the individual and sug-

gests that the number of words resonates more in forming 

CI because they are directly related to reward in the game. 

Theory of Social Interactions (Becker 1974) indicates that 

interactions are important for forming an interdependent 

Fig. 19  An abductive tree representing candidate abductive loops 

with dependencies. Each node in the figure is one loop (see Fig. 4). 

Since each loop has at least one hypothesis, we label the nodes here 

with hypotheses that are provided in Table 11. Edges to child nodes 

are labeled with outcomes from hypothesis evaluations within a loop, 

and indicate, based on this evaluation, which abductive loop to per-

form next. A node can have any number of outgoing edges to child 

nodes. The orange colored nodes correspond to abductive iterations 

presented herein. The red node is a candidate next loop. This tree is 

not unique; different analysts can devise different trees, and they can 

be modified as analyses proceed. The purpose of this construction is 

to provide a succinct representation of multiple candidate abductive 

loops, and their dependencies (color figure online)

Table 11  Candidate hypotheses to evaluate in abductive iterations. 

Not all of the hypotheses are evaluated herein. The goal of these 

hypotheses, coupled with Fig. 19, is to illustrate that there are many 

possible hypotheses that can be formulated, and it is up to analysts to 

decide which ones to pursue. An analyst will be guided by the results 

of completed iterative abductive analyses

Hypothesis Number Description

H
11

In the team-based anagram game, the collective identity formed is driven more by the number of words a player forms than 

the number interactions of a player (requests and replies)

H
12

Playing the group anagram game will produce greater individual DIFI scores than not playing the group anagram game

H
21

= H
32

As the number and quality of letters assigned to a person decreases (i.e., as the letters assigned to a player occur less fre-

quently in common words), collective identity of the player will increase

H
22

= H
43

(a) As the number of neighbors of a player increases in the anagram game, the number of interactions of a player increases, 

but only up through degree k = 4 . For further increases in k, there will be no increase in numbers of interactions (b) The 

trend in numbers of interactions with k in hypothesis (a) will be reflected in the CI produced in group anagram games: CI 

will increase for 2 ≤ k ≤ 4 , but will saturate thereafter because the numbers of interactions saturate

H
31

= H
42

= H
44

Playing the game with players face to face will produce greater individual DIFI scores (by enabling the players to commu-

nicate and pick up on visual and verbal cues)

H
33

Lesser payouts in the group anagram game means that players do not have enough incentive to engage their neighbors

H
41

Having the group anagram game score of another team displayed during the game will increase CI because it will create a 

stronger in-group/out-group paradigm
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organization. Reciprocity Theory suggests that v
i
 will 

respond to vj ’s requests because v
i
 wants vj to respond to 

hers, so that interactions are important.

Models There are two types of models constructed. One 

type is the models of the group anagram game: Baseline 

Model M0 and M1 from Sect. 5. The other is a regression 

model to predict DIFI2 score as a function of outputs from 

the group anagram games (e.g., number of requests sent 

nRqsS , number of replies received nRplR).

The group anagram game models M0 and M1 of 

Sects. 5.4 and 5.5 were constructed from the time histories 

of actions of players for experiments with k = 2 . The results 

relevant to this abductive iteration are provided in Figs. 11 

and 12. Model M1 is much better at capturing the dynamics 

in the experiments than is Baseline Model M0.

From data of the actions a
i
∈ A from the anagram games, 

and the measured DIFI2 scores after the group anagram 

games, a linear regression was performed to correlate DIFI2 

score with the numbers of actions of each kind for game 

players. The DIFI2 score is given as

where Table 12 provides the equation coefficients and the 

definitions of variables.

Table 13 provides the regression results that identify the 

player actions that correlate with DIFI score. At the 0.05 

level, replies received, replies sent, and requests sent are all 

significant.

Best Explanation Results of a linear regression in 

Table 13 indicate that hypothesis H1 is falsified because 

the number Wrds, i.e., the number of words formed, is not 

significant, while numbers of RplR, RplS and RqsS (i.e., 

interactions) are significant. Thus, Social Exchange Theory 

can be eliminated as a theory of CI formation in this experi-

ment. It is somewhat surprising that Wrds is not significant 

because it is the variable that is most closely associated 

with the reward (earnings). A conjecture was made that the 

greater the monetary reward given to players, the greater 

their affinity would be for the team; these data do not sup-

port this conjecture. In the social sciences, and in many 

domains, eliminating candidate theories is a valuable result 

(that is, an analysis does not always have to identify the best 

theory). Thus, at this point, the best explanation is Reciproc-

ity Theory and Theory of Social Interactions because the 

analyses results in Table 13 show that interactions correlate 

most strongly with DIFI score.

A key result indicated by this first iteration is that the 

group anagram game can produce CI (as measured by the 

proxy DIFI score).

(9)
D̂IFI2 = c

1
+ cRplR nRplR + cRplS nRplS

+ cRqsR nRqsR + cRqsS nRqsS + cWrds nWrds

What is Next? Figure 13 indicates that Model M1 predicts 

player behavior that is invariant with respect to the degrees 

k of players [and hence the number of letters that neighbors 

possess] (plots of other variables of x are similar). We want 

to determine whether there is an effect of k, and hence the 

next experiments are specified to study increasing k (i.e., 

k > 2 ). Thus, the ABM M1 (driven by the data) is guiding 

what to do next. While Social Exchange Theory was elimi-

nated in this loop, Reciprocity Theory and Theory of Social 

Interactions are carried forward into the next loop(s), where 

they may be supported or refuted.

7.4  Abductive Loop 2 (AL‑2)

We execute the steps of the abductive loop in Fig. 4, as 

described next.

Experiments A set of 16 experiments with a total of 137 

players was completed where k = 4 , 6, and 8 in turn. See 

Sect. 4.

Data Analysis We continued the same types of analy-

ses described in AL-1, but with the added dimension of 

k. Figure 20 shows the frequency distributions for replies 

received, for the four values of k. Note the large change in 

distributions in going from k = 2 to k = 4 , but relatively 

minor changes for further increases in k. This indicates two 

regimes of behavior: (1) 2 ≤ k ≤ 4 , and (2) k > 4 . In the 

first regime, numbers of interactions increases with k, and 

in the second regime, the numbers of interactions does not 

appreciably increase with further increases in k. Additional 

data analyses are presented in step best explanation below.

Hypothesis/Theory Two hypotheses are formed based 

from the preceding data. Hypothesis H2 ( = H
22

 ):  (a) As the 

number of neighbors of a player increases in the anagram 

game, the number of interactions of a player increases, but 

only up through k = 4 . For further increases in k, there will 

be no increase in numbers of interactions. (b) The trend 

in numbers of interactions with k in hypothesis (a) will be 

reflected in the CI produced in group anagram games: CI 

will increase for 2 ≤ k ≤ 4 , but will saturate thereafter 

because the numbers of interactions saturate. 

Table 12  Constants in the regression of Eq. (9) to predict DIFI2 score 

of a player from the player actions in the team anagram game

Coefficient Value

Intercept c
1

102.7

cRplR on number of replies received nRplR 14.95

cRplS on number of replies sent nRplS
− 12.99

cRqsR on number of requests received nRqsR 6.406

cRqsS on number of requests sent nRqsS
− 16.43

c
Wrds

 on number of words formed n
Wrds

− 0.2134
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Model Model M2 of Sect. 5.6 was constructed from the 

time sequences of actions of players, from the combined 

data from both iterations. Model results relevant to this itera-

tion are provided in Figs. 14 through 17. ABM M2 captures 

trends in degree k more effectively than ABM M1, for all 

parameters of x.

Best Explanation Figures 20 and 21 provide results that 

address the hypotheses.

For H
22
(a) , we return to Fig. 20 and the observations 

under data analysis. We note a saturation in the distribu-

tions of replies received (distributions for other actions are 

similar). As the number of neighbors of a player increases 

from two to four, the numbers of interactions increases; but 

for k > 4 , the number of interactions does not change appre-

ciably with further increases in k. This can be explained by 

Utility Theory and by Cognitive Load Theory. Utility theory 

argues that 15 letters is enough for a player to form words 

(three letters from each of four neighbors and three own 

letters of a player), so a player derives no marginal utility 

from more neighbors and more letters. Cognitive load theory 

states that a player cannot reason about forming words with 

more than 15 letters, so no attempt is made to acquire more 

letters. Hence, hypothesis H
22

(a) is not falsified. It is pos-

sible in future work to conduct more experiments, possibly 

by modifying the priming procedures, to disambiguate these 

two explanations.

We note the agreement between our hypothesis and the 

results of the experiments. This is a direct result of the 

abductive approach: the data guide the hypotheses. We 

stated in H
22

(a) that the transition between the two regimes 

occurred at k = 4 because the data in Fig. 20 indicated 

this. It is the goal of hypothesis and theories to explain the 

behavior.

For hypothesis H
22

(b), we use Fig. 21, showing how the 

probability density of DIFI score moves to higher scores as 

k increases from two through eight. Thus, Figs. 20 and 21 

together support H
22

(b), but only for k ≤ 4 . The explana-

tion in the hypothesis—that greater DIFI scores is caused 

by greater numbers of interactions—is not supported by the 

Table 13  Results of linear regression of variables in x (see Table 7) against dependent variable DIFI2 score, indicating that interactions are more 

significant than number of words formed in producing CI

The values in bold indicate that the number of replies received (RplR), number of replies sent (RplS) and number of requests sent (RqsS) are 

significant

Var. Interc. RplR RplS RqsR RqsS Wrds

est. 103. 15.0 − 13.0 6.41 − 16.4 − 0.213

p val. 0.001 0.019 0.011 0.332 0.011 0.735
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Fig. 20  Statistical analysis correlation results of the anagram game 

parameters. The probability density of replies received changes mark-

edly from k = 2 to k = 4 , but relatively little for further increasing k 
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Fig. 21  Statistical analysis correlation results of the anagram game 

parameters and DIFI2 score. The probability density of DIFI2 score 

moves to larger DIFI2 score with increasing k, between two and eight
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combined view of Figs. 20 and 21 for k > 4 . The latter fig-

ure shows an ever increasing probability density of greater 

DIFI score with increasing k, but the former figure shows 

an essential saturation of numbers of actions with increas-

ing k beyond k = 4 . Hence, the numbers of interactions may 

be contributing to increasing DIFI scores for 2 ≤ k ≤ 4 , but 

appears not to be not the reason for increasing DIFI scores 

for k > 4 . Consequently, the Theory of Social Interactions 

can explain the results for 2 ≤ k ≤ 4 , but this theory is falsi-

fied for k > 4.

What is Next? At this point we halt the iterative abduction 

process for this paper. In a next iteration, we could try to iso-

late the effects of number of interactions versus the number 

of neighbors in different experiments on DIFI score, to more 

fully explain the results in AL-2. Several other directions 

are possible, guided by the hypotheses in Table 11: evaluat-

ing the quality of letter assignments, varying the number 

of letters per neighbor, playing face-to-face games, adding 

competition for the team. We could also perform a deduc-

tive (confirmatory) analysis by making specific quantitative 

predictions for experiments using ABM M2 as part of AL-2, 

and running corresponding experiments in AL-3.

7.5  Summary of experimental contributions 
to the understanding of CI and possible 
extensions

Abductive loops one and two are presented in Sects. 7.3 

and 7.4. Here, we summarize our findings and identify how 

our findings might be tested or extended by presenting a 

series of research questions for others to consider. First, we 

consider the generality of our specified hypotheses.

Hypotheses H
11

 and H
22

 are stated in Table 11. Since the 

number of words that players form is directly proportional 

to the monetary reward of players in the game, H
11

 may be 

restated in more general terms as Hypothesis H∗

11
: The col-

lective identity formed is driven more by player reward in 

a game than the number interactions of a player with its 

neighbors. Note that we have not removed the notion of 

interactions—which we effect by inducing a network on the 

players, but many games use networks to control interac-

tions, so this is not a problem in our view. The hypotheses of 

H
22

 can be restated in more general terms as Hypothesis H∗

22

: (a) As the number k of neighbors of a player increases, the 

number of interactions of a player increases, but only up to 

a (saturation) point denoted by a critical value of degree k∗ . 

For further increases in k > k
∗ , there will be no increase in 

numbers of interactions. (b) The trend in numbers of interac-

tions with k in hypothesis (a) will be reflected in the CI pro-

duced: CI will increase up to the saturation point, but will 

remain relatively constant thereafter because the numbers 

of interactions saturate.

There is no mention of the group anagram game or 

our DIFI score task in these restated hypotheses. Specifi-

cally, our hypotheses and findings need not be specified 

in terms of the particulars of our game, such as particular 

letters requested of neighbors or specific words formed. 

Rather, our hypotheses and findings may be stated in 

terms of game rewards (i.e., earnings), numbers of con-

nections (i.e., network degree) of players, and numbers 

of player interactions. These are basic features. One rea-

son to state the hypotheses in terms of the games, as we 

did in Sects. 7.3 and 7.4, is because it makes clearer how 

the analyses tie in with the hypotheses. We return to the 

implications of these restatements after summarizing our 

findings.

In Sect. 7.3, we find that CI is not produced owing to the 

parameter most closely aligned with the payout (i.e., earn-

ings) to the group: the number of words formed. Since a 

player’s monetary benefit is most closely and directly tied to 

the number of words formed, one might conjecture that this 

variable would most closely correlate with the DIFI score 

(i.e., our measure of CI). That is, we speculated that success 

in the group anagram game, in terms of increases in mon-

etary reward, would result in increases in players’ affinities 

for the team. Our analyses indicate that this is not the case. 

Hence, financial rewards did not translate into greater CI. 

We found instead that numbers of interactions are more sig-

nificantly correlated with greater DIFI scores, our proxy for 

CI, for the k = 2 data.

In Sect. 7.4, where we study the effects of 2 ≤ k ≤ 8 , we 

find that the numbers of interactions increase most rapidly 

as number of neighbors increases from two to four. As player 

degree increases from four to six, and then to eight, the num-

bers of interactions remains essentially constant. However, 

the DIFI score increases as player degree increases from two 

to eight. Thus, DIFI score increases with increasing numbers 

of interactions, as described in the abductive loops above, 

but increases further as numbers of interactions remain rela-

tively constant, but numbers of neighbors increases.

As stated earlier in this subsection, our hypotheses 

and their evaluations can be stated in general terms. Con-

sequently, it should be possible to test our findings using 

other group interaction approaches. These could be online 

or offline settings, computer-based or not computer-based. 

Player (participant) interactions can be of various forms: 

verbal communication, written communication, transactions 

or partial transactions in the form of actions, or selection 

(i.e., choosing a subset of neighbors from a player’s com-

plete set of neighbors). We use a network setting; this is 

not required, although it does provide the ability to control 

who might interact with whom. Also, we use DIFI score as 

a proxy for CI, based on the literature, but other means of 

inferring the existence of CI are also viable. These decisions 

are of course the prerogative of the researcher.
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Nonetheless, we provide some specific questions that 

others may consider in their work. This list is not exhaus-

tive, but illustrates how our findings may be tested and/or 

extended by others:

1. Do other graph structural properties, such as clustering 

coefficient, influence CI formation?

2. Does the proxy or measurement of CI increase with the 

number of neighbors (interactors) that a player has?

3. Does the proxy or measurement of CI increase with the 

number of interactions that a player has?

4. Is a one-shot, binary decision game as effective as a 

multi-action (or multi-decision) game where actions 

may be repeated over time, in producing CI?

5. Can the CI priming process (for us, the group anagram 

game) be more effective by introducing competition with 

another team? (There are many ways to do this, includ-

ing using a fictional team, using data from a previous 

experiments where other teams did well, or poorly.)

As we stated in Sect. 1.4 when describing our technical chal-

lenges, we believe that our work is not the final word on CI, 

but rather is closer to a starting point, providing detailed 

methods and results for others to scrutinize and extend.

7.6  Abductive loops: role of analyst and bigger 
picture

Two ALs have been demonstrated. Many additional loops 

are possible, as illustrated in Fig. 19, which depicts several 

hypotheses, including the two addressed above (in orange). 

These additional loops would require more experiments. 

Figure 19 and Table 11 make clear the important role of 

an analyst in this process, as she guides the direction of the 

looping. So, while a plan such as that in Fig. 19 may be use-

ful, the actual tree structure will evolve with analyst deci-

sions as the looping progresses and as data are generated, 

because hypotheses are based on newly-generated data in 

abduction.

8  Limitations and additional work

More experiments, particularly at greater k would be useful. 

Also, we would like to alter the number of letters and to con-

trol the “quality” of letters that are assigned to players (e.g., 

e is a more desirable letter than q) in additional experiments, 

so that we can run experiments that will more stringently test 

the models. We would like to study more network structures 

(i.e., connectivity among players in a game), such as a clique 

structure. Beyond collecting more data, we could test more 

conditions, and also specify and evaluate more hypotheses 

about CI. We attempted to correlate player behavior with 

survey information in the online experimental platform. For 

example, we tried to correlate DIFI score with player age, 

gender, nationality, ethnic group, and education level. We 

did not get a strong signal in any of these correlation studies. 

This would be a huge step forward if such correlations exist 

and can be found because it would relate macro-player fea-

tures with player behavior. With respect to modeling, we can 

improve the models for the player actions (e.g., the process 

of forming words); this work is in progress. We can improve 

the modeling in translating results in the group anagram 

game to the DIFI scores, to better understand the connection 

between priming and CI formation.

9  Summary

We formalize an abductive loop, implement it computation-

ally, and exercise it in an experimental setting (the group 

anagram game) designed to induce CI, as operationalized by 

Swann’s DIFI score. However, our abductive looping pro-

cess is not tied to CI. As part of the abductive iterations, we 

provide novel experimental insights into CI and build and 

evaluate three ABMs. This work establishes the potential of 

iterative abductive looping for the (computational) social 

sciences.
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A Supplemental related work

Related work topics that augment those in Sect. 3 are pro-

vided here. See Table 2 for a listing of all related work 

topics.

A.1 Individual anagram games: modeling

In  Tresselt (1968), problem solving and verbal cues are 

analyzed with an anagram game. Tresselt (1968) modifies 

the H. Kendler and S. Kendler (1962) mediational model of 

problem-solving behavior (introducing word length and let-

ter position), to understand anagram problem solving. This 

is a theoretical model of individual anagram games.
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A.2 Individual anagram games: experiments 
and modeling

These works combine experiments and modeling. In Feather 

(1969), it was found that subjects who were initially confi-

dent of passing an anagram game test tended to attribute suc-

cess to ability and failure to bad luck. However, subjects who 

were initially not confident tended to attribute success to 

good luck and failure to lack of ability. Results are discussed 

in terms of Heiderian theory and a valence-difficulty model. 

In  Feather and Simon (1971a, b), two individuals played 

anagram games simultaneously but independently to test 

whether a person attributed her success (if she performed 

better) to skill versus good fortune, and failure to inferior 

skill or bad luck. Attributions were found to be dependent 

on expectations of players. Results are discussed in terms 

of models involving Heider’s principle of balance and his 

analysis of the causes of action, in terms of positivity biases 

in social perception, and as indicating effects of the social 

context of performance upon attribution and valence.

A.3 Modeling of CI

Lustick (2000), Rousseau and van der Veen (2005) use 

ABMs to study identity diffusion. An agent adopts (changes) 

her type of identity to that of a neighbor with a stronger 

(higher valued) type of identity. Hence, these are conta-

gion processes and are implemented much like voter mod-

els (de Oliveira 1992; Pereira and Moreira 2005). Other 

works modeling collective identity (van Zomeren et al. 

2008; Chen and Li 2009; Benjamin et al. 2016; Ackland 

and O’Neil 2011) are presented in Sect. 3.3.

A.4 Agent‑based models of anagram games 
and formation of CI

The Charness et al. (2014) work in Sect. 3.6 has no mod-

eling for the group anagram game. This motivated the online 

experiments and ABMs in Ren et al. (2018). This article is 

an expansion of Ren et al. (2018). In this work, we model 

the priming process of producing CI, which is the group 

anagram game. There are no ABMs (or models of any kind) 

of group anagram games, to our knowledge, other than ours.

A.5 Studies of phenomena related to CI

Many phenomena, such as in-group and out-group effects 

are related to CI. In Brewer and Silver (1978), Perdue 

et al. (1990), laboratory experiments with no interactions 

between subjects are performed. In  Brewer and Silver 

(1978), it was found that bias in favor of the in-group on a 

reward allocation task was unaffected by the arbitrariness 

of classification into groups. An effort was made to assure 

that subjects in the arbitrary condition would not perceive 

the out-group as dissimilar. They found that similarity-

dissimilarity of the out-group did not affect allocation bias 

as long as the in-group was perceived as similar to the 

subject. Subjects were divided clearly into groups labeled 

“dark” and “light”. Subjects then were asked to indicate 

their ratings first of “the other members of my group” and 

then of “the members of the other group” on a series of 

six-point bipolar scales (friendly-unfriendly; trustworthy-

untrustworthy; cooperative-competitive; intelligent-stupid; 

weak-strong; generous-stingy; likeable-unlikeable). In   

Perdue et al. (1990), classical conditioning in-group and 

out-group descriptors (e.g., “us” and “them”) are used to 

establish evaluative responses to novel, unfamiliar targets. 

Nonsense syllables unobtrusively paired with in-group 

designating pronouns (e.g., “we”) were rated as more 

pleasant than syllables paired with out-group designators 

(e.g., “they”).

Paris et al. (1972) study how the anticipated interaction 

between groups determines the representations that groups 

have of each other. When students are categorized into 

groups, discrimination occurs such that the in-group is more 

favorably represented than the out-group before interaction 

takes place and also when no interaction is anticipated. 

Such discrimination is stronger when competitive interac-

tion is anticipated in an important situation. In this condi-

tion, intergroup differences are also more easily projected 

on physical traits. Categorization is shown to be not only 

an independent variable but also a dependent variable in 

intergroup relations.

In  Kahn and Ryen (1972), Own Group Bias (OGB) was 

measured by differences in pre and postgame scores on the 

evaluative scales of the Semantic Differential (SD).

In   Shank et  al. (2015), an experiment on Amazon 

Mechanical Turk was used to develop an agent-based simu-

lation to understand how people’s motivations and behaviors 

within public goods dilemmas interact with the properties 

of the dilemma to lead to collective outcomes. They predict 

how the public good’s benefit and size, combined with con-

trolling individual versus group properties, produce different 

levels of cooperation in public goods dilemmas.

In   Sethi and Somanathan (2006), a simple model of 

collective action is presented as a framework for empirical 

research into the issue of when collective action in the com-

mons will be successful.

In  van Zomeren et al. (2008), an integrative social iden-

tity model of collective action (SIMCA) is developed that 

incorporates three socio-psychological perspectives on 

collective action. Instructions for coders were to answer 

different questions like “Does the measure of identifica-

tion (used in this study) refer to a disadvantaged group or 

a social movement?”, “Is this group incidentally disadvan-

taged or structurally disadvantaged?”. Coders also rated the 
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extent to which collective disadvantage was structural on 

a 5-point Likert-type scale ranging from 1 (not at all) to 5 

(very much).

In  Salganik and Watts (2009), new insights into the role 

of individual behavior on collective outcomes are obtained 

using a multiple-worlds experimental design in a web-based 

experiment in which 2930 participants listened to, rated, and 

download 48 songs by up-and-coming bands.

In  Suri and Watts (2011), laboratory experiments with 

interactions between subjects are performed. Web-based 

experiments are conducted where 24 individuals played a 

local public goods game arranged on one of five network 

topologies that varied between disconnected cliques and a 

random regular graphs. It was found that although players 

did generally behave like conditional cooperators, they were 

as likely to decrease their contributions in response to low 

contributing neighbors as they were to increase their con-

tributions in response to high contributing neighbors. They 

also found that positive effects of cooperation were conta-

gious only to direct neighbors in the network.

In Capraro (2013), online experiments using Amazon 

Mechanical Turk were used to develop a predictive model 

of human cooperation able to organize a number of different 

experimental findings that are not explained by the standard 

model.

In  Rousseau and van der Veen (2005), an agent-based 

computer simulation of identity change explores how 

changes in the attributes of the individual and/or elements 

of the environment influence the dependent variable: the 

degree of shared identity in a population.

There is a host of other studies that investigate phenom-

ena such as cooperation and a person’s affinity for a group 

that are closely related to CI. In Worchel et al. (1977), Char-

ness et al. (2007) laboratory experiments with interactions 

between subjects are performed. They study concepts such 

as group attraction and salience, respectively, which are 

related to CI. In  Worchel et al. (1977), study groups worked 

cooperatively on two tasks and results were interpreted as 

showing that both previous interaction and success of com-

bined effort are important variables in determining when 

intergroup cooperation will increase intergroup attraction. 

In  Charness et al. (2007), groups perform two stage games 

as priming tasks, the Battle of the Sexes and Prisoner’s 

Dilemma. Results show that the salience of the group affects 

behavior of members, as well as the behavior of people in 

another group, and that participants anticipate these effects.

A.6 Data‑driven: combining experiments 
and data‑driven modeling

This section reports on works that combine experiments with 

data-driven modeling. These works cover explore-exploit 

networked experiments with limited modeling (Mason and 

Watts 2012); individual models of single-choice (i.e., one-

shot) evacuation decisions (Nguyen et al. 2017); ABM of 

emotion and information contagions spreading on a network 

and comparisons with a single event (Li et al. 2014); and 

ABM of solar panel adoption and comparisons with data 

in San Diego county (Zhang et al. 2016). See  Zhang and 

Vorobeychik (2019) for a review of innovation diffusion 

models. None of these works use ABMs to model networked 

experiments where individuals take a series of actions (that 

may be repeated) over time, to study CI, as we do.

In Luhmann and Rajaram (2015), small-scale laboratory 

experiments and an ABM were used to analyze the dynamics 

of collaborative inhibition. In Gates et al. (2017), the model 

in Luhmann and Rajaram (2015) was tested against human 

data collected in a large-scale experiment to find that par-

ticipants demonstrate non-monotonicities not evident in the 

predictions. These unexpected results motivate more recent 

work in elucidating the algorithms underlying collabora-

tive memory. In Paxton et al. (2018), using real-time online 

social experiments data, a statistical model is used to study 

interpersonal coordination in a “minimally interactive con-

text” to explore how people become coupled in their percep-

tual and memory systems while performing a task together.

In contrast to the above works, where controlled experi-

ments are used to produce data that are then used for mod-

eling, there are many models based on observational data. 

We survey some of these works here.

In Korolov et al. (2016), the possibility of predicting 

a social protest (planned, or unplanned) based on social 

media messaging is studied. In Nguyen et al. (2016), to 

help increase the performance of retweet prediction, a flex-

ible model under the framework of Random Forest classi-

fier captures a number of behavior signals affecting user’s 

retweet decision. In Hu et al. (2014), a semantic model that 

can naturally represent various academic social networks, 

especially various complex semantic relationships among 

social actors, is presented. In Qin et al. (2017), the proposed 

method integrates topology and content of networks, and 

introduces a novel adaptive parameter for controlling the 

contribution of content with respect to the identified mis-

match degree between the topological and content informa-

tion. In Attema et al. (2015), data-driven multi-agent models 

predict Twitter trends. In van Maanen and van der Vecht 

(2013), a method that implements, validates, and improves 

an individual behavior model is proposed. The multi-agent 

model contains the social network structure, individual 

behavior parameters, and the scenario that are obtained from 

empirical data. In Lee and Oh (2013), emergence and propa-

gation of reputations in social networks is modeled with 

a distributed algorithm. In Chierichetti et al. (2014), using 

several Twitter data sets, focusing in particular on the tweets 

sent during the soccer World Cup of 2010, a model of how 

users switch between producing information or sentiments 
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and sharing others news or sentiments is developed. In 

Korolov et al. (2015), a theoretical analysis is developed 

for how social-chatter quantitatively relates to action via a 

superlinear scaling law.

Other works include using data from geotagged social 

media messages and data from mobile health applications 

(Tran and Lee 2016; Kurashima et al. 2018) In Tran and Lee 

(2016), to understand citizen reactions regarding Ebola, a 

large-scale data-driven analysis of geotagged social media 

messages is performed. In Kurashima et al. (2018), data 

from mobile health applications is used to develop a statis-

tical model, called TIPAS (Time-varying, Interdependent, 

and Periodic Action Sequences). This approach is based 

on personalized, multivariate temporal point processes that 

model time-varying action propensities through a mixture 

of Gaussian intensities. Their model captures short-term 

and long-term periodic interdependencies between actions 

through Hawkes process-based self-excitations.

Clearly, much of the modeling of observational data is 

motivated by social media.

B Experimental data

This Appendix describes data from the game experiments of 

Sect. 4. In this section we present an analysis of the experi-

mental data that illustrates how players interact in the ana-

gram games. We focus on experimental data that are useful 

in modeling. We identify four main actions a
i
∈ A , 1 ≤ i ≤ 4 , 

in the set A of actions for a player during the game: (1) 

request letter from neighbor, (2) reply with letter to a request 

from a neighbor, (3) form and submit valid word, and (4) 

think (i.e., a no-op).

We define the following variables for the actions in the 

game:

• When v
i
 sends a requests for a letter to vj , a request sent 

occurs.

• When vj receives the letter request from v
i
 , a request 

received occurs.

• When vj replies with the letter requested from v
i
 , a reply 

sent occurs.

• When v
i
 receives the letter reply from vj , a reply received 

occurs.

• When v
i
 uses its own letters to form a word, a word 

formed occurs.

Table 14 shows a summary of the section plots and the ques-

tions we answer with the analyses.

B.1 Timestamp for letter request

The number of letters a player can request through a game 

depends on the number of its neighbors. Each neighbor 

can share up to three letters (the initial three letters), so if a 

player has k = 2 neighbors, then six letters can be requested 

throughout the game. If a player has k = 8 neighbors, then 24 

letters can be requested. We want to analyze the behavior of 

players with reference to the letter request action and answer 

the following questions. When do players request letters dur-

ing the game? How does the number of neighbors affects the 

behavior of a player to request a letter in the game?

Figure 22 shows a histogram with 10 bins of 30-s each 

of timestamps for request sent, for 47 experiments with 

k = 2, 3, 4, 5, 6, 8 . A kernel-density estimation with Gauss-

ian kernels is used to estimate the probability density func-

tion. It indicates that more letters are being requested during 

the first half of the 300-second anagram game. To analyze 

whether the number of neighbors affects the letter request, 

Figure B.1 in Appendix B.1.1 from Cedeno (2019) shows 

Table 14  Summary of the analyses in the Experimental Data Sect. B, 

and the questions we answer. Section B.1 presents histograms for the 

timestamps for letter requests. Section B.2 presents histograms for the 

timestamps for letter replies. Section B.3 presents histograms for the 

timestamps of the time duration between replies received and requests 

sent. Section  B.4 presents histograms for the timestamps for words 

formed

Section Histograms Questions for analysis

B.1 Timestamps for letter request When do players request letters during the game?

How does the number of neighbors affect the behavior of a player to request a letter in the game?

B.2 Timestamps for letter reply When do players reply to letter requests during the game?

How does the number of neighbors affect the behavior of a player to reply a letter in the game?

B.3 Timestamps for time 

duration(reply received–

request sent)

How long does it take players to reply to a letter request?

How does the number of neighbors affects the time duration between the timestamps of the letter reply 

action and the letter request action?

B.4 Timestamps for word formed When do players submit words during the game?

How does the number of neighbors and the number of available letters affects the number of words 

formed by a player?
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histograms with 10 bins of 30-s each for request sent for 

experiments with k = 2 , 3, 4, 5, 6, 8. The same trends exist 

for each value of k. However, if there are few neighbors 

( k = 2 ) and consequently fewer available letters (3 letters per 

neighbor), there are fewer letter requests and letter replies 

near the end of the game.

B.2 Timestamp for letter reply sent

The number of letters a player can reply with, in response 

to letter requests, through a game depends on the number of 

its neighbors. Each neighbor can share up to 3 letters, so if 

a player has k = 2 neighbors, then 6 letters can be replied 

(when requested) at any time through the game, since the 

number of letters assigned initially is three. We want to 

analyze the behavior of players with reference to the letter 

reply action and answer the following questions. When do 

players reply letters during the game? How do the number 

of neighbors affects the behavior of a player to reply a letter 

in the game?

Figure 23 shows a histogram with 10 bins of 30 s each, 

for reply sent, for 47 experiments with k = 2, 3, 4, 5, 6, 8 . A 

kernel-density estimation with Gaussian kernels is used to 

estimate the probability density function. It indicates that 

letter requests are being replied to throughout the game, but 

more so at the earlier stages of the game. To analyze whether 

the number of neighbors affects the letter request, Figure 

Fig. 22  Probability density distribution for time of request sent over 

the 300-s anagram game. Each of the bins on the x-axis corresponds 

to 30-s intervals. It shows experiments with k = 2, 3, 4, 5, 6, 8 . A ker-

nel-density estimation with Gaussian kernels is used to estimate the 

probability density function. Letter requests are made throughout the 

game, rather than solely at the outset

Fig. 23  Probability density distribution for time of reply sent over the 

300-s anagram game. Each of the bins on the x-axis corresponds to 

30-s intervals. It shows experiments with k = 2, 3, 4, 5, 6, 8 . A kernel-

density estimation with Gaussian kernels is used to estimate the prob-

ability density function. Letter replies are made throughout the game, 

rather than solely at the outset

Fig. 24  Probability density distribution for time duration between 

requesting a letter and replying to the request, over the 300-s anagram 

game. Each of the bins on the x-axis corresponds to 30-s intervals. 

It shows experiments with k = 2, 3, 4, 5, 6, 8 . A kernel-density estima-

tion with Gaussian kernels is used to estimate the probability density 

function. Players generally respond relatively quickly to their neigh-

bors letter requests, with replies typically made within 30  s of the 

request

Fig. 25  Probability density distribution for time of forming words 

over the 300-s anagram game. Each of the bins on the x-axis corre-

sponds to 30-s intervals. It shows experiments with k = 2, 3, 4, 5, 6, 8 . 

A kernel-density estimation with Gaussian kernels is used to estimate 

the probability density function. Word submissions are made through-

out the game, and the numbers of neighbors and available letters do 

not affect this type of action
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B.2 in Appendix B.1.2 in Cedeno (2019) shows histograms 

with 10 bins of timestamp for reply sent for experiments 

with k = 2, 3, 4, 5, 6, 8 . Similar trends are obtained when data 

are broken down by k. We find that letter reply are made 

throughout the game, rather than solely at the outset.

B.3 Time duration from sending a letter request 
to receiving the requested letter

When v
i
 requests a letter of vj , it has to wait for vj to respond. 

Once vj replies with the letter, then v
i
 is allowed to use the 

received letter and form words to contribute to the team. 

This time duration between request sent and reply received 
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Fig. 26  Within each subfigure we show KL-divergence values for 

Baseline Model M0 across the five parameters of x at 1-min intervals: 

lower values are better. Each plot contains data over a time window: 

a 0–1 min, b 1–2 min, c 2–3 min, d 3–4 min and e 4–5 min, of the 

5-min anagram game. The data are for conditions (n = 10, k = 2) . 

These plots show that request-related predictions are better than 

reply-related predictions over all time intervals. The reply-related pre-

dictions are better in the second half of the 5-min anagram games, 

but Fig. 23 shows that in experiments, there are fewer replies in the 

second half of the games

0.0

0.5

1.0

1.5

2.0

RplR RplS RqsR RqsS Wrds

K
L
 D

iv
e
rg

e
n
c
e

(a) 0-1 minute

0.00

0.25

0.50

0.75

1.00

RplR RplS RqsR RqsS Wrds

K
L
 D

iv
e
rg

e
n
c
e

(b) 1-2 minute

0.0

0.2

0.4

0.6

RplR RplS RqsR RqsS Wrds

K
L
 D

iv
e
rg

e
n
c
e

(c) 2-3 minute

0.0

0.1

0.2

0.3

0.4

0.5

RplR RplS RqsR RqsS Wrds

K
L
 D

iv
e
rg

e
n
c
e

(d) 3-4 minute

0.0

0.4

0.8

1.2

RplR RplS RqsR RqsS Wrds

Baseline
M1

K
L
 D

iv
e
rg

e
n
c
e

(e) 4-5 minute

Fig. 27  Within each subfigure we show KL-divergence values for the 

Baseline Model M0 (in green) and Model M1 (in red) across the five 

parameters of x: lower values are better. The modeling conditions are 

experiment with k = 2 . Each plot contains data over a time window: 

a 0–1 min, b 1–2 min, c 2–3 min, d 3–4 min and e 4–5 min, of the 

5-min anagram game. While Model M0 has good predictions for min-

ute 3 and minute 5 (with the exception of the words formed), Model 

M1 has better predictions for minute 3 and minute 5 for all five x vari-

ables (color figure online)
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reveals how long players take to reply to their neighbors’ 

requests. A player only has to request a letter (and receive 

it) on one occasion to use it as any number of times in form-

ing words. Remember that these rules were designed to fos-

ter word construction, to increase earnings potential, and 

to foster team cohesion. We want to analyze the behavior 

of players with reference to the time duration between the 

timestamps of the letter reply action and the letter request 

action, to answer the following questions. How long does it 

take for players to reply to a letter request? How does the 

number of neighbors affect the difference between the times-

tamps of the letter reply action and the letter request action?

Figure 24 shows a histogram with 10 bins of 30-s each, 

for the time difference between reply received and request 

sent, for 47 experiments with k = 2, 3, 4, 5, 6, 8 . A kernel-

density estimation with Gaussian kernels is used estimate 

the probability density function. Players generally respond 

relatively quickly to their neighbors letter requests with 

replies typically made within 30 s of the request.

To analyze whether this behavior is common while 

increasing the number of k neighbors in a game, Figure 

B.3 in Appendix B.1.3 in Cedeno (2019) shows histograms 

with 10 bins of 30-s each of timestamp change between 

reply received and request sent for experiments with 

k = 2, 3, 4, 5, 6, 8 . The number of neighbors doesn’t affect 

this type of action, players generally respond relatively 

quickly to their neighbors letter requests with replies typi-

cally made within 30 s of the request.

B.4 Timestamp for word formed

At any time during a game, a player can form a word and submit 

it for validation to our web application. If a player possesses let-

ters to form a valid word, then she forms and submits a word, 

the application validates it, and the word is added to the game 

screen. We want to analyze the behavior of players with refer-

ence to the action of word formed and answer the following 

questions. When do players submit words during the game? 

How does the number of neighbors and the number of available 

letters affects the number of words formed by a player?

Figure 25 shows a histogram with 10 bins of 30-s each 

for word formed, for 47 experiments with k = 2, 3, 4, 5, 6, 8 . 

A kernel-density estimation with Gaussian kernels is used 

estimate the probability density function. It suggests that 

words are being formed throughout the game, and even up 

through the end of the game. This justifies a 5-min anagram 

game duration. To analyze whether the number of neighbors 

affects the word formation, Figure B.4 in Appendix B.1.4 

in Cedeno (2019) shows histograms with 10 bins of 30-s 

each for timestamp of word formed for experiments with 

k = 2, 3, 4, 5, 6, 8 . Word submissions are made throughout 

the game, and the number of neighbors and available letters 

does not affect this behavior.

C Modeling supplement

This Appendix contains several figures that support the mod-

eling of Sect. 5. See Figs. 26 and 27.

References

Abbott A (1995) Sequence analysis: new methods for old ideas. Ann 

Rev Sociol 21:93–113

Abrams DE, Hogg MA (1990) Social identity theory: constructive and 

critical advances. Springer, New York

Ackland R, O’Neil M (2011) Online collective identity: the case of 

the environmental movement. Soc Netw 33:177–190

Agrawal R, Srikant R (1995) Mining sequential patterns. In: Pro-

ceedings of the eleventh international conference on data 

engineering, IEEE Computer Society, ICDE’95, Washington, 

pp 3–14

Aipperspach R, Cohen E, Canny J (2006) Modeling human behavior 

from simple sensors in the home. In: Proceedings of the IEEE 

conference on pervasive computing

Alexander JC, Eyerman R, Giesen B, Smelser NJ, Sztompka P (2004) 

Cultural trauma and collective identity, 1st edn. University of 

California Press, Berkeley

Andrews EAM, Bonner AJ (2011) Explaining genetic knock-out effects 

using cost-based abduction. In: Proceedings of the 22nd inter-

national joint conference on artificial intelligence (IJCAI), pp 

1635–1640

Atran S, Axelrod R, Davis R (2007) Sacred barriers to conflict resolu-

tion. Science 317:1039–1040

Atran S, Sheikh H, Gomez A (2014a) Devoted actors sacrifice 

for close comrades and sacred cause. Proc Natl Acad Sci 

111(50):17702–17703

Atran S, Sheikh H, Gomez A (2014b) For cause and comrade: devoted 

actors and willingness to fight. Cyclodynamics 5:41–57

Attema T, van Maanen PP, Meeuwissen E (2015) Development and 

evaluation of multi-agent models predicting twitter trends in mul-

tiple domains. In: 2015 IEEE/ACM international conference on 

advances in social networks analysis and mining (ASONAM), 

pp 1133–1140

Bach A (1990) Boltzmann’s probability distribution of 1877. Arch Hist 

Exact Sci 41:1–40

Becker GS (1974) A theory of social interaction. J Political Econ 

82:1063–1093

Benjamin DJ, Choi JJ, Fisher G (2016) Religious identity and economic 

behavior. Rev Econ Stat 98(4):617–637

Bergmann JHM, Langdon PM, Mayagoitia RE, Howard N (2014) 

Exploring the use of sensors to measure behavioral interactions: 

An experimental evaluation of using hand trajectories. PLoS One 

9(2):1–10

Bornstein G, Yaniv I (1998) Individual and group behavior in the 

ultimatum game: Are groups more rational players? Exp Econ 

1:101–108

Brewer MB (1991) The social self: on being the same and different at 

the same time. Personal Soc Psychol Bull 17:475–482

Brewer MB, Gardner W (1996) Who is this “we”? Levels of collec-

tive identity and self representations. J Personal Soc Psychol 

71:83–93

Brewer MB, Silver M (1978) Ingroup bias as a function of task char-

acteristics. Eur J Soc Psychol 8(3):393–400

Brody H (2000) The other side of Eden: hunters, farmers, and the shap-

ing of the world. Farrar, Straus and Giroux, New York



Social Network Analysis and Mining           (2020) 10:11  

1 3

Page 39 of 43    11 

Brunsdon AR (2017) #MisconstruedidentitiesMustFall collective: iden-

tity formation in the current South African context: a practical 

theological perspective. HTS Theol Stud 73:1–7

Butler J (1988) Performative acts and gender constitution: an essay in 

phenomenology and feminist theory. Theatre J 40(4):519–531

Cadsby CB, Song F, Tapon F (2007) Sorting and incentive effects of 

pay for performance: an experimental investigation. Acad Manag 

J 50:387–405

Cadsby CB, Song F, Tapon F (2010) Are you paying your employees 

to cheat? An experimental investigation. BE J Econ Anal Pol 

10:1–30

Cameron D (1997) Performing gender identity: Young men’s talk and 

the construction of heterosexual masculinity. In: Johnson S, 

Hanna U (eds) Language and masculinity. Blackwell, Oxford, 

pp 47–64

Capraro V (2013) A model of human cooperation in social dilemmas. 

PLoS One 8:e72427–1–e72427–6

Cedeno VI (2019) Pipelines for computational social science experi-

ments and model building. Ph.D. dissertation, Virginia Poly-

technic Institute and State University, https ://vtech works .lib.

vt.edu/bitst ream/handl e/10919 /91445 /Ceden o_VI_D_2019.pdf. 

Accessed 8 Jan 2019

Chamiak E, Santos E (1992) Dynamic map calculations for abduction. 

In: Proceedings AAAI conference on artificial intelligence, pp 

552–557

Charness G, Rigotti L, Rustichini A (2007) Individual behavior and 

group membership. Am Econ Rev 97:1340–1352

Charness G, Cobo-Reyes R, Jimenez N (2014) Identities, selection, 

and contributions in a public-goods game. Games Econ Behav 

87:322–338

Chen DL, Yeh S (2014) The construction of morals. J Econ Behav 

Organ 104:84–105

Chen R, Chen Y (2011) The potential of social identity for equilibrium 

selection. Am Econ Rev 101(6):2562–89

Chen Y, Li S (2009) Group identity and social preferences. Am Econ 

Rev 99:431–457

Chen Y, Li SX, Liu TX, Shih M (2014) Which hat to wear? Impact of 

natural identities on coordination and cooperation. Games Econ 

Behav 84:58–86

Chen DL, Schonger M, Wickens C (2016) otree-an open-source plat-

form for laboratory, online and field experiments. J Behav Exp 

Financ 9:88–97

Chierichetti F, Kleinberg J, Kumar R, Mahdian M, Pandey S (2014) 

Event detection via communication pattern analysis. In: Proceed-

ings of the 8th international conference on weblogs and social 

media, ICWSM, pp 51–60

Choup AM (2008) The formation and manipulation of collective iden-

tity: a framework for analysis. Soc Mov Stud 7(2):191–207

Cohn A, Fehr E, Maréchal MA (2014) Business culture and dishonesty 

in the banking industry. Nature 516:86–89

Cohn A, Marechal MA, Noll T (2015) Bad boys: how criminal identity 

salience affects rule violation. Rev Econ Stud 82(4):1289–1308

Cover TM, Thomas J (1991) Elements of information theory. Wiley, 

Hoboken

Contractor N (2019) How can computational social science motivate 

the development of theories, data, and methods to advance our 

understanding of communication and organizational dynamics? 

In: Foucault Welles B, González-Bailón S (eds) The Oxford 

Handbook of Networked Communication. Oxford University 

Press. https ://doi.org/10.1093/oxfor dhb/97801 90460 518.013.7

Currarini S, Jackson M, Pin P (2009) An economic model of friend-

ship: homophily, minorities and segregation. Econometrica 

77:1003–1045

Davis WL, Davis DE (1972) Internal-external control and attribution 

of responsibility for success and failure. J Personal 40:123–136

de Oliveira M (1992) Isotropic majority-vote model on a square lattice. 

J Stat Phys 66:273–281

DeChurch LA, Mesmer-Magnus JR (2010) The cognitive underpin-

nings of effective teamwork: a meta-analysis. J Appl Psychol 

95(1):32–53

Dominowski RL (1969) The effect of pronunciation practice on ana-

gram difficulty. Psychon Sci 16(2):99–100

Drouvelis M, Metcalfe R, Powdthavee N (2010) Priming cooperation in 

social dilemma games. In: IZA Discussion Papers 4963, Institute 

for the Study of Labor (IZA)

Durkheim E (1951) Suicide. Free Press, Mumbai

Echenim M, Peltier N, Tourret S (2013) An approach to abductive 

reasoning in equational logic. In: Proceedings of the 23rd inter-

national joint conference on artificial intelligence (IJCAI), pp 

531–537

Eckel C, Grossman P (2005) Managing diversity by creating team 

identity. J Econ Behav Organ 58:371–392

Epstein JM (2007) Generative social science: studies in agent-based 

computational modeling. Princeton University Press, Princeton

Eriksen TH (2010) Ethnicity and nationalism: anthropological per-

spectives, 3rd edn. Pluto Press, London

Erikson EH (1980) Identity and the life cycle. W. W. Norton & Com-

pany, New York

Feather NT (1969) Attribution of responsibility and valence of suc-

cess and failure in relation to initial confidence and task per-

formance. J Personal Soc Psychol 13:129–144

Feather NT, Simon JG (1971a) Attribution of responsibility and 

valence of outcome in relation to initial confidence and suc-

cess and failure of self and other. J Personal Soc Psychol 

18:173–188

Feather NT, Simon JG (1971b) Causal attributions for success and 

failure in relation to expectation of success based upon selec-

tive or manipulative control. J Personal Soc Psychol 39:527–541

Feher O, Wonnacott E, Smith K (2016) Structural priming in artificial 

languages and the regularisation of unpredictable variation. J 

Mem Lang 91:158–180

Fiske ST, Gilbert DT, Lindzey G (2010) Handbook of social psychol-

ogy, 5th edn. Wiley, Hoboken

Flach PA, Kakas AC (2010) Abduction and induction: essays on their 

relation and integration. Springer, New York

Fominaya CF (2010) Collective identity in social movements: central 

concepts and debates. Sociol Compass 4:393–404

Gates MA, Suchow JW, Griffiths TL (2017) Empirical tests of large-

scale collaborative recall. In: CogSci

Gibbs AL, Su FE (2002) On choosing and bounding probability met-

rics. Int Stat Rev 70:419–435

Gilhooly KJ, Johnson CE (1978) Effects of solution word attributes 

on anagram difficulty: a regression analysis. Q J Exp Psychol 

30(1):57–70

Gilwhite FJ (2001) Are ethnic groups biological species to the human 

brain? Essentialism in our cognition of some social categories. 

Curr Anthropol 42(4):515–553

Ginges J, Atran S (2013) Sacred values and cultural conflict. In: 

Advances in culture and psychology, pp 273–305

Goldberg CA (2003) Haunted by the specter of communism: collective 

identity and resource mobilization in the demise of the Workers 

Alliance of America. Theory Soc 32(5/6):725–773

Goldman M, Stockbauer JW, McAuliffe TG (1977) Intergroup and 

intragroup competition and cooperation. J Exp Soc Psychol 

13:81–88

Gomez A, Brooks ML, Buhrmester MD, Vazquez A, Jetten J, 

Swann WB (2011a) On the nature of identity fusion: Insights 

into the construct and a new measure. J Personal Soc Psychol 

100:918–933

Gomez A, Morales J, Hart S, Vazquez A, Jetten J, Swann WB (2011b) 

Rejected and excluded forevermore, but even more devoted: 

https://vtechworks.lib.vt.edu/bitstream/handle/10919/91445/Cedeno_VI_D_2019.pdf
https://vtechworks.lib.vt.edu/bitstream/handle/10919/91445/Cedeno_VI_D_2019.pdf
https://doi.org/10.1093/oxfordhb/9780190460518.013.7


 Social Network Analysis and Mining           (2020) 10:11 

1 3

   11  Page 40 of 43

irrevocable ostracism intensifies loyalty to the group among 

identity-fused persons. Personal Soc Psychol Bull 37:1574–1586

Granovetter M (1978) Threshold models of collective behavior. Am J 

Sociol 83(6):1420–1443

Greene B (2000) Letters to a young poet. New World Library, Novato

Greenhill B (2008) Recognition and collective identity formation in 

international politics. Eur J Int Relat 14(2):343–368

Guralnik V, Haigh KZ (2002) Learning models of human behaviour 

with sequential patterns. In: Proceedings of the AAAI-02 work-

shop “Automation as Caregiver”, aAAI Technical Report WS-02-

02, pp 24–30

Haig BD (2005) An abductive theory of scientific method. Psychol 

Methods 10:371–388

Hand DJ, Smyth P, Mannila H (2001) Principles of data mining. MIT 

Press, Cambridge

Hawkes AG (1971) Spectra of some self-exciting and mutually exciting 

point processes. Biometrika 58(1):83–90

Heller N (2019) The philosopher redefining equality: Elizabeth Ander-

son thinks we’ve misunderstood the basis of a free and fair 

society. The New Yorker 07 January. https ://www.newyo rker.

com/magaz ine/2019/01/07/the-philo sophe r-redefi ning -equal ity. 

Accessed 2 Feb 2019

Hoff K, Pandey P (2006) Discrimination, social identity, and durable 

inequalities. Am Econ Rev 96(2):206–211

Hoff K, Pandey P (2014) Making up people-the effect of iden-

tity on performance in a modernizing society. J Dev Econ 

106(C):118–131

Hogg MA, Abrams D (2007) Intergroup behavior and social identity. 

In: Hogg MA, Cooper J (eds) The sage handbook of social psy-

chology. Sage, New York, pp 335–360

Homans G (1961) Social behavior: its elementary forms. Harcourt 

Brace, San Diego

Hu J, Liu M, Zhang J (2014) A semantic model for academic social 

network analysis. In: 2014 IEEE/ACM international conference 

on advances in social networks analysis and mining (ASONAM 

2014), pp 310–313

Jiménez J, Gomez A, Buhrmester MD et al (2016) The dynamic iden-

tity fusion index: a new continuous measure of identity fusion 

for web-based questionnaires. Soc Sci Comput Rev 34:215–228

Juba B (2016) Learning abductive reasoning using random examples. 

In: Proceedings of the thirtieth AAAI conference on artificial 

intelligence

Judd S, Kearns M, Vorobeychik Y (2010) Behavioral dynamics 

and influence in networked coloring and consensus. PNAS 

107:14978–14982

Juergensmeyer M (2003) Terror in the mind of god: the global rise 

of religious violence, 3rd edn. University of California Press, 

Berkeley

Kahn A, Ryen AH (1972) Factors influencing the bias towards one’s 

own group. Int J Group Tens 2:33–50

Kearns M, Judd S, Tan J, Wortman J (2009) Behavioral experiments on 

biased voting in networks. PNAS 106:1347–1352

Kearns M, Judd S, Vorobeychik Y (2012) Behavioral experiments on a 

network formation game. In: Economics and computation (EC), 

pp 690–704

Kendler H, Kendler ST (1962) Vertical and horizontal processes in 

problem solving. Psychol Rev 69:1–16

Kinnebrew JS, Loretz KM, Biswas G (2013) A contextualized, dif-

ferential sequence mining method to derive students’ learning 

behavior patterns. J Educ Data Min 5(1):190–219

Korolov R, Lu D, Wang J, Zhou G, Bonial C, Voss C, Kaplan L, Wal-

lace W, Han J, Ji H (2016) On predicting social unrest using 

social media. In: Proceedings of the 2016 IEEE/ACM interna-

tional conference on advances in social networks analysis and 

mining, ASONAM 2016, Institute of Electrical and Electronics 

Engineers Inc., pp 89–95

Korolov R, Peabody J, Lavoie A, Das S, Magdon-Ismail M, Wallace 

W (2015) Actions are louder than words in social media. In: 

2015 IEEE/ACM international conference on advances in social 

networks analysis and mining (ASONAM), pp 292–297

Kozegi B (2006) Ego utility, overconfidence, and task choice. J Eur 

Econ Assoc 4:673–707

Kozlowski SW, Ilgen DR (2006) Enhancing the effectiveness of work 

groups and teams. Psychol Sci Publ Interest 7(3):77–124

Kullback S (1959) Information theory and statistics. Wiley, New York

Kullback S, Leibler RA (1951) On information and sufficiency. Ann 

Math Stat 22(1):79–86

Kurashima T, Althoff T, Leskovec J (2018) Modeling interdependent 

and periodic real-world action sequences. In: World Wide Web 

Conference WWW, ACM, pp 803–812

Latham GP, Locke EA (1991) Self-regulation through goal setting. 

Organ Behav Hum Decisi Process 50:212–247

Ledyard JO (1994) Public goods: a survey of experimental research. 

Public economics, University Library of Munich, Germany

Lee JY, Oh JC (2013) A model for recursive propagations of reputa-

tions in social networks. In: Proceedings of the 2013 IEEE/ACM 

international conference on advances in social networks analysis 

and mining, ASONAM ’13, ACM, New York, pp 666–670

Li B, Sun D, Lin Z, Ou C (2014) Agent-based simulation research on 

group emotion evolution of public emergency. In: ASONAM

Locke EA, Latham GP (1990) A theory of goal setting and task per-

formance. Prentice-Hall, Englewood Cliffs

Luhmann CC, Rajaram S (2015) Memory transmission in small 

groups and large networks: an agent-based model. Psychol Sci 

26(12):1909–17

Lustick I (2000) Agent-based modelling of collective identity: testing 

constructivist theory. Journal of Artificial Societies and Social 

Simulation, vol 3. no. 1. http://jasss .soc.surre y.ac.uk/JASSS .html

MacGregor N (2018) Living with the gods: on beliefs and peoples, 1st 

edn. Knopf, New York

Manchester W (1993) A world lit only by fire: the medieval mind and 

the renaissance: portrait of an age. Little, Brown and Company, 

Boston

Mason W, Watts DJ (2012) Collaborative learning in networks. Proc 

Natl Acad Sci 109(3):764–769

Mayzner MS, Tresselt ME (1958) Anagram solution times: a function 

of letter order and word frequency. J Exp Psychol 56(4):376

McAuliffe K, Dunham Y (2015) Group bias in cooperative norm 

enforcement. Philos Trans R Soc B 371:20150073-1–20150073-9

McFarland DA, Moody J, Diehl D, Smith JA, Thomas RJ (2014) Net-

work ecology and adolescent social structure. Am Sociol Rev 

79:1–34

Melucci A (1989) Nomads of the present: social movement and iden-

tity needs in contemporary society. Temple University Press, 

Philadelphia

Melucci A (1995) The process of collective identity. In: Klandermans 

B, Johnston H (eds) Social movements and culture. University 

of Minnesota Press, Minneapolis, pp 104–130

Miller DT, Ross M (1975) Self-serving biases in the attribution of 

causality: fact or fiction? Psychol Bull 82:213–225

Muller W (1996) How then, shall we live? Four simple questions that 

reveal the beauty and meaning of our lives. Bantam Books, New 

York

Nagel J (1996) American Indian ethnic renewal: red power and the 

resurgence of identity and culture. Oxford University Press, New 

York

Nguyen DA, Tan S, Ramanathan R, Yan X (2016) Analyzing infor-

mation sharing strategies of users in online social networks. In: 

2016 IEEE/ACM international conference on advances in social 

networks analysis and mining (ASONAM), pp 247–254

https://www.newyorker.com/magazine/2019/01/07/the-philosopher-redefining-equality
https://www.newyorker.com/magazine/2019/01/07/the-philosopher-redefining-equality
http://jasss.soc.surrey.ac.uk/JASSS.html


Social Network Analysis and Mining           (2020) 10:11  

1 3

Page 41 of 43    11 

Nguyen C, Schlesinger KJ, Carlson JM (2017) Data-driven models 

for individual and group decision making. In: ASONAM, pp 

852–859

Oldenquist A (1982) Loyalties. J Philos 79:173–193

Olson M (1965) The logic of collective action: public goods and the 

theory of groups. Harvard Univ. Press, Cambridge

Owens TJ (2006) Self and identity. In: Delamater J (ed) Handbook of 

social psychology. Springer, New York, pp 205–232

Paris WD, Budapest GC, Konstanz HDD, Bristol CG, Oregon KL, Stir-

ling AO (1972) An experimental investigation into the formation 

of intergroup representations. Eur J Soc Psychol 2(2):202–204

Paxton A, Morgan TJH, Suchow JW, Griffiths T (2018) Interpersonal 

coordination of perception and memoryin real-time online social 

experiments. In: Proceedings of the 40th annual meeting of the 

cognitive science society, Austin

Peek L (2005) Becoming Muslim: the development of a religious iden-

tity. Sociol Relig 66(3):215–242

Perdue C, Dovidio JF, Gurtman MB, Tyler RB (1990) Us and them: 

social categorization and the process of intergroup bias. J Per-

sonal Soc Psychol 59:475–486

Pereira L, Moreira F (2005) Majority-vote model on random graphs. 

Phys Rev E Stat Nonlinear Soft Matter Phys 71:016123

Pfandler A, Rümmele S, Szeider S (2013) Backdoors to abduction. 

In: Proceedings of the 23rd international joint conference on 

artificial intelligence (IJCAI), pp 1046–1052

Pierce CS (1931) Elements of logic. In: Hartshorn C et al (eds) Col-

lected papers of Charles sanders pierce. Harvard University 

Press, Harvard

Pilny A, Poole MS, Reichelmann A, Klein B (2017) A structurational 

group decision-making perspective on the commons dilemma: 

results from an online public goods game. J Appl Commun Res 

45(4):413–428

Plutzer E, Zipp J (1996) Identity politics, partisanship, and voting 

for women candidates. Publ Opin Q 60(1):30–57. https ://doi.

org/10.1086/29773 8

Polletta F, Jasper JM (2001) Collective identity and social move-

ments. Ann Rev Sociol 27:283–305

Qin M, Jin D, He D, Gabrys B, Musial K (2017) Adaptive commu-

nity detection incorporating topology and content in social net-

works. In: Proceedings of the 2017 IEEE/ACM international 

conference on advances in social networks analysis and mining 

2017, ASONAM ’17, ACM, New York, pp 675–682

Ren Y, Cedeno-Mieles V, Hu Z, Deng X, Adiga A, Barrett C, Eka-

nayake S, Goode BJ, Korkmaz G, Kuhlman CJ, Machi D, Mar-

athe MV, Ramakrishnan N, Ravi SS, Saraf P, Self N (2018) 

Generative modeling of human behavior and social interactions 

using abductive analysis. In: 2018 IEEE/ACM international 

conference on advances in social networks analysis and mining 

(ASONAM), pp 413–420

Rousseau D, van der Veen AM (2005) The emergence of a shared 

identity: an agent-based computer simulation of idea diffusion. 

J Confl Resolut 49(5):686–712

Russell DG, Sarason IG (1965) Test anxiety, sex, and experimen-

tal conditions in relation to anagram solution. J Personal Soc 

Psychol 1:493–496

Salganik MJ, Watts DJ (2009) Web-based experiments for the study 

of collective social dynamics in cultural markets. topiCS 

1(3):439–468

Sarason IG (1973a) Test anxiety and cognitive modeling. J Personal 

Soc Psychol 28:58–61

Sarason IG (1973b) Test anxiety and social influence. J Personal 

41:261–271

Schelling TC (2006) Micromotives and macrobehavio, revised edn. 

W. W. Norton & Company, New York

Schubert TW, Otten S (2002) Overlap of self, ingroup, and out-

group: pictorial measures of self-categorization. Self Identity 

1(4):353–376

Schweitzer M, Ordonez L, Dumaz B (2004) Goal-setting as a motiva-

tor of unethical behavior. Acad Manag J 47:422–433

Sethi R, Somanathan E (2006) A simple model of collective action. 

Econ Dev Cultural Change 54(3):725–747

Shanahan M (2005) Perception as abduction: turning sensor data into 

meaningful representation. Cognit Sci 29:103–134

Shank DB, Kashima Y, Saber S, Gale T, Kirley M (2015) Dilemma 

of dilemmas: how collective and individual perspectives can 

clarify the size dilemma in voluntary linear public goods 

dilemmas. PLoS One 10:1–19

Shannon CE (1948) A mathematical theory of communication. Bell 

Syst Tech J 27(3):379–423

Silke A (2008) Holy warriors: exploring the psychological processes 

of jihadi radicalization. Eur J Criminol 5(1):99–123

Singla P, Mooney RJ (2011) Abductive markov logic for plan recogni-

tion. In: Proceedings of the twenty-fifth AAAI conference on 

artificial intelligence

Smith K, Feher O, Culbertson J (2017) The influence of word-order 

harmony on structural priming in artificial languages. In: Pro-

ceedings of the 39th annual meeting of the cognitive science 

society, CogSci 2017, London, 16–29 July 2017

Snow D (2001) Collective identity and expressive forms. In: Smelser 

NJ, Baltes PB (eds) International encyclopedia of the social and 

behavioral sciences. Elsevier, Amsterdam, pp 2212–2219

Snow D, McAdams D (2000) Identity work processes in the context of 

social movements: clarifying the identity/movement nexus. In: 

Stryker S, Owens T, White RW (eds) Self, identity and social 

movements. University of Minneapolis Press, Minneapolis, pp 

2212–2219

Stones CR (1983) Self-determination and attribution of responsibility: 

another look. Psychol Rep 53:391–394

Stout CT, Kretschmer K, Ruppanner L (2017) Gender linked fate, race/

ethnicity, and the marriage gap in American politics. Polit Res 

Q 70(3):509–522

Stryker S (1980) Symbolic interactionism: a social structural version. 

Benjamin/Cummings, San Francisco

Suri S, Watts DJ (2011) Cooperation and contagion in web-based, net-

worked public goods experiments. PLoS One 6:1–18

Sutton C, McCallum A (2011) An introduction to conditional random 

fields. Found Trends Mach Learn 4(4):267–373

Swann WB, Gomez A, Seyle DC, Morales JF, Huici C (2009) Identity 

fusion: the interplay of personal and social identities in extreme 

group behavior. J Personal Soc Psychol 96:955–1011

Swann WB, Gomez A, Dovidio JF, Hart S, Jetten J (2010a) Dying 

and killing for one’s group: Identity fusion moderates responses 

to intergroup versions of the trolley problem. Psychol Sci 

21:1176–1183

Swann WB, Gomez A, Huici C, Morales JF (2010b) Identity fusion 

and self-sacrifice: Arousal as a catalyst of pro-group fighting, 

dying, and helping behavior. J Personal Soc Psychol 99:824–841

Swann WB, Gomez A, Buhrmester MD, Lopez-Rodriguez L, Jime-

nez J, Vazquez A (2014) Contemplating the ultimate sacrifice: 

identity fusion channels pro-group affect, cognition, and moral 

decision making. J Personal Soc Psychol 106:713–727

Swanson MS (2015) Composing democracy: Collective identity for-

mation in small group composition. Ph.D. thesis, University of 

Washington, Washington

Tajfel H (1974) Social identity and intergroup behavior. Soc Sci Inf 

13:65–93

Tanaka Y, Iwata T, Kurashima T, Toda H, Ueda N (2018) Estimating 

latent people flow without tracking individuals. In: Proceedings 

of the twenty-seventh international joint conference on artificial 

https://doi.org/10.1086/297738
https://doi.org/10.1086/297738


 Social Network Analysis and Mining           (2020) 10:11 

1 3

   11  Page 42 of 43

intelligence, IJCAI-18, international joint conferences on artifi-

cial intelligence organization, pp 3556–3563

Tarrow S (2010) Mentalities, political cultures, and collective action 

frames: constructing meanings through action. Sociol Compass 

4:174–202

Tatum BD (2003) Why are all the black kids sitting together in the 

cafeteria? And other conversations about race, 2nd edn. Basic 

Books, New York

Taylor V, Whittier NE (1992) Collective identity in social movement 

communities: lesbian feminist mobilization. In: Morris AD, 

Mueller CM (eds) Frontiers of social movement theory. Yale 

University Press, New Haven, pp 104–130

Thagard P (1989) Explanatory coherence. Behav Brain Sci 12:435–502

Timmermans S (1999) Social death as a self-fulfilling prophecy: David 

Sudnow’s ‘passing on’ revisited. Sociol Q 39:453–472

Timmermans S, Tavory I (2012) Theory construction in qualitative 

research: from grounded theory to abductive analysis. Sociol 

Theory 30:167–186

Tran T, Lee K (2016) Understanding citizen reactions and ebola-related 

information propagation on social media. In: Proceedings of the 

2016 IEEE/ACM international conference on advances in social 

networks analysis and mining, ASONAM ’16, IEEE Press, Pis-

cataway, pp 106–111

Tresselt ME (1968) Reexamination of anagram problem solving. Trans 

N Y Acad Sci 30:1112–1119

van Dijk TA (2000) Ideology: a multidisciplinary approach. Sage, 

Thousand Oaks

van Maanen PP, van der Vecht B (2013) An agent-based approach to 

modeling online social influence. In: Proceedings of the 2013 

IEEE/ACM international conference on advances in social net-

works analysis and mining, ASONAM ’13, ACM, New York, 

pp 600–607

van Zomeren M, Postmes T, Spears R (2008) Toward an integrative 

social identity model of collective action: a quantitative research 

synthesis of three socio-psychological perspectives. Psychol Bull 

134(4):504

Vance RJ, Colella A (1990) Effects of two types of feedback on goal 

acceptance. J Appl Psychol 75:68–77

Vanderhaegen F, Caulier P (2011) A multi-viewpoint system to support 

abductive reasoning. Inf Sci 181:5349–5363

Verkuyten M, Yildiz AA (2007) National (dis)identification and ethnic 

and religious identity: a study among Turkish-Dutch Muslims. 

Personal Soc Psychol Bull 33(10):1448–1462

Vryan KD, Adler EA, Adler P (2003) Identity. In: Reynolds LT, Her-

man-Kinney NJ (eds) Handbook of symbolic interactionism. 

Altamira Press, Lanham, pp 367–390

Warren MW, Thomson WJ (1969) Anagram solution as a function of 

transition probabilities and solution word frequency. Psychon 

Sci 17(6):333–334

Wei-Kleiner F, Dragisic Z, Lambrix P (2014) Abduction framework 

for repairing incomplete el ontologies: complexity results and 

algorithms (extended version). In: Proceedings of the 28th AAAI 

conference on artificial intelligence

Wendt A (1994) Collective identity formation and the international 

state. Am Polit Sci Rev 88(2):384–396

Worchel S, Andreoli VA, Folger R (1977) Intergroup cooperation and 

intergroup attraction: the effect of previous interaction and out-

come of combined effort. J Exp Soc Psychol 13:131–140

Zhang H, Vorobeychik Y, Letchford J, Lakkaraju K (2016) Data-driven 

agent-based modeling, with application to rooftop solar adoption. 

Auton Agents Multi-Agent Syst 30:1023–1049

Zhang H, Vorobeychik Y (2019) Empirically grounded agent-based 

models of innovation diffusion: a critical review. Artif Intell Rev 

52:707–741

Publisher’s Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

Affiliations

Vanessa Cedeno‑Mieles2,4,6 · Zhihao Hu5 · Yihui Ren7 · Xinwei Deng5 · Abhijin Adiga1 · Christopher Barrett1,3 · 

Noshir Contractor9 · Saliya Ekanayake12 · Joshua M. Epstein10 · Brian J. Goode2 · Gizem Korkmaz1 · 

Chris J. Kuhlman1 · Dustin Machi1 · Michael W. Macy11 · Madhav V. Marathe1,3 · Naren Ramakrishnan4,8 · S. S. Ravi1 · 

Parang Saraf8 · Nathan Self8

 Zhihao Hu 

 huzhihao@vt.edu

 Yihui Ren 

 yihui.ren@gmail.com

 Xinwei Deng 

 xdeng@vt.edu

 Abhijin Adiga 

 abhijin@virginia.edu

 Christopher Barrett 

 cbarrett@virginia.edu

 Noshir Contractor 

 ncontractor@gmail.com

 Saliya Ekanayake 

 esaliya@lbl.gov

 Joshua M. Epstein 

 je65@nyu.edu

 Brian J. Goode 

 bgoode@vt.edu

 Gizem Korkmaz 

 gkorkmaz@virginia.edu

 Chris J. Kuhlman 

 cjk8gx@virginia.edu

 Dustin Machi 

 dmachi@virginia.edu

 Michael W. Macy 

 mwm14@cornell.edu

 Madhav V. Marathe 

 mmarathe@virginia.edu

 Naren Ramakrishnan 

 naren@cs.vt.edu

 S. S. Ravi 

 ssravi0@gmail.com

 Parang Saraf 

 parang@cs.vt.edu

 Nathan Self 

 nwself@vt.edu



Social Network Analysis and Mining           (2020) 10:11  

1 3

Page 43 of 43    11 

1 Biocomplexity Institute and Initiative, University 

of Virginia, Charlottesville, VA, USA

2 Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 

USA

3 Department of Computer Science, University of Virginia, 

Charlottesville, VA, USA

4 Department of Computer Science, Virginia Tech, Blacksburg, 

VA, USA

5 Department of Statistics, Virginia Tech, Blacksburg, VA, 

USA

6 Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, 

Ecuador

7 Computational Science Initiative, Brookhaven National 

Laboratory, Upton, NY, USA

8 Discovery Analytics Center, Virginia Tech, Blacksburg, VA, 

USA

9 Department of Industrial Engineering and Management 

Sciences, Northwestern University, Evanston, IL, USA

10 Department of Epidemiology, New York University, 

New York, NY, USA

11 Department of Sociology, Cornell University, Ithaca, NY, 

USA

12 Lawrence Berkeley National Laboratory, Berkeley, CA, USA


	Networked experiments and modeling for producing collective identity in a group of human subjects using an iterative abduction framework
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.1.1 Collective identity: types, contexts, and applications
	1.1.2 Dimensions of collective identity to study
	1.1.3 Dimensions of our work for collective identity

	1.2 Overview of work scope
	1.3 Overview of our experiment and modeling approach: abductive iterations
	1.4 Technical challenges
	1.5 Novelty of our work
	1.6 Contributions
	1.7 Extensions from the conference paper
	1.8 Paper organization

	2 Overview of Abductive Loop
	3 Related work
	3.1 Overviews of CI
	3.2 Individual anagram games: experiments
	3.3 Collective identity-based experiments: formation of CI
	3.4 Collective identity-based experiments: implications of CI
	3.5 Measurement of CI
	3.6 Combined group anagram and CI experiments
	3.7 Modeling of time sequences of actions
	3.8 Evaluation of model predictions
	3.9 Abduction and abductive loop

	4 Experiments
	4.1 Experiment description
	4.1.1 Group anagram game description
	4.1.2 Choice of random regular networks for experiments
	4.1.3 DIFI description

	4.2 Experimental data

	5 Agent-based models (ABMs) of the group anagram game and modeling results
	5.1 Discrete-time stochastic process
	5.2 KL-divergence
	5.3 Overview of the three agent-based models
	5.4 Baseline agent-based model M0
	5.4.1 ABM M0 development
	5.4.2 ABM M0 (baseline) results

	5.5 Agent-based model M1
	5.5.1 ABM M1 development
	5.5.2 Inductive inference
	5.5.3 ABM M1 results

	5.6 Agent-based model M2
	5.6.1 ABM M2 development
	5.6.2 Inductive inference
	5.6.3 ABM model M2 results


	6 Model evaluation
	7 Abductive loop analyses and results
	7.1 Overview
	7.2 Abductive iterations with hypotheses
	7.3 Abductive Loop 1 (AL-1)
	7.4 Abductive Loop 2 (AL-2)
	7.5 Summary of experimental contributions to the understanding of CI and possible extensions
	7.6 Abductive loops: role of analyst and bigger picture

	8 Limitations and additional work
	9 Summary
	Acknowledgements 
	References


