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Abstract

Non-parametric graph scan (NPGS) statistics are used
to detect anomalous connected subgraphs on graphs,
and have a wide variety of applications, such as dis-
ease outbreak detection, road traffic congestion detec-
tion, and event detection in social media. In contrast to
traditional parametric scan statistics (e.g., the Kulldorff
statistic), NPGS statistics are free of distributional as-
sumptions and can be applied to heterogeneous graph
data. In this paper, we make a number of contributions
to the computational study of NPGS statistics. First,
we present a novel reformulation of the problem as a
sequence of Budget Price-Collecting Steiner Tree (B-
PCST) sub-problems. Second, we show that this refor-
mulated problem is NP-hard for a large class of non-
parametric statistic functions. Third, we further develop
efficient exact and approximate algorithms for a special
category of graphs in which the anomalous subgraphs
can be reformulated in a fixed tree topology. Finally,
using extensive experiments we demonstrate the per-
formance of our proposed algorithms in two real-world
application domains (water pollution detection in wa-
ter sensor networks and spatial event detection in so-
cial media networks) and contrast against state-of-the-
art connected subgraph detection methods.

1 Introduction
Anomalous subgraph detection has attracted much atten-
tion in recent years (Duczmal, Kulldorff, and Huang 2006;
Takahashi et al. 2008; Sharpnack, Singh, and Rinaldo
2013; Speakman, McFowland Iii, and Neill 2015; Qian,
Saligrama, and Chen 2014; Li et al. 2015). We consider a
graph G = (V,E), where each v ∈ V is associated with
features values xv that follow some statistical distribution.
The general goal of anomalous subgraph detection is to op-
timize some objective function (F (S)) of the abnormality
of the feature values over all connected subsets of vertices
(S ⊆ V). To motivate this scenario, consider the cholera out-
break problem (Patil, Taillie, and others 2003) as shown in
Figure 1. Suppose we have a network of counties (vertices)
and each vertex has a feature referring to the number of cases
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Figure 1: A potential cholera outbreak lead to elevated number
of infected cases in counties near the river, which form an irreg-
ular shaped connected subgraph (cluster) of counties. (Redrawn
from (Patil, Taillie, and others 2003).)

of cholera in that county on a given day. Suppose further that
two vertices are connected by an edge if they share a bound-
ary. We wish to identify possible cholera outbreaks at an
early stage, which requires identifying subtle patterns (e.g.,
a 20% increase in the number of patients with symptoms
of cholera in four local (connected) counties) in the noisy
background data. These subtle signals may not be detectable
if we examine only a small part of the affected subset (e.g., a
single county) or a larger connected subset containing many
unaffected vertices (e.g., the aggregate count for the entire
state). As a result, traditional “bottom-up” methods (which
identify and aggregate individual vertices (Chandola, Baner-
jee, and Kumar 2009)) and “top-down” methods (which de-
tect anomalous global trends) often have low power for de-
tecting events (Chen and Neill 2014; Neill 2012).

The underlying assumption behind anomalous pattern de-
tection is that features of a majority of vertices are gen-
erated from the same distribution representing the (typi-
cally unknown and possibly complex) normal behavior of
the system; thus, we wish to detect connected or correlated
subgraphs of vertices which are unexpected given the typi-
cal data distribution (e.g. Gaussian, Poisson, or mixture of
Gaussians). Existing methods can be categorized into two
main groups, namely parametric and nonparametric meth-
ods. Parametric methods assume specific forms of distribu-
tions for features of normal and abnormal vertices, respec-
tively, and formalize anomaly detection as a hypothesis test-
ing problem. In particular, under the alternative hypothesis



(H1(S)), an underlying anomalous phenomenon is charac-
terized in the following manner: features of a majority of
the vertices are generated from the same background dis-
tribution, and features of perhaps a small connected subset
S ⊆ V of vertices are generated from a different distribu-
tion. The goal is to maximize an appropriate set function
(F (S)), typically the likelihood ratio F (S) = Pr(Data|H1(S))

Pr(Data|H0) ,
over all possible connected subsets S (with H0 being the
null hypothesis). Depending on the specific forms of distri-
butions assumed, a number of methods have been proposed,
including an expectation-based Poisson statistic (Neill et al.
2005), the Kulldorff statistic (Kulldorff 1997), the elevated
mean scan statistic (Qian, Saligrama, and Chen 2014), and
various others.

Nonparametric methods do not associate specific forms
of distributions with normal and abnormal vertices. Instead,
they first estimate a p-value for each vertex based on empiri-
cal calibration by comparing the current features of this ver-
tex with its features in the historical data for the vertex (Chen
and Neill 2014; McFowland, Speakman, and Neill 2013).
This approach then maximizes a score function F (S) of p-
values in S, typically nonparametric scan statistic measur-
ing the significance of the collection of p-values in S, over
all possible connected subsets. A number of NPGS statis-
tic functions have been proposed in recent years, includ-
ing the Berk-Jones (BJ) statistic (Berk and Jones 1979), the
Higher Criticism (HC) statistic (Donoho and Jin 2004), the
Tippet’s statistic, rank truncated statistic, and various oth-
ers. Note that these nonparametric statistic functions were
originally proposed to combine p-values from a set of hy-
pothesis tests in the area of statistical meta analysis. Re-
cent studies show that these functions can be satisfactorily
used with NPGS for detecting anomalous subgraphs (Mc-
Fowland, Speakman, and Neill 2013; Chen and Neill 2014;
Bogdanov, Mongiovı̀, and Singh 2011). The main contribu-
tions of our study are summarized as follows:

• Hardness Analysis. We reformulate the NPGS problem
as a sequence of B-PCST sub-problems, and show that
this reformulated problem is NP-hard for a general cate-
gory of nonparametric statistic functions. These functions
satisfy two intuitive properties on the cardinality of the
input subgraph S and the number of vertices in S that are
significant at a confidence level α.

• Exact and approximate algorithms for graphs with
tree shaped priors. We develop efficient algorithms to
the NPGS problem that are guaranteed to find an optimal
solution in worst-case time O(N3) and an approximate
solution in worst-case time O(N2/ε) when the connected
subgraph can be reformulated in a fixed tree topology.

• Comprehensive experiments to validate the effective-
ness and efficiency of the proposed techniques. We con-
duct extensive experiments on a water sensor dataset and a
Weibo dataset. The results demonstrate that our proposed
algorithms outperform existing representative techniques
in both performance and quality.

Figure 2: The BJ statistic scores of the three example subgraphs
demonstrate that this score function increases with Nα(S) and de-
creases with N(S) −Nα(S) and α. Yellow-colored vertices refer
to the vertices whose p-values are less than or equal to α.

2 Nonparametric Graph Scan Statistics
Given a graph G(V,E, p) where V = {v1, ..., vN}, N refers
to the total number of vertices, E ⊆ V × V refers to the set
of edges, and the mapping function p : V → [0, 1] defines
a single empirical p-value to each vertex v, which can be
calculated based on empirical calibration by comparing cur-
rent features of v with its features in the historical data for
v (Chen and Neill 2014; McFowland, Speakman, and Neill
2013). The general form of the Non-Parametric Graph Scan
(NPGS) statistic (Chen and Neill 2014; McFowland, Speak-
man, and Neill 2013) is defined as:

F (S) = max
α

Fα(S) = max
α

φ(α,Nα(S), N(S)), (1)

where S ⊆ V refers to a connected set of vertices (sub-
graph), Nα(S) =

∑
v∈S δ(p(v) ≤ α) is the number of p-

values significant at level α, N(S) =
∑
v∈S 1 is the total

number of p-values in S. The function δ(·) = 1 if its input is
True, otherwise δ(·) = 0. Denote N̄α(S) =

∑
v∈S δ(p(v) >

α), which means that N(S) = N̄α(S) + Nα(S). The sig-
nificance level α can be optimized between 0 and some con-
stant αmax (0.15 by default). We assume that the function
φ(α,Nα(S), N(S)) satisfies two intuitive properties:
(P1) φ is monotonically increasing w.r.t. Nα(S),
(P2) φ is monotonically decreasing w.r.t. N(S)−Nα(S).
These assumptions follow naturally because the score φ in-
creases with the number of significant p-values and deceases
with the number of insignificant p-values at the level α. The
importance to consider a range of α in the function is dis-
cussed in (Chen and Neill 2014). The range of α refers to
the set of all possible p-values in G between 0 and α.

This paper presents efficient algorithms for the large class
of nonparametric scan statistics that satisfy the above two
properties, such as the Berk-Jones (BJ) statistic (Berk and
Jones 1979), the Higher Criticism (HC) statistic (Donoho
and Jin 2004), the Kolmogorov-Smirnov statistic, the
Davidov-Herman statistic, and the chi-bar squared statistic.
For illustration purpose, we consider the first two functions.
The BJ statistic is defined as:

ϕBJ(α,Nα(S), N(S)) = N(S)× KL
(
Nα(S)

N(S)
, α

)
, (2)

where KL is the Kullback-Liebler divergence between the
observed and expected proportions of p-values less than α.



Figure 3: (a) An illustration of our work to decompose NPGS problem into a sequence of K-budget subgraph detection problems. (b) With
the number of normal vertices is equal to K, including v, we aim to find a solution including more abnormal vertices. We consider assigning
the value of π+

K in vertex V as a multiple-choice knapsack problem from π+ of children V1,...,h. MCK refers to multiple choice knapsack.

The HC statistic is defined as:

ϕHC(α,Nα(S), N(S)) =
Nα(S)−N(S)α√
N(S)α(1− α)

. (3)

Given a selected nonparametric scan statistic function
ϕ(α,Nα(S), N(S)), the detection of the most anomalous
connected subgraph from V can be formalized as the fol-
lowing optimization problem:

max
S⊆V:S is connected

max
α≤αmax

φ(α,Nα(S), N(S)), (4)

which is equivalent to the problem:

max
α∈U(V,αmax)

max
S⊆V:S is connected

φ(α,Nα(S), N(S)), (5)

where U(V, αmax) refers to the union of {αmax} and the set
of distinct p-values less than αmax in V.

3 Methodology
This section presents a new reformulation of the NPGS
problem and develops efficient algorithms for a special cat-
egory of graph data where the connectivity constraint of the
subgraph can be reformulated in a fixed tree topology.

3.1 Problem Reformulation
The hardness analysis of the NPGS problem is difficult as
it involves a nonlinear objective function, and can not be
reduced from known NP-hard problems that often involve
linear objective functions. The following theorem shows that
the NPGS problem can be reformulated a sequence of B-
PCST sub-problems, and the hardness of the reformulated
problem can be readily analyzed.
Theorem 1 (NPGS Reformulation). The NPGS problem
(5) is equivalent to the following problem:

(α̂, Ŝ) = max
α∈U(V,αmax)

max
Sα∈{S0

α,...,S
N
α }
φ(α,Nα(S), N(S))

(6)
where each SKα = VT Kα , and T Kα is the optimal subtree
of the budget node-weighted Prize-Collecting Steiner Tree
problem (B-PCST):

T Kα = max
T ∈T(G)

∑
v∈VT

πα(v), s.t.
∑
v∈VT

cα(v) ≤ K, (7)

where T(G) ≡ {T = (VT ,ET )} denotes the set of sub-trees
of G, πα(v) = 1 and cα(v) = 0, if p(v) ≤ α; otherwise,
πα(v) = 0 and cα(v) = 1.

Proof. This theorem can be proved by contradiction. Sup-
pose (α̂, Ŝ) is not an optimal solution to the NPGS prob-
lem. It follows that there exists a different solution (α∗, S∗),
such that φ(α∗, Nα∗(S

∗), N(S∗)) > φ(α̂, Nα̂(Ŝ), N(Ŝ)).
Let K̂ := N(Ŝ) − Nα̂(Ŝ) and K∗ := N(S∗) − Nα∗(S∗).
We first observe that Nα∗(VT K∗

α∗
) = Nα∗(S

∗); Other-
wise, VT K∗

α∗
will be the optimal subset, instead of S∗

due to (P1) and (P2). Similarly, it can be shown that
Nα̂(VT K̂α̂ ) = Nα̂(Ŝ). As (α̂, Ŝ) is the optimal solution to
the reformulated problem (6), the inequality must be true:
φ(α∗, Nα∗(S

∗), N(S∗)) ≤ φ(α̂, Nα̂(Ŝ), N(Ŝ)), a contra-
diction. Therefore, the initial assumption – (α̂, Ŝ) is not an
optimal solution to the NPGS problem – must be false.

Theorem 2 (Hardness). The reformulated problem (6) is
NP-hard for the large class of nonparametric scan statistics
that satisfy (P1) and (P2).

Proof. Each subproblem (7) is a binary-case B-PCST prob-
lem that is known to be NP-hard (Johnson, Minkoff, and
Phillips 2000). It can then be readily proved that the refor-
mulated problem (6) is NP-hard.

3.2 Approximations with tree shaped priors
Although the B-PCST sub-problem (7) can be approximated
with the factor of O(logN) in polynomial time (Bateni, Ha-
jiaghayi, and Liaghat 2013), both the Big-O approximation
factor and the polynomial time complexity of this approxi-
mation are not satisfactory for large graph analysis. To de-
sign more efficient solutions for the subproblem (7), we pro-
pose to reformulate the connectivity constraint of the sub-
graph S on a fixed topology. Particularly, we approximate
the graph G as a tree Tr originating at a given root vertex
r ∈ V, and the search of the best connected subgraph S for
the NPGS problem is approximated as the search of the best
sub-tree in Tr. There are several heuristics to find the tree for
the input graph: (1) breadth-first tree; (2) random spanning
tree; (3) steiner tree; and (4) geodesic shortest path tree. The



Algorithm 1: Tree-Shaped-Priors Subgraph Detection
Input: Graph G(V,E, p)
Result: The most anomalous subgraph S∗

1 Set αmax = 0.15 and C = 5;
2 for c ∈ {1, · · · , C} do
3 Select seed v0 from {v|v ∈ V, p(v) ≤ αmax};
4 Approximate the graph G as a tree T (v0);
5 for α ∈ U(V, αmax) do
6 for K = 0, · · · , N(V)−Nα(V) do
7 SKα ← DP(K, Tv0 , v0, α) in Section 3.3;
8 end
9 end

10 Sc = arg max
α∈U(V,αmax),K

φ(α,Nα(SKα ), N(SKα ));

11 end
12 Calculate c∗ = arg maxc φ(α,Nα(Sc), N(Sc));
13 return Sc

∗

first three tree heuristics have been successfully applied to
discrepancy maximization on general graphs (Gionis, Math-
ioudakis, and Ukkonen 2015). The fourth tree heuristic has
been successfully applied to image segmentation and sensor
networks (Stühmer, Schröder, and Cremers 2013).
Breadth-First Tree (BFS-Tree): From random candidate
root vertices, it generates a breadth-first tree for each root.
Random Spanning Tree (Random-ST): We get a random
tree by assigning a weight (uniformly from [0, 1]) to each
edge, and computing the minimum weight spanning tree.
Steiner Tree (Steiner-T): Intuitively, a tree is good if abnor-
mal vertices are interconnected with the least number of nor-
mal vertices. For each α ∈ U(V, αmax), if we denote each
abnormal vertex as a terminal vertex, and each normal ver-
tex as a steiner vertex, trees can be identified by generating
the steiner trees of the input graph.
Geodesic Shortest Path tree (Geodesic-SPT): For the
NPGS problem, we define the optimal cost of the connect-
ing path p between a fixed vertex s and other x based on the
statistic: exp{−maxα φ(α,Nα(Sp), N(Sp))} (Stühmer,
Schröder, and Cremers 2013), where Sp are vertices in
p. The algorithm for generating such a tree can be found
from (Narvez, Siu, and Tzeng 2000).

3.3 Dynamic algorithms for the problem (7)
When the input graph G is a tree T (r) with the root vertex
r, we can solve the problem (7) optimally, using dynamic
programming (DP). We first introduce a few notations:

• T (v): a sub-tree of G with the root vertex v.

• π−vl : the value of the best l-budget sub-tree to the problem
(7) in T (v) that does not contain v.

• π+v
l : the value of the best l-budget sub-tree to the problem

(7) in T (v) that contains v.

• πvl : πvl = max{π−vl , π+v
l }.

• svl : a boolean value that indicates if vertex v belongs to
the best l-budget sub-tree in T (v).

• nvl : a vertex pointer that indicates to which child of v to
find the best l-budget sub-tree, if svl = False.

• Cvl : a set of tuples of the form (v′, t). Hereby, v′ is a child
of v and t is an integer number that denotes the size of the
sub-tree to be collected in T (v′).

• C(v): the set of children of v in T (v).
The DP procedure is presented as follows:

Leaf vertex: We set initial values to attributes of leaf ver-
tices. For a leaf vertex v, if p(v) > α, set π−vl∈{0,1} = 0,
π+v
l∈{0,1} = 0, πvl∈{0,1} = 0 and svl∈{0,1} = False, and if
p(v) ≤ α, set π+v

0 = 1, πv0 = 1 and sv0 = True.
Non-leaf vertex: Attributes nvl and π−vl are computed as:

nvl = max
vi
{πv1l , · · · , π

vh
l }, π

−v
l = π

nvl
l , (8)

where {v1, · · · , vh} refer to the h child vertices of the ver-
tex v. As illustrated in Figure 3 (b), the computation of the
attribute π+v

l can be reduced to a 0-1 multiple-choice knap-
sack (0-1 MCK) problem that has the approximation factor
(1+ε) and the running timeO(Kh/ε) (Bansal and Venkaiah
). The problem is to select at most one π+vi

j from each child
i = {1, · · · , h} such that the sum of profit is maximized
without summing budget j to exceed l − δ(p(v) > α). π+v

l
can then be calculated as:

π+v
l = max

x
δ(p(v) ≤ α) +

h∑
i=1

K∑
j=0

π+vi
j · xi,j (9)

s.t.
∑K
j=0 xi,j ≤ 1, i = {1, · · · , h},

∑h
i=1

∑K
j=0 j ·xi,j ≤

l − δ(p(v) > α), where x ∈ {0, 1}h×K . Set svl = False if
π−vl > π+v

l , otherwise svl = True. Given the result x from
the problem (9), the set attribute Cvl can be calculated as:

Cvl = {(vi, j)|xi,j = 1}. (10)
We compute DP(K, Tv0 , v0, α) using two-stages: 1) Calcu-
late {π−vl , π+v

l , πvl , s
v
l , n

v
l , C

v
l }Kl=0 for v ∈ V; 2) From the

root vertex v0 down, we find the first svK = True. Set SKα ←
Φ, compute findchild(T , v, l) =

∑
(vi,j)∈Cvl

SKα ∪ {vi} ∪
findchild(T , vi, j) and last return findchild(T , svK ,K).
The detailed information of the implementation can be
found from the online appendix (Wu et al. ).
Theorem 3. 1) Exact Solution: If each 0-1 MCK sub-
problem (9) is solved via dynamic programming (Pisinger
1994), Algorithm 1 is guaranteed to find the optimal solution
to the tree-priors-based NPGS problem in worst-case time
O(|U(V, αmax)| ·N3); 2) Approximate Solution: If each 0-
1 MCK subproblem (9) is solved via the algorithm (Bansal
and Venkaiah ) that has the approximation factor (1 + ε),
then Algorithm 1 is guaranteed to find an approximate so-
lution to the tree-priors-based NPGS problem in worst-case
time O(|U(V, αmax)| ·N2/ε).

Proof. An 0-1 MCK subproblem will be solved for each ver-
tex vi with the time O(K2hi) for exact solutions via dy-
namic programming (Pisinger 1994) and the time O(Khiε )
for approximate solutions (Bansal and Venkaiah ), where hi
refers to the number of child vertices of vi. As K → N and∑
vi∈V hi + 1 = N , the times can be readily proved.



Method Noise Ratio (0%) 4% 8% 10% 30%
BFS-Tree (BJ) 0.94, 0.48 (0.64) 0.95, 0.47 (0.63) 0.93, 0.50 (0.66) 0.91, 0.47 (0.62) 0.78, 0.33 (0.47)

Random-ST (BJ) 0.94, 0.77 (0.84) 0.93, 0.75 (0.83) 0.95, 0.65 (0.77) 0.93, 0.59 (0.71) 0.79, 0.39 (0.53)
Steiner-T (BJ) 1.00, 0.99 (1.00) 0.98, 0.96 (0.97) 0.95, 0.92 (0.94) 0.94, 0.89 (0.91) 0.77, 0.52 (0.62)

Geodesic-SPT (BJ) 0.96, 0.85 (0.90) 0.92, 0.63 (0.75) 0.88, 0.65 (0.75) 0.85, 0.56 (0.68) 0.78, 0.38 (0.51)
EventTree 0.97, 1.00 (0.98) 0.89, 0.98 (0.93) 0.70, 0.98 (0.82) 0.42, 0.97 (0.59) 0.09, 0.90 (0.17)

NPHGS (BJ) 1.00, 0.92 (0.96) 0.99, 0.77 (0.84) 0.97, 0.50 (0.66) 0.97, 0.39 (0.55) 0.78, 0.06 (0.11)
LTSS (BJ) 1.00, 1.00 (1.00) 0.48, 0.96 (0.64) 0.34, 0.92 (0.50) 0.30, 0.90 (0.45) 0.11, 0.70 (0.20)

Graph-Laplacian 0.93, 0.87 (0.90) 0.95, 0.43 (0.60) 0.89, 0.23 (0.37) 0.68, 0.12 (0.20) 0.97, 0.50 (0.66)

Table 1: Comparison w.r.t. different noise levels in the water pollution dataset: Precision, Recall (F-Measure)

Method FPR TPR TPR Lead Time Lag Time Run Time
(FP/Day) (Detection) (Forecast & Detect) (Days) (Days) (Minutes)

TSPSD-Steiner HC (BJ) 0.100 0.55 (0.49) 0.66 (0.66) 0.98 (0.97) 3.53 (3.54) 18 (0.3) (18 (0.3))
TSPSD-Steiner HC (BJ) 0.150 0.62 (0.61) 0.70 (0.71) 0.88 (0.82) 3.92 (4.15) 18 (0.3) (18 (0.3))
TSPSD-Steiner HC (BJ) 0.200 0.66 (0.66) 0.74 (0.74) 0.87 (0.82) 4.00 (4.15) 18 (0.3) (18 (0.3))

NPHGS HC (BJ) 0.100 0.32 (0.41) 0.47 (0.55) 0.72 (0.59) 4.35 (4.70) 3 (8)
NPHGS HC (BJ) 0.150 0.43 (0.48) 0.60 (0.71) 0.72 (0.70) 4.27 (4.40) 3 (8)
NPHGS HC (BJ) 0.200 0.50 (0.63) 0.70 (0.74) 0.71 (0.74) 4.32 (4.12) 3 (8)

EventTree 0.100 0.51 0.65 0.91 3.71 7.5
EventTree 0.150 0.57 0.68 0.70 4.40 7.5
EventTree 0.200 0.60 0.72 0.81 4.12 7.5

Table 2: Comparison between TSPSD and Other Models on the Haze outbreak dataset. The scores of HC and BJ statistics are shown in the
format: x(y), where x refers the score of HC, and y refers to that of BJ. For 18(0.3), 18 is the overall run time and 0.3 is the detection time.

3.4 Optimization

Algorithm 1 can be further improved in three ways. First,
instead of N̄α(V) calls to the sub-procedure in Section
3.3, it suffices to call DP procedure only once with K =
N̄α(V), and the returned Tree T with the updated at-
tributes {π−vl , π+v

l , πvl , s
v
l , n

v
l , C

v
l }Kl=0 at each vertex v can

be used to retrieve the solution to problem (7) for K =
0, · · · , N̄α(V).

Second, after attributes of the vertex v are calculated:
{πvl , π

−v
l , π+v

l , nvl , Cvl }Kl=0, we check πvl based on the order
l = K, · · · , 1. Attributes {πvl , π

−v
l , π+v

l , nvl , Cvl } related to
the l-budget solution can be safely removed, if at least one
of the following conditions is satisfied: 1) π+v

l ≤ π+v
l−1; 2)

φ(α, a+πvl , a+ l+πvl ) ≤ φ(α, a+πvl−1, a+πvl−1 + l−1);
and 3) φ(α, a + πvl , a + πvl + l) ≤ φ(α, a, a), where a =
Nα(VT )−Nα(VT (v)).

Third, let U(V, αmax) = {α1, α2, · · · , αZ} with ascend-
ing order based on the index. Suppose the current α is αi.
We maintain an additional attribute q in the root r that refers
to an upper-bound of the number of abnormal vertices in
the optimal subtree. Based on q, we can calculate an up-
perbound of the best subtree as follows: φ(αi, q, q). Initially
q = Nαi(V). As attributes of a vertex v are calculated, we
apply the above optimization strategy to remove unneces-
sary l-budget subtrees rooted at v. Let L = {l1, · · · , lh}
refer to the set of l-values that have been pruned. Then q can
be updated: q = q−(maxl∈{0,··· ,N̄αi (V)}{πvl }Nα(VT (v))−
maxl{π+v

l }). When each time q is updated, we compare the
resulting upper bound φ(αi, q, q) with the best score Fi =
maxj∈{1,···i−1} φ(αj , Nαj (Sαj ), N(Sαj )) calculated based
on previous alpha values α1, · · · , αi−1: If φ(αi, q, q) ≤ Fi,
then we do not need to proceed the procedure related to αi.

4 Experiments
4.1 Experiment Design
Datasets: 1) Water Pollution Dataset. The “Battle of the
Water Sensor Networks” (BWSN) (Ostfeld and Salomons
2008) provides a real-world network of 12,527 nodes, and
25 nodes with chemical contaminant plumes that are dis-
tributed in four different areas. The spreads of contaminant
plumes on graph were simulated using the water network
simulator EPANET that was used in BWSN for a period
of 8 hours. For each hour, each node has a sensor that re-
ports 1 if it is polluted; otherwise, reports 0. We randomly
selected ns percent vertices, and flipped their sensor binary
values, where ns = 0, 4, 8, 10, 30, in order to test the ro-
bustness of methods to noises. In order to apply nonpara-
metric graph scan methods to this data, we map the sen-
sors whose report values are 1s to the empirical p-value 0.15
(≤ αmax ≡ 0.15), and whose report values are 0s to 1.0.

2) Event Detection Dataset. We collected 1,433,937,815
tweets (nearly 10 percent of the whole Weibo1 data) from
Apr 11, 2014 to Jan 11, 2015. From this dataset, we se-
lected 0.35 million tweets such that each tweet contains
at least two terms from a set of 50 terms about haze out-
breaks collected from domain experts, which are posted by
51,940 users. According to mentions in tweets and follow-
ing relations, we construct a connected user-user network
with 158,652 edges. Each user is geocoded with a province
from location in profiles. For each day d and user u, we
calculated the corresponding empirical p-value by the work
in (Chen and Neill 2014). The methods will output a de-
tected user subgraph, which is transformed into a province
subgraph from the union of user’s provinces in the sub-
graph. Gold Standard Reports (GSR) of 4279 official haze

1Weibo.com, the most popular online social networking ser-
vices in China with more than 400 million users.



Figure 4: Haze events from Nov 27, 2014, in China. Within the
7 day window before and after that day, a yellow vertex refers to
a successful forecast or detection; a blue vertex indicates an alert
without a GSR record; Other color vertices consist of user sub-
graphs detected by BJ or HC statistics. The size of yellow and blue
vertices is proportional to the count of users connected to them.

outbreak records (level ≥ 3) were collected from official
websites (MEP ), and each GSR record was formatted as
(“Time(YYYYMMDD)”, “Location(Province)”)

Comparison Methods: We study four representa-
tive baselines: EventTree (Rozenshtein et al. 2014),
NPHGS (Chen and Neill 2014), LTSS (Neill 2012), and
Graph-Laplacian (Sharpnack, Singh, and Rinaldo 2013). We
strictly followed strategies recommended by authors in their
papers to tune the related model parameters. Specifically,
for EventTree and Graph-Laplacian, we tested the set of
λ values: {0.1, 0.2, · · · , 1.0, 50, 100, · · · , 1500}. As Event-
Tree requires edge weights, we define the weight of an edge
in the water pipeline network as the length of the pipeline
segment to the edge and define the weight of an edge in the
user-user network of Weibo as 1 without a better way. Two
nonparametric scan statistics, HC and BJ, were evaluated.
We set the parameters αmax ≡ 0.15 and the number of seed
nodes C ≡ 5 for NPHGS and our methods.

Our Methods: We denote Algorithm 1 as Tree-Shaped-
Priors Subgraph Detection (TSPSD) and tested tree priors:
BFS-Tree, Random-ST, Steiner-T, and Geodesic-SPT.

Performance Metrics: 1) precision, 2) recall, and 3) F-
measure were employed when the true anomalous subgraphs
are known. 4) FPR and 5) TPR, were used for the event de-
tection dataset. For each GSR event, we decide whether the
method: I) Had an alert in the province within 7 days before
the event, which means to be “predicted”; II) Had an alert
in the province within 7 days after the event, which means
to be “detected”; or III) Hadno alert in the province within 7
days before or after the event, which is “undetected”.

4.2 Results: Subgraph Detection
At noise levels 0%, 4%, 8% and 10% in Table 1, TSPSD
with Steiner-T prior achieved the highest performance. Even
if the dataset has 10% noise, TSPSD detected 89% truly con-
taminated vertices with the precision greater than 90%. At
noise levels 30%, the values of TSPSD with Steiner-T were
comparable to those of Graph-Laplacian method but slightly
lower. From the overall performance in all different noise
levels, TSPSD with Steiner-T performed more stable than

Figure 5: The average nonparametric scan statistic scores for each
problem SKα in (7). (a) shows the BJ score for each tree prior in Wa-
ter Pollution Dataset (W) and Haze Event Detection Dataset (H);
(b) shows the HC score for each tree prior.

baselines. The F-measures of TSPSD were higher than base-
lines in most cases. TSPSD at noise levels 30% has a higher
F-score than baselines, EventTree, NPHGS and LTSS.

4.3 Results: Event Detection
For comparable false positive rates, TSPSD achieved the
highest forecasting TPR and detection TPR than the two
baseline methods in Table 2. The lead time represents how
long we need to predict Haze event before it actually oc-
curs. Our method predicting haze events is earlier than base-
lines, and that means the larger lead time. Haze events as
natural events occur usually without exceeding a half day
in China. However social events (e.g., protest events), often
have trigger subevents and are driven by public sentiments,
and can be potentially forecasted with a large lead time (e.g.,
1 to 2 weeks). It is difficult to predict Haze events before a
long time for Haze events do not have these factors. For the
lag time, we use the less time to detect Haze events, and
that means the less lag time. Our approach performs better
than baselines. Although the run time of TSPSD was little
higher than those of baseline methods, the overall time con-
sists of tree generation and subgraph detection steps, and
the first step consumes major time. For intuitively illustrat-
ing our proposed approaches effectively, we randomly se-
lect one day from the nine months to forecast or detect Haze
events in Figure 4. We observe that the subgraph detected by
HC statistic connected to blue vertices (wrong alerts) are ap-
parently less than the subgraph detected by BJ statistic. This
observation corresponds to results in Table 2. HC statistic
performs better than BJ statistic. Our approach can be suc-
cessfully used to predict Haze events in social media.

4.4 Sensitivity to the parameter K
The problem (7) is addressed in Section 3.3. For examin-
ing the sensitivity of selecting values of K, we plot each
score F (SKα ) for K = 0, · · · , 30. From Figure 5 (a) and
(b), we derive that F (SKα ) is stable after K = 20. From
the scores for BJ and HC nonparametric functions, we see
that our approaches employing the Steiner-T prior perform
best. In the Haze data set, the fewer connected users trigger-
ing Haze warnings caused to the less score for BJ and HC.
Results show that most of abnormal vertices are connected
from each other with a small number of normal vertices.



Time BFS Random Steiner Geo
(Min) Tree ST Tree SPT
+Opt 0.11 (0.11) 0.93 (0.1) 0.77 (0.08) 0.62 (0.11)
-Opt 3.16 (3.15) 3.89 (2.8) 2.89 (2.01) 3.79 (3.00)
Time EventTree NPHGS LTSS Graph
(Min) Laplacian
Base 13.10 1.82 0.93 24.61

Table 3: Average run times of our proposed and baseline methods
on the Water pollution dataset. The run time of our method con-
sists of two parts: tree generation and subgraph detection. Such as
0.93 (0.1), 0.93 is the overall run time and 0.1 is the detection run
time. Our method has two versions: 1) -Opt: Algorithm 1; 2) +Opt:
Algorithm 1 + optimizations (Subsection 3.4).

4.5 Runtime: Tree Shaped Priors
As shown in Table 3, run times of TSPSD were compa-
rable to baselines but slightly higher in Random-ST and
Steiner-Tree without Opt since redundant computation for
π−vl , π+v

l , nvl , Cvl . The speed of TSPSD with Opt was 25
times faster than TSPSD without Opt. TSPSD with opti-
mization (Opt) performed better than all baselines. Note that
results based on the HC statistic were not due to space limi-
tations. Its performance was similar to the BJ statistic on the
first dataset.

5 Conclusions
This paper has proposed efficient algorithms to anomalous
subgraph detection for a large class of nonparametric scan
static functions. For future work, we will extend our work
to heterogeneous graphs to maximize nonparametric scan
statistic over subsets of vertices, features, and edge types.
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