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Abstract

Knowledge transfer from machine learning (ML) models, pre-trained on large
corpuses has been leveraged effectively in domains like natural language processing
and computer vision to improve model generalization. The knowledge transfer
prowess of ML and especially deep learning (DL) models has been demonstrated
to be especially effective under data paucity of the target task. Many scientific
phenomena require the execution of costly simulations to estimate the process of
interest. Predicting molecular configuration of fluids confined in porous media
is one such problem of extreme relevance in many scientific applications, the
study of which requires the execution of expensive Molecular Dynamics (MD)
simulations. However, due to the cost of MD, large scale simulations become
intractable. Hence, in this work, we develop a novel science-guided deep learning
framework NanoNet-SG to emulate MD simulations. Our proposed NanoNet-
SG model leverages scientific domain knowledge in conjunction with knowledge
from pre-trained knowledge bases for estimating molecular configuration of fluid
mixtures. Through rigorous experimentation, we demonstrate that our proposed
NanoNet-SG model yields good generalization performance improvements (i.e.,
overall performance improvement of greater than 16% over baselines) and yields
predictions that are consistent with known scientific domain rules despite being
trained on a low volume of MD simulation data (i.e., data paucity).

1 Introduction

An especially popular use of ML models (primarily deep learning models) is to function as relatively
inexpensive surrogates to emulate the behavior of costly scientific processes. Owing to their ability
to model complex functions, various ML (surrogate) models have been proposed for modeling fluid
flows Brunton et al. [2019], Wang et al. [2020], Raissi et al. [2019].

Deep learning models, which are usually capable of effectively modeling complex functions, are
plagued by their inability to learn good representations under data paucity. However, certain scientific
modeling contexts inherently suffer from data paucity owing to expensive simulation and data
collection costs. One such scientific application, which is the focus of this work, is modeling fluid
properties in nano-porous media Amini and Mohaghegh [2019], Monteiro et al. [2012]. Fluid
properties in nano-porous media are important in applications like petroleum engineering Amini and
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Mohaghegh [2019], Lubbers et al. [2020], Santos et al. [2020], carbon sequestration Li et al. [2020a]
and energy conservation. With the increasing energy demands and technological advances like
hydraulic fracking, unconventional resources like shale formations are being leveraged as potential
sources of energy. Hydrocarbons like methane and ethane which are abundant in nano-pores in large
shale formations, serve as feasible and effective candidates to address increasing energy demands.
One of the main challenges to modeling fluid properties (e.g., viscosity, density, adsorption patterns)
in shale reservoirs is that the size of the pores comprising the hydrocarbons of interest are often less
than 50 nanometers (nm) in width. It has been observed that fluid properties in such small pores (i.e.,
under nano-confinement) significantly deviate from their properties under bulk conditions, i.e. in
larger spaces where interactions with the surface are rare. Thus, modeling of fluid properties under
nano-confinement cannot be faithfully represented using classical fluid models (e.g. Navier-Stokes
Equations), and so often researchers employ more expensive molecular dynamics (MD) simulations.
Owing to the high computational demands of modeling fluid properties via MD, it is infeasible to
compute fluid properties directly for all possible pore spaces.

In this work we develop NanoNet-SG , a novel science-guided framework to emulate MD simulations
for fluid mixtures. Specifically, to alleviate the cost of expensive MD simulations of fluid mixtures,
NanoNet-SG leverages limited fluid mixture simulation data and relies mostly on knowledge gained
from relatively simpler (and cheaper) MD simulations of singular fluids in related experimental
contexts. This knowledge from modeling singular fluid simulations (with relatively large data
volumes) to modeling fluid mixtures (problem of interest) with low data volumes is performed via
Science-Guided Knowledge Transfer in our proposed NanoNet-SG model.

Our contributions are as follows:

• We develop a novel and light-weight inductive transfer learning framework NanoNet-SG for
modeling the density of fluid mixtures under nano-confinement.

• Our NanoNet-SG model leverages scientific domain knowledge to influence training dynamics.

• We demonstrate through rigorous experimentation, the generalization ability of NanoNet-SG .

• We also verify the improved domain consistency of NanoNet-SG relative to variants without science
guidance.

2 Background

To counter the effects of modeling under data paucity, we leverage the well studied transfer learning
paradigm to develop our NanoNet-SG model.

2.1 Transfer Learning

Essentially, the paradigm of transfer learning (effectively used in various natural language Ruder
et al. [2019], computer vision Li et al. [2020b] and healthcare Gupta et al. [2020], Chen et al. [2019])
relaxes the fundamental assumption in traditional ML paradigms of distributional similarity in training
and testing domains. Instead, transfer learning approaches focus on developing ML frameworks
with the ability to apply knowledge and skills learned on previous tasks to a related but novel task
wherein data might not necessarily share distributional similarity with previously encountered tasks.
Transfer learning is especially effective in training ML models on tasks with low volumes of data, by
first training the model on (i.e., leveraging knowledge from) a related task with relatively larger data
volumes. We now re-state relevant preliminaries detailed in Pan and Yang [2009] specific to transfer
learning.

Let us assume a domain D comprising a feature space X and a marginal distribution P(x) where
x 2 X is a particular data instance. In a specific domain D = {X ,P(x)}, let us define a task T to
contain a label space Y and a prediction function f(·) to be learned from training data. For an instance
xi 2 X , f(xi) yields the corresponding estimate yi 2 Y .

Consider a source domain DS (and source learning task TS) and a target domain DT (target learning
task TT). Let CS = {(x1

S
, y1

S
), .., (xn

S
, yn

S
)} and CT = {(x1

T
, y1

T
), .., (xm

T
, ym

T
)} represent the

training data corpus in the source and target domains, respectively, such that |CT| << |CS|, where
| · | indicates cardinality of the data corpus (i.e., available training data volume).
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Definition 1 Given a source domain and task (DS, TS) and a related but distinct target domain and

task (DT , TT ) such that |CT| << |CS|, transfer learning aims to improve the learned predictive

function fT (CT) by leveraging knowledge from (DS, TS).

Following from Def. 1, a setting in which TS 6= TT is specifically characterized as Inductive Transfer

Learning (ITL) Pan and Yang [2009].

2.2 Fluid Constitution Under Nano-Confinement

The overall structure of a density profile of a fluid confined in a nano-pore comprises of two regions.

Peak Region. The density distribution of the fluid closest to the pore walls which exhibit increased
concentration (i.e., peaks) due to adsorption onto the pore walls. Bulk Region. Intuitively, the bulk
region corresponds to any part of the density profile away from the walls where the adsorption effects
due to the pore walls is negligible. For simplicity, we assume that the bulk region corresponds to the
density distribution in and near the center of the pore.

3 Problem Formulation

Setup. We propose a novel ML emulator that leverages the power of inductive transfer learning (ITL)
and scientific domain knowledge to develop a novel science-guided architecture (NanoNet-SG ) for
fluid density estimation of a mixture M of fluids under nano-confinement.

Large scale MD simulations for fluid mixtures are expensive to setup and execute, leading to data
paucity in the target domain DT. To alleviate the effect of data paucity in DT, we leverage ITL
and pre-train models to encode knowledge from the relatively simpler context of single fluid nano-
confinement for each of the constituent fluids in mixture M . We now detail the setting of interest.

3.1 Target Domain Description

Our problem comprises of a target domain DT, target task TT and function fT : RIn ! R|M |⇥l that
estimates fluid density profiles for a mixture of ‘k’ constituent fluids M = {F1, F2, .., Fk}. fT(·) is
trained on a limited data corpus CT = {(x1

T
,Y1

T
), ..., (xm

T
,Ym

T
)} where xi

T
corresponds to the ith

set of input features and Yi

T
2 R|M |⇥l (where l is the estimation horizon of the density profiles) is

the corresponding set of target density profiles.

3.1.1 Target Task Feature Description.

Each set of input features xi

T
= {ei,�i, ŷi

S1
, ŷi

S2
, .., ŷi

Sk
} consists of three components (i) the

experimental setting ei (ii) the spatial pore encoding �i and (iii) the set of predictions ŷi

Sj
from

pre-trained single fluid models in the source domain DSj for each constituent fluid Fj 2 M .

Experimental Setting. In ei = {wi, ti, pi, i
1, .., 

i

k
}. wi 2 R1⇥1 indicates the width of the pore

being modeled, where the mixture of fluids is confined (measured in Angstroms), ti 2 R1⇥1 signifies
the temperature in the pore (measured in Kelvins) and pi 2 R1⇥1 the total pressure within the pore
(measured in Atmospheres). Each  i

j
2 R1⇥1 value indicates the partial pressure for each constituent

fluid Fj 2 M such that pi =
|M |P
j=1

 i

j
.

Spatial Pore Encoding. Each spatial pore encoding �i 2 Rd⇥l comprises ‘d’ different spatial
encodings of every point in the pore at which the density profile is to be estimated (called the
estimation horizon of size ‘l’)1 for each constituent fluid. Note that �i is the same for all fluids in the
mixture for a particular instance ‘i’. In our experiments d = 2, consisting of two separate encodings
for every point in the estimation horizon. First encoding being a binary representation indicating if
each point in the estimation horizon is internal to the pore or outside (i.e. pore wall). The second
encoding is a continuous representation of the inverse distance of each point in the pore from the
nearest pore wall.

1we employ a uniform estimation horizon governed by the largest pore width in our corpus. Spatial encodings
for smaller pores are ‘periodically padded’ to achieve uniform lengths of spatial encodings for all pore sizes.
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Pre-Trained Density Estimates. ŷi

Sj
2 R1⇥l represents the prediction (by pre-trained models in the

source domain) of fluid density for fluid Fj at each point in the estimation horizon for experimental
setting ei and spatial encoding �i.

3.2 Source Domain Description

Owing to the data paucity due to simulation cost and complexity of MD simulations in the target
domain DT, we leverage knowledge from a related (albeit simpler) paradigm of modeling fluid
density under nano-confinement of singular fluids. For each fluid Fj 2 M , our source context is
(DSj , TSj , fSj : RInS ! ROutS ) where DSj is the source domain comprising of the training data
CSj = {(x1

Sj
,y1

Sj
), .., (xn

Sj
,yn

Sj
)} used to train a learning model to estimate function fSj for the

single fluid density estimation task TSj . xi

Sj
= {ei,�i} and yi

Sj
2 R1⇥l. The experimental setting

for the source domain comprises of ei = {wi, ti, pi} without the partial pressures as the setting
comprises only of a single fluid. �i 2 Rd⇥l is encoded same as in the target domain. The set of tasks
TS = {TS1 , .., TS|M|} results in |M | pre-trained models, each trained to estimate fluid density for a
particular fluid Fj 2 M .

3.3 Domain Adaptation with NanoNet

Figure 1: NanoNet-SG Architecture for Modeling Two-Fluid Mixture with only ⇠5,100 Learnable
Parameters.

Fig. 1 outlines the inductive transfer learning architecture of our proposed NanoNet-SG model. The
model architecture comprises of four sub-modules (outlined as dotted-red boxes). The Interaction

Encoding module accepts predictions from the pre-trained single fluid models (fSi(·)) and learns
to model the interaction and mixture effects relevant to the target context. The Spatial Encoding

module captures the relevant spatial information from the �i spatial input of the current pore context.
The Adaptation module combines outputs of the interaction, spatial encoding to yield the Adapted

Mixture Prediction. Finally, the Mapper module which is conditioned on experimental setting ei,
also comprising partial pressures of each constituent fluid in the mixture being modeled produces
outputs used to correct the Adapted Mixture Predictions to yield the final output of density profile
predictions. Finally, the adapted mixture prediction is combined with appropriate corrections to
yield the final predicted output of the fluid density for each constituent fluid in the mixture M . The
Interaction Encoding, Spatial Encoding & Adaptation modules leverage 1⇥ 1 convolutions Lin et al.
[2013] while the Mapper module is a set of fully connected blocks.

3.4 Science-Guided Domain Adaptation with NanoNet-SG

The overall NanoNet-SG training loss is a combination of the data-driven and the science guided loss
functions and is represented in Eq. 12.

2� = 1e6 by manual tuning on training data.
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L = LData + �LSG (1)

Data Loss (LData). The NanoNet-SG model is trained on data corpus CT with data-driven mean-
squared error loss (Eq. 2). Here, yij

T
2 R1⇥l represents the density profile of the ith instance for

fluid Fj 2 M , and ŷij

T
2 R1⇥l represents the corresponding density profile prediction made by

NanoNet-SG model for input xi

T
.

LData =

|M|X

j=1

Lj
Data Lj

Data =
1

l ⇤ |CT|

|CT|X

i=1

||ŷij
T � yij

T ||22 (2)

Science-Guided Loss (LSG). In order to improve model generalization and produce domain consis-
tent representations under data paucity, we augment the NanoNet-SG training pipeline with science-
guidance derived from theoretical knowledge about fluids under nano-confinement. Specifically, we
adopt the following well understood and accepted phenomenon.

Remark 1 We draw from thermodynamics that total density ‘⇠’ of a fluid under nano-confinement is
monotonically non-decreasing with increase in pressure (p) for a given pore width (w), temperature
(t).

Let ⇠ij represent the total density, calculated as the area under a predicted density curve ŷij

T
. Further,

without loss of generality, we represent ⇠ij
p

to be the total density for an experimental setting ei with
pressure p.

The monotonically non-decreasing relationship between ⇠ and pressure is incorporated directly into
the training loss to yield the novel NanoNet-SG model as defined in Eq. 3.

Lj
SG =

|CT|X

i=1

g(⇠ijp , ⇠ijp+�p) + g(⇠ijp��p, ⇠
ij
p ) g(a, b) =

(
0 a  b

b� a otherwise

LSG =

|M|X

j=1

Lj
SG

(3)

We choose the step-size � resulting from uniformly dividing our entire domain of interest (i.e.,
pressure range of interest as described in Table. 1) into 100 bins.

4 Experimental Setup

4.1 Dataset Description

As described in Section. 3, we employ two separate types of datasets. The first type (i.e., the target
domain) being the molecular dynamics simulations of fluid mixtures (i.e., a 2 fluid mixture of
methane and ethane) and the source domain(s) being data corpuses from MD simulations of each
of the constituent fluids (i.e., separate datasets of methane and ethane simulated in isolation). The
pressure and temperature ranges as well as the size of each dataset are described in Table 1. Our
experimental setups comprise distinctly of fluid mixture and single fluid modeling tasks. In this work,
we focus on modeling the two hydrocarbons methane and ethane both in the single fluid and mixture
settings. The experimental setup ranges and data generation processes are primarily governed by
domain experts in petroleum engineering. Although we focus on the task of fluid density estimation,
the proposed NanoNet-SG model can be easily adapted to estimate other properties like viscosity.

4.2 Baseline Model Description

Single-Fluid CNN (SF-CNN ). A fully convolutional neural network architecture3 with kernel size
of 13 (large enough to capture the spatial span of adsorption phenomena as determined by domain

3Architecture details & diagram in Appendix.
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Table 1: Dataset Description including experimental setting ranges of values.

Dataset Name PW Temp. Pres. MD Simulations

Single Fluid (Methane, Ethane) [15 - 45] [300 - 350] [22 - 500] 1000
Two Fluid (Methane + Ethane) [20 - 45] [330 - 350] [307 - 392] 100

experts). This model accepts input features in the source domain DS for a particular fluid and yields
the density profile at every point in the estimation horizon as specified in the inputs.

Two-Fluid CNN (TF-CNN ). Similar architecture30 to the Single-Fluid CNN model, except the
outputs yield density profiles for multiple fluids (i.e., all constituent fluids) in a mixture M being
modeled. Additionally the experimental settings added as input to the model also comprise the partial
pressures of each constituent fluid in M .

4.3 Training & Evaluation Pipeline

In each of our single fluid and two fluid experimentation settings we employ 64% of the data for
training and 36% for testing (data sizes i.e., number of simulations in Table 1). Each model is trained
for 15000 epochs with the Adam optimizer, a learning rate of 1e�4 and mean squared error loss4.

5 Results & Discussion

We inspect our proposed NanoNet-SG framework in multiple qualitative and quantitative contexts
to better understand model performance. Specifically, we are interested in dissecting the following
aspects of model performance.

(1) The need for Domain Adaptation. (2) Overall generalization performance. (3) Effect of science

guidance on domain consistency.

5.1 The Need for Domain Adaptation

Figure 2: Sample single fluid prediction characterization (SF-CNN ) of fluid mixture without inductive
transfer learning. SF-CNN models yield overestimated predictions (blue curve) of mixture densities
both for methane and ethane.

To investigate this aspect, we leverage Single-Fluid CNN models (i.e., trained on single fluid simula-
tions) to directly yield predictions in the target domain (i.e., without re-training). Fig. 2 depicts a
qualitative sample5 (pore width = 20) of the prediction performance of the Single-Fluid CNN models
(trained on large corpus of single fluid simulations in similar experimental settings, separately for
methane & ethane) tested on fluid density prediction in the target domain.

We can notice distinct deviations in prediction performance in the Single-Fluid CNN model trained
on individual fluids. In the case of the methane prediction curve, we notice that the Single-Fluid
CNN model is able to predict the bulk behavior of the fluid accurately while overestimating the
adsorption effects at the pore boundaries. However, in the case of ethane prediction, we notice that
the bulk density behavior of the fluid is overestimated by the corresponding Single-Fluid CNN model

4NanoNet-SG of course also employs the science-guided loss as in Eq. 1.
5More samples in appendix.
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while the overestimation of the primary peaks (i.e., the highest peak at each end of the pore boundary)
is relatively minimal. Thus, Fig. 2 reiterates the need for adapting the predictions of the Single-Fluid
CNN model to also account for non-trivial mixture effects on each constituent fluid.

5.2 Overall generalization performance

In an effort to effectively model fluid mixtures by accounting for mixture effects under data paucity,
we have developed the NanoNet-SG framework. Here, we present generalization results of the
proposed framework compared to the Single-Fluid CNN and Two-Fluid CNN models (detailed in
sec. 4.2). In Table 2, we notice that NanoNet (variant of NanoNet-SG without science guided loss)

Table 2: Generalization performance overall, across all temperatures, pressures (Pres.) and pore
width (PW) ranges (i.e., as indicated in Table 1) and also in the contexts of unseen pore widths
and pressures. In all cases, we notice that models that employ inductive knowledge transfer (i.e.,
NanoNet and NanoNet-SG ) outperform the models without knowledge transfer and that NanoNet-
SG with science-guidance is best performing overall.

Model Name

Generalization Performance (MAPE)

Overall (std.) Unseen
PW (std.)

Unseen
Pres. (std.)

SF-CNN 42.52%(0.77) 40.66%(3.14) 43.69%(1.56)
TF-CNN 10.00%(0.54) 11.58%(3.75) 11.05%(1.50)
NanoNet 5.22%(1.00) 5.04%(1.04) 5.40%(0.769)
NanoNet-SG 4.49%(0.25) 4.56%(1.10) 4.65%(0.41)

and NanoNet-SG outperform other baselines thereby exhibiting superior generalization performance.
Specifically we notice that the models exhibit better generalization performance overall as well as in
the context of unseen pore widths and pressures. We also notice that NanoNet & NanoNet-SG models
yield more consistent predictions (i.e., low standard deviations) across all inspected generalization
contexts.

From Table 2 , we can infer that inductive transfer has a significant effect in domain adaptation
and enables improved generalization performance . We further infer that NanoNet-SG model is the
best performing overall (also with the least overall standard deviation - Table. 2) primarily due to
science-guidance incorporated during model training leading to improved prediction consistency.
Further baseline comparison (with state of the art regression baselines) are included in the appendix.

Qualitative Performance Characterization

Figure 3: Sample of predictions by NanoNet-SG (blue curve) overlaid with corresponding ground-
truth density curves (dotted green line) produced by a molecular dynamics (MD) simulation. Fig. 3a
shows results for methane for a small pore (i.e., 21 Å) and Fig. 3b showcases similar results for ethane.
We notice significant improvements in bulk and peak overestimation compared to SF-CNN (Fig. 2).

Fig. 3 demonstrates (qualitatively)6 the improvements in fluid density estimation obtained for each of
the two fluids (i.e., methane and ethane). Specifically, we notice from Fig. 3a, Fig. 3b, a significant
improvement in the prediction of the peak densities and bulk densities. This is in contrast to the
prediction results by the SF-CNN models without science guidance or ITL wherein peak and bulk

6More qualitative results in appendix.

7



densities were significantly overestimated. Hence, based on results in Fig. 3 and result in Table 2we
may infer the effectiveness of our proposed NanoNet-SG model.

5.3 Effect of Science Guidance on Domain Consistency

In addition to prediction performance characterization, we also investigate domain consistency of
NanoNet-SG . In Fig. 4 we plot the evolution of cumulative7 total density over pressure (across the
entire range of interest of pressure) at different pore widths and temperatures. Each subplot Fig. 4(a) -
(c) compares the total cumulative density derived from the density prediction of NanoNet (yellow
curve) and NanoNet-SG (blue curve). The phenomenon of interest is to ensure that the evolution of
total cumulative density depicts monotonically non-decreasing behavior according to known scientific
theory (Remark 1). In each plot in Fig. 4 we notice that the evolution of the total cumulative density
derived from the NanoNet predictions violate the monotonically non-decreasing constraint at multiple
points (indicated with dotted red circles) while the corresponding regions exhibit consistency with
the domain knowledge for the NanoNet-SG cumulative densities (dotted green circles).

Figure 4: Each figure indicates total cumulative density evolution across a range of pressure values
for specific pore width, temperature combinations. Yellow curve shows cumulative total density
derived from NanoNet predictions and blue curve indicates cumulative total density derived from
NanoNet-SG prediction. Red, green dotted circles highlight violations and consistency respectively
of monotonically non-decreasing thermodynamic constraint detailed in Remark 1.

6 Conclusion

In this work, we have presented NanoNet-SG , a novel model for science-guided learning under data
paucity via. inductive transfer learning. Our contributions are the novel thermodynamic constraint
encoded into NanoNet-SG and the inductive transfer learning framework for modeling density of fluid
mixtures under nano-confinement and data paucity. Through rigorous analysis, we have demonstrated
that NanoNet-SG yields significantly better predictions than baselines for fluid density estimation.
The superior generalization performance of NanoNet-SG holds in both the bulk and peak regions8

of the density profile and also in the case of seen and unseen settings (i.e., unseen pore widths and
pressures). Finally, we also demonstrate that NanoNet-SG yields more domain-consistent predictions
as a function of the novel science-guided training mechanism.
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1 Baseline Model Architecture Description

We employ the same basic architecture w.r.t tasks (i.e., density profile shape prediction, density
profile bulk prediction) for our Single-Fluid CNN and Two-Fluid CNN models as detailed in Fig. 1.
It must be noted that NanoNet and NanoNet-SG models employ predictions from the Single-Fluid
CNN models as pre-trained baselines in their pipeline.
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Generate Spatial Component

FCFC

Relative Distance to Nearest Wall

Wall Material Density & Location

Experimental Setup  

Spatial Input

Generate Bulk Density Component

Full Density Profile 
Prediction

Figure 1: Architecture diagram of generic Single-Fluid CNN , Two-Fluid CNN models.

Spatial Density Profile Component. In Fig. 1, we notice that our model comprises a multi-layer fully
convolutional component (depicted as yellow rectangles) which accepts the spatial pore encoding
�i(see section 3.1 for details) as well as the experimental setting ei (see section 3.1) as input and
yields ⇢̂s 2 R|M |⇥l the spatial component of the density profile estimate for each fluid in the mixture
M and each point in the estimation horizon l. We employ a constant kernel size of 13 and a constant
number of channels 32 for both the Single-Fluid CNN and Two-Fluid CNN models.

Bulk Density Profile Component. Further, the second component of the model (Fig. 1) is a
multi-layer fully connected network (depicted as purple boxes) which is conditioned only upon the
experimental setup ei to yield an estimate of ⇢̂b 2 R|M |⇥1 the bulk component of the density profile
estimate for each fluid in the mixture M .
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The outputs ⇢̂s and ⇢̂b from the spatial and bulk components are summed together (point-wise) to
yield the final density profile estimate yi 2 R|M |⇥l.

Note, in the case of Single-Fluid CNN (i.e., single fluid predictions) |M | = 1 and the experimental
setup does not comprise of partial pressures (i.e., ei = [wi, ti, pi] ). Both Single-Fluid CNN and
Two-Fluid CNN models have about ⇠120,000 learnable parameters. The Single-Fluid CNN and
Two-Fluid CNN model architectures have been developed as part of a parallel work by our group and
the publication (in preparation) will be cited in the current paper upon acceptance.

1.1 NanoNet-SG Model Architecture Details

The Spatial Encoding Module (sec. 3.3) and Interaction Encoding Module (sec. 3.3) both comprise
of 2 input channels and 16 output channels. The outputs of the Spatial Encoding and Interaction

Encoding modules are concatenated (channel-wise) and the 32 channel input is operated on by the
Adaptation Module (sec. 3.3) comprising two convolutional blocks sequentially connected. First
of the two convolutional blocks has 32 input channels and 16 output channels while the second
convolutional block has 16 input channels followed by |M | (i.e., the number of fluids in the mixture
being predicted) output channels1. The |M | channel output of the Adaptation Module is corrected by
the output of the Mapper module (which is a |ei|⇥ l ⇤ |M | dimensional fully connected network) to
produce an |M | channel output to correct each point in the prediction horizon ‘l’ obtained from the
Adaptation Module. Through this process, NanoNet-SG architecture is able to adapt the predictions
obtained from pre-trained single fluid models to the complex fluid-mixture modeling context with
only 5108 learnable parameters while also yielding improved domain consistency and superior
generalization ability relative to models that are agnostic to science guidance.

2 Qualitative Figures

2.1 Single-Fluid CNN Model on Two-Fluid Prediction Task

We notice from Fig. 2, Fig. 3, that the behavior of the Single-Fluid CNN model is consistent with that
presented in the main paper for other sample prediction scenarios in the target domain. Essentially,
we once again notice an overestimation of the bulk density in the context of ethane profile prediction
and overestimation of the peak in the methane profile prediction context.

Figure 2: Single-Fluid CNN Methane Density Profile Prediction

2.2 NanoNet-SG Model Predictions

We also include qualitative samples of the NanoNet-SG density profile predictions. Fig. 4 and
Fig. 5 demonstrate that NanoNet-SG is able to yield consistent accurate predictions across all the
predictions contexts sans any underestimation or overestimation behavior as observed in the case of
the Single-Fluid CNN models.

1In our experiments |M | = 2
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Figure 3: Single-Fluid CNN Ethane Density Profile Prediction

Figure 4: NanoNet-SG Methane Density Profile Prediction

Figure 5: NanoNet-SG Ethane Density Profile Prediction

3 Baseline Performance Comparison

3.1 Baseline Model Description

Random Forest (RF-Reg.). We train a random forest regressor (with 100 estimators) for the task of
density profile prediction. Specifically, for a particular experimental setup ei, and a particular pore
location ‘q’, the model is trained to predict ŷi

T (q) 2 R1⇥1 (i.e., the fluid density at location ‘q’). The
model is conditioned upon ei and �i(q) where �i(q) represents the spatial inputs at pore location ‘q’.

Gradient Boosting (GB-Reg.). The problem setup for the GB-Reg. model (with 100 estimators,
squared error loss function, learning rate of 0.1) is identical to that of the RF-Reg. model (i.e.,
predicting density of a fluid at each location ‘q’ conditioned upon ei, �i(q)).

Linear Regression (Lin-Reg.). The problem setup for the Lin-Reg. model is identical to the RF-Reg.,
GB-Reg. setups.

Single-Fluid CNN (SF-CNN ). A fully convolutional neural network architecture2 with kernel size
of 13 (large enough to capture the spatial span of adsorption phenomena as determined by domain
experts). This model accepts input features in the source domain DS for a particular fluid and yields
the density profile at every point in the estimation horizon as specified in the inputs.

2Architecture details & diagram in Appendix.
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Two-Fluid CNN (TF-CNN ). Similar architecture20 to the Single-Fluid CNN model, except the
outputs yield density profiles for multiple fluids (i.e., all constituent fluids) in a mixture M being
modeled. Additionally the experimental settings added as input to the model also comprise the partial
pressures of each constituent fluid in M .

Performance Comparison. To further investigate the performance of NanoNet-SG , we compare

Figure 6: Prediction performance comparison with state-of-the-art regression models.
NanoNet (orange), NanoNet-SG (red) models yield lowest errors and standard deviations.

the prediction performance to state-of-the-art regression baselines (details in sec. 3.1). In Fig. 6 we
notice that NanoNet and NanoNet-SG models yield significantly improved prediction performance on
both the methane and ethane profile prediction tasks in the fluid mixture density profile prediction
context. We specifically report methane and ethane profile prediction errors for each model in Fig. 6
and notice that NanoNet and NanoNet-SG outperform all other models in both prediction tasks (i.e.,
methane, ethane density profile prediction).

Model Name

Generalization Performance Breakdown
(MAPE)

Methane
Bulk

Ethane
Bulk

Methane
Profile

Ethane
Profile

SF-CNN 6.29% 56.52% 50.50% 56.68%
TF-CNN 4.90% 3.73% 23.69% 7.69%
NanoNet 2.53% 2.45% 11.56% 4.36%
NanoNet-SG 2.98% 2.15% 9.19% 3.65%

Table 1: Generalization performance per fluid over the bulk prediction and profile prediction contexts.
We once again notice that NanoNet-SG yields best overall performance due to knowledge transfer
coupled with science-guidance.

In Table 1, we further showcase a task breakdown of the generalization performance observed in
Table 1 (main paper) by inspecting generalization errors in the bulk and profile prediction context
per fluid for each model. We can infer from Table 1 that models NanoNet and NanoNet-SG yield
significant performance improvement owing to the effect of the knowledge transfer architecture
and the science guidance in the case of NanoNet-SG . Specifically, we notice that science guidance
results in improved overall generalization as well as bulk and profile generalization in both the case
of Methane and Ethane. Science guidance leads to NanoNet-SG gaining a 16.26% performance
improvement over its variant without science guidance (i.e., NanoNet ) and significantly larger gains
in performance over SF-CNN and TF-CNN models.

Qualitative Performance Characterization. We notice from Fig. 7 that NanoNet-SG yields highly
accurate density estimates across the entire range of the prediction spectrum of fluid density for each
of the fluids in the mixture. Also apparent from the plots is the ability of the model to fit the multiple
distributional modes in the density profile owing to the density in the peak and bulk regions due to
the presence and absence of adsorption effects respectively. These multiple modes are indicated by
disjoint clusters of points in each plot in Fig. 7. We also report the R2 statistic for density prediction
of NanoNet-SG which indicates consistent performance across the two fluids with R2=0.991 for
methane density prediction and R2=0.998 for ethane density prediction.
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Figure 7: Qualitative performance characterization of NanoNet-SG in density profile prediction for
Methane-Ethane fluid mixture. Color bar indicates distribution of points across prediction range.

3.2 Effect of Science Guidance on Domain Consistency

Further, in Fig. 8 (a), 8(b) we depict evolution of total cumulative densities for NanoNet and NanoNet-
SG at a sample pore width of 25 at various temperatures. We once again notice that the evolution for
NanoNet showcases significant deviations from the monotonically non-decreasing domain constraint
whereas the NanoNet-SG model predictions result in total density curves that adhere to the scientific
domain knowledge much more consistently. From Fig. ?? and Fig. 8, we can infer that the NanoNet-

Figure 8: Each of Fig. 8(a) and 8(b) depict total cumulative density evolution with pressure (at
multiple temperature values) for NanoNet-SG and NanoNet respectively at pore width 25Å.

SG model yields significantly more domain consistent results owing to the science-guided training
criterion.

4 Related Work

Transfer Learning -Transfer learning as a model training paradigm has been effectively leveraged in
applications like natural language processing Ruder et al. [2019], computer vision Li et al. [2020],
healthcare Gupta et al. [2020], Chen et al. [2019] and many other contexts. However, few efforts have
employed transfer learning under data paucity in scientific applications. To the best of our knowledge,
our NanoNet-SG is the first science-guided model to employ inductive transfer learning to counter
the effects of data paucity in scientific applications.

Fluid-Flow Modeling. Various ML models have been proposed for modeling fluid flows Brunton
et al. [2019], Wang et al. [2020], Raissi et al. [2019]. However all these models (unlike NanoNet-SG )
either assume complete knowledge of the physics (e.g., PDE, ODE, initial, boundary conditions)
governing the system or employ large datasets in target domain.

Modeling Under Nano-confinement. The works Santos et al. [2020], Lubbers et al. [2020] are
closest to ours. In Santos et al. [2020], authors propose an active-learning framework for training
a ML emulator of MD simulations and Lubbers et al. [2020] develop an ML model to bridge fine-
grained (MD) and coarse-grained (Lattice-Boltzman) simulations of nano-confined fluids. However,
neither of these works tackle the complex problem of modeling fluid mixtures and neither work
employs explicit science guidance in the loss function for modeling under data paucity. How is our
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work different? 1. Uses weak scientific domain knowledge. 2. Modeling under data paucity 3. No
other works leverage inductive transfer learning and science guidance. 4. Our work is different
from Javier’s work as we do not assume access to the MD simulator (only to the scientific domain
knowledge and initial data).
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