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Abstract 

 
Problem solving environments (PSEs) have progressed significantly in the past few years. The vision of 
truly seamless PSEs relies on runtime systems support that is cognizant of the operational issues 
underlying scientific computations and, at the same time, is flexible enough to accommodate diverse 
application scenarios. This paper presents a PSE runtime support solution through a novel combination of 
two computational technologies – Weaves, a source-language independent parallel runtime compositional 
framework that operates through reverse-analysis of compiled object files, and runtime recommender 
systems that aid in dynamic knowledge-based application composition. Domain-specific adaptivity is 
exploited through runtime recommendation of code modules and a sophisticated checkpointing 
framework for transparent deployment. A core set of “adaptivity schemas” are provided as templates for 
adaptive composition of large-scale scientific computations. Implementation issues, motivating 
application contexts, and preliminary results are described. 

1 Introduction 
Problem solving environments (PSEs) are evolving from standalone systems to complex, networked, 
entities seamlessly integrating geographically disparate resources in a single application. Specific trends 
contributing toward this evolution are the increasing componentization of scientific codes, emerging 
system infrastructures such as the Grid [Foster et al., 2001], and the runtime constraints posed by novel 
computational science applications. To be effective in these emerging environments, PSEs must provide 
high-level, powerful, computational primitives within the context of the emerging system infrastructures. 
This requires both an understanding of the architectural assumptions of today’s computational systems 
and an appreciation for how disciplinary scientists do computational science. The focus of this paper is 
runtime systems support that is cognizant of the operational issues underlying PSE infrastructure and is 
flexible enough to accommodate diverse application scenarios.  
 
An area where runtime systems support holds great promise is in the engineering of adaptivity - adaptivity 
in terms of algorithm selection, architectural tuning, and exploiting the underlying scientific usage 
contexts [Foster et al., 2001]. We posit a broad picture of adaptivity here, one which is not restricted to 
identifying partitioning parameters, modifying data decompositions, or parallel scheduling; instead, 
adaptivity is proposed at a more logical unit of algorithms and object codes. This viewpoint leads to 
scientific codes being organized in a model-based framework for adaptive composition, execution, and 
performance analysis [Adve et al., 2002]. We use the term compositional modeling in this paper to 
collectively refer to all three aspects of model specification (how to define the composed elements?), 
model execution (how to execute composed codes?), and model analysis (how to use performance 
information from execution to evaluate and improve models?). 
 
These considerations lead us to identifying two important requirements for runtime systems support in 
PSEs. First, runtime systems support should enable a transparent transition path for composing and 
executing legacy codes, without requiring that they be rewritten to achieve this functionality. Second, 



runtime adaptivity should allow the dynamic selection, reconfiguration, and execution of code modules, 
taking into account performance considerations, problem characteristics, and dynamic system 
infrastructures.  

Solution Approach 
Our solution approach for runtime systems support is two-pronged: (i) a novel compositional system with 
checkpointing support for deployment over HPC platforms, and (ii) realizing domain-specific adaptivity 
through a runtime recommender system. A core set of “adaptivity schemas” constitute a reconfigurable 
approach to steering and managing large-scale scientific computations.  
 
In this context, a high-level problem specification (e.g., “solve this elliptic PDE with a relative accuracy 
of 10-6 and time less than 600 seconds”) is provided to a recommender system that makes an initial 
recommendation of code modules (e.g., “use a finite-difference discretizer with red-black ordering”). 
These code modules are communicated to the compositional system as a “configuration”, which are then 
scheduled and executed; as the computation progresses (e.g., the PDE gets discretized and the resulting 
linear system appears to be ill-conditioned), feedback is provided to the runtime recommender through 
the checkpointing mechanism, which uses this information to perhaps dynamically insert a preconditioner 
before the linear solver in the solution loop. The configuration is updated with this selection, and the 
computation is re-scheduled. This interplay between the compositional system (which supports object-
based composition, migration, and checkpointing) and the runtime recommender (which enables dynamic 
selection of code modules) leads to a novel runtime framework for scientific computations. 

In this Paper 
Section 2 identifies two core computational technologies that form the basis of our solution for runtime 
systems support. Section 3 elaborates on how these technologies are integrated to provide novel systems 
support for PSEs. Section 4 identifies a set of “adaptivity schemas” that can be used as templates for 
realizing many complex, adaptive, scientific computations. Section 5 presents early results and outlines 
work in progress. A concluding discussion placing this work in context of emerging trends is provided in 
Section 6.  

2 Core Computational Technologies 
Our approach to supporting adaptive compositional modeling centers on two core computational 
technologies: the Weaves parallel compositional framework, and data-driven runtime recommender 
systems. We discuss them in detail in the context of a real scientific application. 

2.1 Motivating Application 
Our driver application involves the idea of collaborating partial differential equation (PDE) solvers 
[Drashansky et al., 1999] for solving heterogeneous multi-physics problems. For instance, simulating a 
gas turbine requires combining models for heat flows (throughout the engine), stresses (in the moving 
parts), fluid flows (for gases in the combustor), and combustion (in the engine cylinder). Each of these 
models can be described by an ODE/PDE with various formulations for the geometry, operator, and 
boundary conditions. The basic idea here is to replace the original multi-physics problem by a set of 
smaller simulation problems (on simple geometries) that need to be solved simultaneously while 
satisfying a set of interface conditions. The mathematical basis of this idea is the interface relaxation 
approach to support a network of interacting PDE solvers [McFaddin and Rice, 1992; see Fig. 1]. 
 



 
 
Figure 1: (left) Multi-physics problem with six subdomains with different PDEs. (right) A network of collaborating 
solvers (S) and mediators (M) to solve the PDE problem. Each mediator is responsible for agreement along one of 
the interfaces (colored lines). 
 
Mathematical modeling of the multi-physics problem distinguishes between solvers and mediators. A 
PDE solver is instantiated for each of the simpler simulation problems and a mediator is instantiated for 
every interface to facilitate collaboration between the solvers. The mediators are responsible for ensuring 
that the solutions (obtained from the solvers) match properly at the interfaces. The term “match properly” 
is defined by the physics - if the interface is where the physics changes - or is defined mathematically 
(e.g., the solutions should join smoothly at the interface and have continuous derivatives). Distinguishing 
between solvers and mediators allows us to handle mathematical models naturally and elegantly; further, 
they can be organized to reflect the hierarchy of the physical structures (in this case, the turbine) 
underlying the computation. 
 
In large-scale multi-physics simulations, it is not uncommon to have problems requiring collaboration 
between hundreds of solvers; one solver is assigned to each subdomain and the mediators issue 
instructions on appropriate boundary condition settings to their adjacent solvers. Once such a “network” 
of solvers and mediators is configured, it is scheduled for computation. After every iteration, the 
mediators might proceed to “adjust” the boundary condition settings to ensure a better matching of 
solutions or, if the change of boundary conditions is smaller than the tolerance, might report convergence. 
The essence of the collaborating solvers application can be studied from both the application composition 
and knowledge-based recommendation perspectives. 
  
Application Composition Perspective: Suppose we have several instances of a solver task Si running in 
parallel.  These solvers need not be the same, e.g., in Figure 1, suppose S1, S2, S3 and S4 are instances of 
one solver (e.g., a standard finite difference method with direct Gaussian elimination) , S5 and S6 are 
instances of another solver (e.g., one that uses the GMRES iterative method and a suitable 
preconditioner), and so on. These solvers are contributing to a shared state maintained by the mediator 
task Mij. The challenge is to implement codes exhibiting these characteristics - independent tasks, 
organized at multiple levels of parallelism, sharing state amongst themselves at different levels - and to do 
so transparently. Our emphasis hence is on a compositional framework – Weaves - that can transparently 
support arbitrary state sharing for scientific computations. Weaves extends the threads (which share all 
global state) and processes models (which separate all global state) to provide the generalized framework 
that allows selective sharing of global state. 
 



Recommender Systems Perspective: The composite PDE solvers application also helps motivate the 
need for adaptivity in scientific computations; there are, literally, hundreds of well-defined software 
modules for supporting various aspects of the simulation process. There are multiple alternatives for 
numerical methods (iterative or direct solvers), numerical models (standard finite differences, collocation 
with cubic elements, Galerkin with linear elements, rectangular grids, triangular meshes), and various 
physical model assumptions and simplifications (e.g., cylindrical symmetry, steady state, rigid body 
mechanics, full 3D time-dependent physics). In addition, there are a variety of interface-relaxation 
methods [Rice et al., 1999] that can be implemented by a mediator. Performance information gathered at 
runtime can be fruitfully used to steer the dynamic selection of a suitable software module, which must 
then be linked in at runtime, executed, and possibly used to close the loop, to guide future compositions.  

2.2 The Weaves Parallel Compositional Framework 
Weaves is a source-language independent parallel framework for object-based composition of unmodified 
scientific codes. Weaves works through reverse-compiler analysis; by analyzing compiled ELF object 
files, Weaves enables the vast repository of legacy scientific libraries to be seamlessly used in a object-
based compositional framework, without requiring that these codes be written in an object oriented 
language. Formally, Weaves 
 

•  provides a source language independent framework based on object code analysis 
•  provides transparent checkpointing/recovery support. Object code analysis automatically 

determines the state that needs to be checkpointed and/or restored without user intervention. 
•  provides support for performance data gathering via code instrumentation. 
•  supports notions of both spatial and temporal adaptivity (defined later), a critical element of 

runtime compositional modeling 
•  supports runtime migration of fine-grain code modules. As opposed to process migration, Weaves 

allows the migration of parts of a composed application. 
 
As a compositional framework, perhaps the most important feature of Weaves is the modeling perspective 
it brings to bear on scientific computations; this enables scientific codes to be viewed in the context of a 
framework that integrates execution, simulation, and modeling of large-scale applications. 
 
2.2.1 Defining the Weaves Framework 
The major components of the Weaves programming framework are: 

•  Module: A module is any object file or collection of object files defined by the user. Modules 
have: 

o A data context, which is the global state of the module scoped within the object files of 
the module, and 

o A code context, which is the code contained within the object files that constitute the 
module. The code context may have multiple entry point and exit point functions. 

•  Bead: A bead is an instantiation of a module. Multiple instantiations of a module have 
independent data contexts, but share the same code context. 

•  Weave: A weave is a collection of data contexts belonging to beads of different modules. The 
definition of a weave forms the core of the Weaves framework. Traditionally, a process has a 
single name space mapped to a single address space. Weaves allow users to define multiple 
namespaces within a single address space, with user-defined control over the creation of a 
namespace.  

•  String: A string is a thread of execution that operates within a single weave. Similar to the 
threads model, multiple strings may execute within a single weave. However, a single string 
cannot operate under multiple weaves. Intuitively, a string operates within a single namespace. 



Allowing a string to operate under multiple namespaces would violate the single valued nature of 
atomic variables.  

•  Tapestry: A tapestry is a set of weaves, which describes the structure of the composed 
application. The physical manifestation of a tapestry is typically a single process. 

 
The above definitions have equivalents in object-oriented programming. A module is similar to a class 
and a bead - which is an instantiation of a module – is similar to an object. Tapestries are somewhat 
similar to object hierarchies. The major exception is that interaction between beads within a tapestry 
involves runtime binding. We chose to use our own terminology to avoid overloading the semantics of 
well-known OOP terms and also avert the implication that the framework requires the use of an OOP 
language. 
 
Strings are similar to threads in that they can be dynamically instantiated and can also share the same 
copy of code. However, unlike threads, strings do not share global state. Each string has its own copy of 
global state. The main goal here is to avoid inadvertent sharing of state between unrelated instantiations 
of an algorithm, without having to modify the algorithm (ref. the collaborating solvers application). 
 
Since strings are an intra-process mechanism, we will illustrate their operation by comparing and 
contrasting them to threads. A thread’s state consists of (i) an instruction pointer (IP), (ii) a stack pointer 
and (iii) copy of CPU registers. Each thread within a process has its own stack frame that maintains local 
variables and a series of activation records that describes the execution path traversed by the thread. 
When a thread is created, the thread library creates a new stack frame and starts execution at the first 
instruction of the function specified by the thread instantiation call. When the thread scheduler needs to 
switch between threads, it saves the current IP, current stack frame, and the values in the CPU registers, 
switches to the state of the next thread, and starts execution at the IP contained in the thread state.  
 
Strings involve an extension to the operation of threads. Similar to threads, each string has its own stack 
frame, which maintains local state. In addition, each string also has a copy of the global variables in an 
area called the weave context frame, the start of which is pointed to by a weave context frame pointer. A 
weave context defines the namespace of a string. This includes the global variables of all the beads 
traversed by a string. Note that some of the beads in a string may be shared between strings. 
 
A string’s state consists of (i) an instruction pointer, (ii) a stack frame pointer, (iii) copy of CPU registers, 
and (iv) a weave context frame pointer. When a string is created, the string creation call creates a stack 
frame and a weave context frame (if necessary) and copies the current state of the global variables into the 
weave context frame. The string creation call also associates a numerical identifier with the newly created 
string. Since creating a string involves copying its global variables, the string creation cost depends on the 
storage size of the global variables resulting in a higher creation cost than threads. We justify this cost by 
noting that it is a one time cost paid at program startup. Also, well-written applications are generally 
frugal in their use of global state, which mitigates the impact of the copy operation. 
 
Similar to a thread scheduler, the string scheduler starts execution of the new string at the first instruction 
of a user-specified function. When the string library needs to switch between strings, it saves the current 
IP, current stack frame pointer, the values in the CPU registers, and the current weave context frame 
pointer, switches to the state of the next string and starts execution at the IP contained in the string state. 
The inter-string context switch cost is identical to threads.  
 
Selective sharing of state in our framework operates at the level of individual beads. We illustrate the 
operation of selective sharing with the example shown in Figure 2 (also repeated in the Figure 5 below). 
The tapestry defines 4 weaves <Solver S1, Mediator M12>, <Solver S2, Mediator M12>, <Solver S3, 
Mediator M34> and <Solver S4, Mediator M34>, and 4 strings, with each string operating within a single 



weave. At run time, context switching between the strings automatically switches the namespace 
associated with the string, preserving the sharing specified in the tapestry. 
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Figure 2: Interaction between the various components of the Weaves framework. 

 
Figure 2 depicts the design process in the Weaves framework. The design process involves two entities: a 
programmer who implements the modules and a composer, who uses a graphical user interface to 
instantiate beads and define the various weaves and strings. The result of the GUI composition is a 
tapestry configuration file, which is used to load and execute the composed application. Each composed 
application also has a module called a monitor that is automatically linked with the composed application. 
In the process model, utilities like ps (in UNIX) can be used to query the run time of the process. The 
monitor provides a much more powerful IPC (Inter Process Communication) interface to such 
functionality. Utilities can query the monitor to determine the current tapestry, beads, strings, and weaves 
within a composed application. 
 
2.2.2 Runtime Reconfigurability 
The tapestry generated by the GUI is not necessarily a static composition. The Weaves programming 
framework allows applications to rewire themselves on the fly in response to dynamic conditions. Two 
forms of dynamic application composition are supported in the framework. In the first form, if the 
requisite modules are already linked into the original tapestry, Weave-aware applications can modify their 
structure by creating new beads, defining weaves, and instantiating strings at run-time. For non-Weave 
aware applications, the interface exposed by the monitor can be used to modify the tapestry of a 
composed application. These modifications may be manually made by a user at the command line or can 
be automatically generated by an external resource monitoring agent. 
 



In the second form of dynamic composition, new code modules can be inserted into a running application 
through a modified dynamic library interface. In this mode of operation, the dynamically inserted code is 
analyzed at run-time. Dynamically inserted modules can be used in the same manner as statically inserted 
modules. This interface provides the full capabilities of Weaves, including arbitrary namespaces and 
compositional capabilities, in a run-time compositional framework. We will exploit this capability to 
investigate runtime algorithm selection and composition (see Section 3.1). 
 
2.2.3 Tuple Spaces 
The notion of selective state sharing in the Weaves programming framework presents a very powerful 
mechanism for defining namespaces. Since the definition of a weave permits any set of beads to define a 
namespace, any composition that can be represented by a connected graph (or a set of independent 
graphs) can be realized by this framework. From an application’s perspective, the definition and operation 
of distinct namespaces is transparent. This mechanism presents a powerful compositional framework for 
any procedural code. The Weaves framework also supports the notion of shared tuple spaces, not 
elaborated here for space reasons.  
 
2.2.4 Automatic Checkpointing and Recovery 
A primary goal of the Weaves framework is to support adaptive applications that can rewire themselves 
dynamically in response to changing conditions. Our view of adaptivity encompasses optimistic 
algorithms that try to take the best execution path given a set of available options. However, the path 
chosen may not always be right, requiring applications to rollback to a known correct state. As discussed 
in the introduction, typical HPC applications also require checkpointing and recovery. 
 
Traditionally, state checkpointing and restoration has been relegated to individual applications. This 
significantly adds to the complexity and maintainability of such codes. Furthermore, event driven codes 
add an additional layer of complexity. Since the path of execution through an event driven application is 
not known a priori, checkpointing and restoring such applications present significant challenges. The 
contribution of Weaves here is that it provides a transparent support framework that can checkpoint and 
recover state, without application support. The details are beyond the scope of this paper but essentially, 
note that a Weaves string maintains its global variables in the weave context frame and local variables 
and call invocation history in the stack frame. This compartmentalizes static state into two well defined 
regions. We can save the contents of the stack and weave context frames, effectively saving static state. A 
more involved solution tracks dynamic memory allocation during runtime. By employing a lightweight 
version of copy-on-write semantics, we support an efficient checkpointing mechanism. 

2.3 Runtime Recommender Systems 
Recommender systems [Ramakrishnan et al., 1998] provide facilities for automatic knowledge-based 
selection of solution components in PSEs. They help make selections of algorithms and code modules by 
taking into account both problem characteristics and performance considerations. Recommender systems 
involve the empirical evaluation algorithms on realistic, often parameterized, test problems, and 
interpreting and generalizing the results to guide selection of appropriate mathematical software. They are 
the preferred method of analysis in applications where domain knowledge is imperfect and for which our 
understanding of the factors influencing algorithm applicability is incomplete.  For instance, when solving 
linear systems associated with finite-difference discretization of elliptic PDEs, there is little mathematical 
theory to guide a choice between, say, a direct solver and an iterative Krylov solver plus preconditioner. 
A recommender systems approach is to parameterize a suitable family of problems, and mine a database 
of thousands of PDE “solves” to gain insight into the likely relative performance of these two approaches 
(e.g., see Figure 6). Parameter sweep templates [Casanova and Berman, 2002] are thus an important tool 
for designing recommender systems. 
 



In a traditional design of a recommender system [Ramakrishnan and Ribbens, 2000; Houstis et al., 2000], 
a database of test problems and algorithms is organized, and performance data is accumulated for the 
given problem population. This database of performance data is then mined (generalized) to arrive at 
high-level rules that can form the basis for a recommendation (for future problems). A variety of data 
mining algorithms are appropriate here (e.g., attribute-value generalizations, inductive logic 
programming; see [Houstis et al., 2000]). The MyPythia portal [Houstis et al., 2002] provides many 
interfaces to these algorithms, for both the recommender system builder and the recommender system 
user. In this system, the data collection phase is distinct from the generalization aspect (we refer to these 
as “offline” recommender systems); in other applications, data collection occurs in conjunction with data 
mining [Ramakrishnan et al., 2002], so that it can be “steered” to more accurately sample desired regions 
of the recommendation space. 
 
In a PSE setting, recommender systems are important aids to application composition, by making 
dynamic selections of components (we refer to these as “runtime” recommender systems). The 
importance of a runtime recommender is easily seen in applications such as the collaborating PDE 
solvers, where selections need to be made of a discretizer, preconditioner, and linear system solver (in 
that order). Information needed to make a preconditioning recommendation or linear solver 
recommendation is not available until after the PDE has been discretized, hence such recommendations 
have to happen at runtime, using dynamic information. Specifically, a runtime recommender monitors a 
computational process, detects state-changes, and makes selections of solution components dynamically, 
thus aiding knowledge-based application composition at runtime. Designing a runtime recommender is 
thus more involved than an offline recommender because the database of problems and algorithm 
executions is not readily available and needs to be captured “on the fly”.  
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Figure 3: (left) Mining and visualizing recommendation spaces for selecting between a GMRES iterative solver 
(red) and a direct Gaussian elimination solver (green) to solve an elliptic PDE. α is a parameter controlling the 
singularity in the PDE problem (and hence, the ill-conditioning of the corresponding linear system) and lfill controls 
the pre-conditioning in the iterative solver. (right) A mined recommendation space with 90% confidence, showing 
the region where the GMRES solver is preferred. As α grows larger, it is seen that the lfill parameter must fall 
within a narrower range for the iterative solver to be preferred, until eventually the direct solver becomes the 
preferred choice. For more details, please see [Ramakrishnan and Ribbens, 2000]. 
 
2.3.1 Strategies for Runtime Recommendation 
The primary problem faced by a runtime recommender is to observe a computational process (as it 
unfolds), make recommendations along the way, with the added complexity that feedback (about 
recommendations) is not immediate, and will arrive several timesteps (typically unknown) later. This is a 
problem reminiscent of reinforcement learning [Sutton and Barto, 1998], well studied in the control 



systems and AI literature. Note that the task here is more ambitious than mere parameter tuning or 
building expert systems. The key issue is to tradeoff the cost of exploring the environment in the short-
term with an accuracy improvement in the long-term. A runtime recommender systems thus grapples with 
a constant dilemma: should it choose a solver that it knows has worked before (exploitation) or should it 
“try” a different solver to see if it might lead to a performance improvement (exploration)? 
 
Our approach to this problem is to model the scientific application as a non-deterministic, stationary 
system (the transition probabilities between states are assumed to be constant to ensure convergence of 
the learning algorithms). This network does not need to be handcrafted, but can be constructed online by 
the recommender system. For example, in the PDE application, “states” correspond to physical stages of 
the computational process and are represented by features such as singularity, current algorithm, order of 
the method, and performance criteria (set by the user). The “actions” correspond to choices made by the 
recommender, such as “use the ILU preconditioner”, “switch from iterative to direct method”, “decrease 
the current order”. The goal now is to learn the utility of taking certain actions in various states. These 
utility estimations are summarized in the form of a control policy that chooses the action with the highest 
utility. On each step of the interaction, the recommender receives as input some indication of the current 
state (such as problem features) and it generates a recommendation as output. This recommendation 
changes the state of the system (e.g., at the end of the first stage of PDE solution, information about linear 
system characteristics becomes available), and the value of this state transition is communicated back to 
the recommender as reinforcement; which then chooses recommendations that will tend to increase the 
long-run sum of values of the reinforcement signal. Once again, there are a variety of learning algorithms 
for iterative improvement of generalizations.  
 
The recommender begins in a mode that favors exploration over exploitation. These runs are typically 
scheduled during idle cycles on our computational cluster. Over time, the recommender encounters 
enough problems from its database and has explored enough alternatives that it can make an informed 
judgment about solution alternatives. At this point, its mode of operation becomes primary exploitative 
with only a small percentage of exploitation (to ensure that the learned utility values are current). Such an 
approach has been validated for selecting quadrature routines from a space of over 120 algorithms 
[Ramakrishnan et al., 2002] and for synthesizing type-insensitive codes for ODEs with both stiff and non-
stiff regions (see Figure 4 for a policy mined by inductive logic programming). The functionality 
provided by a runtime recommender can be thought of as automatic determination of control policies to 
realize adaptivity in scientific codes. Runtime recommendation is traditionally concerned with code 
executions but can also be employed to assess model-based simulations and make selections of system 
configurations, as studied in the adaptive control formulation of [Adve et al., 2002]. 
 

 
 
Figure 4: A partially induced control policy mined by a runtime recommender for the task of solving ODEs with 
both stiff and non-stiff regions. From the beginning state, the recommender always prefers a non-stiff method (an 
Adams-Moulton method), but when its estimates improve its assessment of the evolution of solution components, it 
switches to a stiff method (in this case, an implicit A-stable formula). This approach should be contrasted to 

qvalue(1) :- 
       state(beginning), algorithm(none), 
       action(choose-non-stiff). 
 
qvalue(1) :- 
       state(near-stiff), algorithm(non-stiff), 
       estimate < threshold, sv < 10, 
       action(switch-to-stiff). 



classical differential equation software such as GEAR, LSODE, and DIFSUB where such adaptivity is realized 
through static decision-making code coupled with the ODE solver. 

3 Systems Support for Adaptive Compositional Modeling 
To summarize the two core technologies: runtime recommender systems allow the dynamic selection and 
composition of code modules and Weaves provides runtime systems support to realize such compositions. 
In this section, we further bring out the synergy between these technologies.  
 
From the viewpoint of the Weaves design process, a runtime recommender system acts as the composer, 
dynamically determining the code modules and their instantiations. Specifically, the runtime 
recommender supplies the tapestry configuration file that specifies the composition graph. From the 
viewpoint of the recommender system, Weaves acts as the “end-effector” and provides systems support 
for checkpointing algorithm executions and modifying code modules in response to changing problem or 
platform characteristics.  

3.1 Temporal and Spatial Adaptivity 
Consider how the interaction between Weaves and runtime recommender systems would work for the 
task of adaptive numerical quadrature. Let us start with the collection of 120 quadrature algorithms 
described in [Ramakrishnan et al., 2002]. For a given numerical integration problem, the performance 
goal is to recommend a suitable quadrature routine such that the number of function evaluations is 
minimized. A recommender system (GAUSS) with this functionality is also described in [Ramakrishnan 
et al., 2002]. GAUSS can make suitable selections of algorithms from the quadrature library, monitor 
their execution, and change its recommendation if its earlier selection failed or otherwise did not satisfy 
the performance constraints. GAUSS is more than a polyalgorithm comprising of the 120 algorithms 
(where the decision procedures for selection are hardwired); it has the ability to use runtime information 
about algorithm performance dynamically as it becomes available. It functions by organizing a database 
of parameterized test problems and algorithm executions and uses an online mechanism to continually 
generalize from archived performance data. 
 
This mode of operation in GAUSS can be viewed as a form of temporal adaptivity. The Weaves 
framework provides two notions of temporal adaptivity. In the first form – called pessimistic temporal 
adaptivity – the recommender system can dynamically select an algorithm already compiled into the 
executing application (using a form of an if-then-else construct) but doesn’t have the ability to “retract” 
its recommendation. For this form of adaptivity to be successful, the recommendation space must be 
limited in its choice of algorithms to only those that produce correct results. Pessimistic temporal 
adaptivity is thus most suited for the exploitation mode of a recommender system. In the second form – 
called optimistic temporal adaptivity – the recommender system can dynamically choose from any 
algorithm that suits the purpose, including those that may not produce correct results all the time. 
Optimistic temporal adaptivity is ideal for the exploration mode of a recommender system. 
 
Optimistic temporal adaptivity requires runtime systems support for checkpointing and recovery, since we 
need to (i) recover from failed instantiations of algorithms, and (ii) ensure that the recovery process 
doesn’t result in the recommender system following the “failed” path again. Note that (ii) is a rather 
insidious issue. A perfect checkpoint/recovery mechanism will restore the recommender system state to 
just before its selection of the failed algorithm, which will result in the recommender system following 
the “failed” execution path repeatedly. What is needed is a checkpointing and recovery system that can 
provide a tuple (any set of variables defined in the namespace of the executing algorithm) view of the 
future, where the tuple presents intermediate results. In addition to pruning the search process of the 
recommender system, the tuple may be used to augment the features gathered by the recommender, 
helping it make a more informed decision.  



 
Optimistic temporal adaptivity is a very powerful mechanism for supporting runtime recommendation and 
composition. The tuple view of the future provides not just algorithm state (in the form of variables 
comprising the tuple), but also the entire function invocation history prior to the failure (which includes 
the entire sequence of algorithm recommendations exercised). For applications such as adaptive 
quadrature, which are based on a divide-and-conquer strategy of repeated problem decompositions and 
algorithm recommendations, this feature is particularly important.  
 
Weaves supports a further form of adaptivity called spatial adaptivity, where even the space of algorithms 
to be selected for composition is not known until runtime. For instance, consider a molecular electronics 
simulation, where a sequence of thousands of linear systems have to be solved to compute the I-V profile 
of a single device. The complete realization of such a simulation may span weeks to months. During 
execution new solvers may become available - especially in dynamic settings - which may offer better 
performance characteristics. What we need is a mechanism to transparently substitute the solver compiled 
into the executing binary with a new solver “on-the-fly” – dynamic function replacement. This notion is 
similar to dynamic classloaders in Java™.1 The Weaves framework provides strong support for spatial 
adaptivity, including across multiple non-OOP  source languages.  

4 Adaptivity Schemas 
In working with concerted groups of scientists and engineers, we have encountered a number of recurring 
“schemas” capturing how compositional scientific codes should be configured for adaptive execution. 
This section outlines these schemas and identifies application contexts where they are relevant. 
 
Before we begin, it is pertinent to mention that two common modes of high-level problem solving – viz. 
parameter sweeps [Casanova and Berman, 2003], algorithmic bombardment [Barret et al., 1996] – are 
easily supported using the Weaves framework. Parameter sweeps embody rich opportunities for state 
sharing and overloading of function invocations, and Weaves enables such sweeps to be conducted within 
an economy of processes. Offline recommender systems rely on the ability to conduct multi-dimensional 
parameter sweeps effectively and economically. Algorithmic bombardment is a speculative strategy by 
which multiple algorithms or solution approaches are assigned to a given problem (simultaneously), some 
of which may not run to completion and/or may be terminated when they are deemed redundant. 
Simplistically, algorithmic bombardment can be implemented efficiently through spatial adaptivity. From 
a simulation perspective, however, the end-goals of such bombardment can be achieved more elegantly 
through the notions of optimistic temporal and spatial adaptivity. Such a system will not be required to 
recover from any failures or revisit an earlier stage in the computation. 
 
The list of adaptivity schemas below (see Table 1) is merely meant to be indicative of the power of our 
runtime systems framework and the coverage is not intended to be exhaustive.  
 

Table 1: Adaptivity schemas currently supported in our research. 
Adaptivity Schema Example Application Context 
Staged Composition Compositional PDE Solver Selection 
Adaptation of Problem Decompositions Numerical Quadrature, Adaptive Sorting 
Coordinated Problem Solving Interface Relaxation Algorithms  
Algorithm Switching ODEs, Number Factoring 

                                                      
1 Java implements dynamic classloaders through its VM. Compiled OOP languages such as C++ can do late binding 
of function calls at runtime, but the target of the call has to be compiled into the executing binary. Weaves supports 
source-language independent late binding, including cases where the target of the call is dynamically loaded and 
linked.  



Control Systems Deriving Controllers for Algorithm Speedups 
Active Mining of Recommendation Spaces Qualitative Assessment for Matrix Computations 
Graphs of Models Multi-paradigm Performance Profiling 

 

4.1 Staged Composition 
Staged composition addresses the sequential selection and execution of code modules in scientific 
computations. It is important in problem domains that are characterized by partial observability. In this 
schema, code fragments from a library are composed at runtime to satisfy various general and domain-
specific constraints on their structure. For instance, in the PDEs domain, the code fragments would 
correspond to choices of discretizer, pre-conditioner, and linear system solver. Since information about 
application performance characteristics is often acquired during the actual computation, rather than 
before, staged composition is a necessary feature in many application domains.  
 
A runtime recommender can use a model-based approach to prune the search space of code modules and 
scale its functionality to large domains. Specifically, the sequence of stages in a composition is captured 
using a Markov decision process and the utilities of states are directly estimated. Then, given an initial 
state, the runtime recommender would evaluate the various choices (of algorithm components) and 
choose the one that leads to the state with the highest utility. 

4.2 Adaptation of Problem Decompositions 
Many scientific computations are characterized by a recursive divide-and-conquer strategy, with 
algorithm selection happening at each level of the recursive invocation. Classical examples are adaptive 
numerical quadrature and adaptive sorting on parallel architectures. With the Weaves framework, the 
runtime recommender has the capability to backtrack both breadthwise and depthwise in the recursive 
function invocation history. This means that any form of branch-and-bound algorithm can be easily 
implemented. Notice that the breadth wise capability arises from the parallel compositional nature of the 
Weaves framework. 
 
To curtail the potential explosive growth in space complexity, the runtime recommender must cleverly 
choose an intermediate representation that is indicative of the problem characteristics and, at the same 
time, can be cheaply evaluated when necessary. This is because at each backtrack point, the recommender 
has to make a judgement of code module and execution path. The choice of the intermediate 
representation is a domain-specific issue but we can give an indication of what it might look like. In the 
case of recommending numerical quadrature algorithms, it is of critical interest to assess features of the 
integrand such as the presence of a singularity, whether it is an end-point singularity, whether the 
integrand is smooth in the interval, and whether it exhibits an oscillatory behavior of non-specific type. 
These features are sometimes impossible to determine (e.g., when the integrand is provided only as a 
software routine). One solution approach is to first model the dynamic selection of quadrature nodes by a 
general purpose adaptive code such as QAGS [Piessens et al., 1983] and then use the layout of these 
nodes as the actual representation of the function. This requires that we employ optimistic temporal 
adaptivity in order to be able to successfully backtrack and later follow a suitable integration algorithm. 

4.3 Coordinated Problem Solving 
The collaborating PDE solvers application described earlier falls in this category. Here, adaptivity is the 
responsibility of one/some of the weaved code modules themselves (in this case, the mediators), and 
which coordinates the functioning of other code modules. Note that the structure of the composition – 
shared elements and multiple flows of control (see Fig. 1) - is naturally prone to single-cycle deadlock. 
While an implementation may be carefully instrumented to avoid deadlocks, the Weaves framework 



enables us to use the natural, underlying, problem representation and rely on runtime systems support for 
deadlock detection and recovery. The discussion section contains details of this mode of operation. 

4.4 Algorithm Switching 
Algorithm switching refers to the case where the problem being solved remains the same but the currently 
executing algorithm has to be replaced with another, dynamically. This facility is critical in solving ODEs 
with both stiff and non-stiff components, solving certain categories of linear systems, and integer 
factoring. For instance, the ODEs underlying many biological cell cycle models alternate between being 
stiff and non-stiff several times over the region of integration. In addition, properties such as stiffness are 
really a facet of both the ODE and the algorithm used to solve it. Algorithm switching is relevant here 
because our understanding of the problem improves as the computation proceeds. LSODE [Petzold, 1983] 
is an example of a real scientific code that embodies an algorithm switching mechanism, but as mentioned 
earlier the switching procedure is hardwired. It is sometimes “overcautious” to prevent thrashing between 
the two categories of algorithms. This is because, since stepsize selection is dependent on error estimates, 
situations involving misleading estimates can cause either a premature termination of methods or a switch 
to an unstable method. A runtime recommender can more carefully assess the suitability of algorithm 
switching by taking into account problem characteristics and runtime information, not otherwise available 
to the basic ODE algorithm. 
 
In other applications, algorithm switching is important because the initial choice of algorithm fails. Here, 
it is imperative that we are able to use results and byproducts from the first algorithm to “seed” 
subsequent algorithm recommendations. For instance, in crypto-challenges such as integer factoring 
[Silverman and Wagstaff, 1993], we might switch to the quadratic sieve algorithm when the elliptic curve 
method fails. 

4.5 Control Systems 
An algorithm control system can be modeled with various configurations of the runtime recommender in 
the problem solving loop. More fundamentally, many classical formulations of control systems can be 
realized in scientific codes. For instance, a simple form of derivative-based control was used by Hovland 
and Heath [Hovland and Heath, 1997] to achieve an adaptive control policy for the SOR (Successive 
Over-Relaxation) algorithm. This is shown to be more powerful than using a fixed one with the optimal 
value of the over-relaxation parameter. 
 
Similarly, adaptive control formulations are common in solving ODEs and automatic quadrature. In the 
former, the problem of stepsize selection can be thought of as designing a suitable controller (P, PI, PD, 
or PID formulations) around the basic numerical approximation. Automatic quadrature algorithms 
embody control systems because they must inherently assess the suitability of their approximations by 
deriving error estimates (often using approximations of successive orders).  
 
A runtime recommender system extends such control system formulations into the realm of actor-critic 
models; the actor is the recommender that makes selections of solution components and the critic 
captures the improvement in how the recommender is itself assessed. Both the actor and the critic are 
implemented as learning algorithms. As the critic is learning to exercise better judgement, the actor 
benefits from the improved assessments, leading to a closed-loop control system.  

4.6 Active Mining of Recommendation Spaces 
In assessing many recommendation spaces, it is important to selectively sample and actively collect data, 
for the sole purpose of improving the confidence in the recommendation. For instance, in qualitative 
assessment of Jordan forms [Ramakrishnan and Bailey-Kellogg, 2002], data points are actively collected 



at specific perturbations in order to determine the most probable Jordan form of a matrix. This adaptivity 
schema iterates between a code execution (for collecting a data point), refining the recommendation 
(another code execution), and repeating these steps until a desired functional is minimized. This idea is a 
central ingredient of the US National Science Foundation’s recent thrust for Dynamic Data-Driven 
Application Systems (DDDAS; [Darema, 2002]). 

4.7 Graphs of Models 
In this final adaptivity schema, adaptivity is itself factored as operations on a graph and the task of 
runtime recommendation reduces to traversing this graph, to achieve user-specified criteria. For instance, 
in the performance modeling of the Sweep3D code ([Koch et al., 1992]; a benchmark for discrete-
ordinates neutron transport), codes are available for analytical modeling, low-level simulation, and actual 
system execution [Adve et al., 2000]. Each node in the “graphs of models” corresponds to one model 
family, and the edges denote conditions and constraints to be satisfied (or achieved) when switching from 
one model to another. Consider two scenarios of Sweep3D modeling: one might (i) model the machine 
parameters accurately, taking into account processor components, memory components (buffers etc.) and 
transport components (interfaces to caches), or (ii) one might replace all machine parameters by picking 
one of the analytical models. Thus, moving from (i) to (ii) in the models graph might take place under the 
constraint that over 65% of the parts of the composed application need to be removed. Given end-to-end 
performance constraints, the runtime recommender then attempts to perform a means-end analysis on the 
induced graph, leading to a satisficing model sequence, that involves both models and the edges 
connecting them (notice that there may be more than one edge between two model choices). Preliminary 
results for this application are reported in [Houstis et al., 2002]. 

5 Early Results 

5.1 Weaves: Implementation and Evaluation 
The core of the Weaves compositional framework is the abstraction of a weave, which allows an 
application composer to define arbitrary namespaces over a composed application. To implement the 
namespace abstraction, we analyze the Executable and Linking Format (ELF) object files produced by 
any compiler. ELF is a public domain file format used to represent both object code as well as the final 
executable on most UNIX systems. Our current prototype is implemented on the Linux operating system 
running on Intel x86 architectures. Since the implementation only depends on the ELF file format, it can 
be easily ported to other operating systems/architectures. Furthermore, we anecdotally note that the 
features of the ELF file format used by our implementation are common to object file formats. Hence, it 
should be possible to extend the prototype to support other object file formats as well. 
 
We ran a series of experiments to compare the context switch time under the threads, processes and 
weaves programming models.  In this experiment, we created a baseline application that implements a 
calibrated delay loop (busy wait). We then implemented threads-, processes-, and weaves- versions of the 
application. In each of these versions, there are n independent flows of control over the same code, where 
each flow of control executes a calibrated delay loop, which does 1/nth the work of the baseline 
application. We then measure the total time taken to execute the application under each of these models. 
Since each of the control flows does 1/nth of the work and there are n flows, the total time taken should 
the same as the baseline calibrated delay loop case, except for an additional context switching cost.  
 
Figure 5 shows the results of the experiment on a single processor AMD Athlon™ workstation running 
the Linux operating system. The results show the run time for five cases: (a) baseline calibrated delay 
loop, (b) pthreads threads library, (c) Pth threads library, (d) processes, (e) Weaves over pthreads, and (f) 
Weaves over Pth. The results clearly show that the weaved implementations are significantly faster than 



processes, even in this simple case, where the copy-on-write semantics of the fork() call are very 
effective. Furthermore, the run time of weaved implementation of pthreads is very close to the base run 
time of pthreads alone. The marginal variation in runtime is due to the slightly higher weave creation cost, 
which is included in the run time. Also, the pthreads implementation is relatively efficient, since the 
Linux kernel includes operating system support for it. 
 
However, in the case of Pth, the run time of the weaved implemented is higher than the base Pth case. 
This increase in runtime is because unlike pthreads, Pth is a user-level library and hence suffers from 
timer inaccuracies inherent in user-level library implementation. 
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Figure 5: Comparison of inter-flow context switch time in the threads, processes, and weaves programming models. 
The baseline single process application implements a calibrated delay loop of 107 seconds. 

5.2 Experiments in Adaptive Runtime Composition 
A number of scientific applications have been or are currently being created using the runtime systems 
support framework described in this paper. These include: 

•  A weaved version of the Sweep3D code suitable for performance characterization 
•  A runtime recommender system for adaptive numerical quadrature 
•  Compositional PDE solvers for multi-domain, multi-physics problems 
•  Iterative assessment of spectral portraits of matrices by active mining 
•  Adaptive ODE algorithm switching for simulating biological cell cycle models 
•  Dynamic selection of linear system solvers for molecular electronics simulations 

 
Due to space considerations, we describe the basics of programming adaptivity in the context of the 
numerical quadrature application (embodies the “adaptation of problem decompositions” schema) and the 
Sweep3D application (embodies the “graphs of models” schema). In the former, we illustrate the 
operations of the recommender in concert with Weaves, and in the latter, we demonstrate how the 
Sweep3D application has been weaved and an assessment of its performance characteristics. The reader 
should keep in mind the larger context in which such a performance model can then be used to drive the 
characterization of large-scale scientific applications. 
 
 



5.2.1 Quadrature Application 
 
Our first application centers on providing runtime systems support in the context of the GAUSS 
quadrature recommendation system [Ramakrishnan et al., 2002]. Consider the numerical integration 
problem from [Piessens et al., 1983]: 
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This integrand has a peak of height 4α at π/4, causing difficulties to different algorithms for different 
values of α. We begin with a generic main program in FORTRAN that prepares the suitable initializations 
and invokes algorithm DQAGS, an adaptive integration routine that itself invokes multiple quadrature 
rules (DQAGSE followed by Gauss-Kronrod routines). It is observed that DQAGS performs well for 
values of α upto 10. When α is increased beyond this point, DQAGS fails with an error code indicating a 
divergent integral (IER=5). We now describe how the recommender system and Weaves interact to 
adaptively rewire the application. 
 
Notice that when the main program is entered, a base checkpoint would be made (just before invoking 
DQAGS). Within each function invocation inside DQAGS, incremental checkpoints are made which 
support two important abstractions: each call to the checkpoints returns a handle, or the handles are 
maintained with a stack abstraction. When an internal routine fails (i.e., with IER=5), two forms of 
adaptivity take place. First the state of the application is set to just before the last invocation of the failed 
routine (here, DQAGSE or even DQAGS). The checkpointing system also exposes the tuple-space view 
of namespace entries from the future that should not be restored (this enables us to “selectively forget the 
future without repeating it”). 
 
More importantly, the runtime recommender is passed the latest activation record of DQAGS as a stack 
object from which it picks out the needed information (note that in ELF analysis, we have lost type 
information, hence the stack object only has a collection of data pointers and associated lengths – to 
retrieve desired objects, type information is rebound  by the recommender, enabling it to operate with a 
namespace abstraction rather than an address space abstraction). The GAUSS recommender uses the IER 
and NEVAL metrics to suggest to try out algorithm DQAG (i.e., spatial adaptivity). Algorithm DQAG is 
inserted dynamically into the runtime binary and references to DQAGS are substituted through the PLT 
(see Section 5.1) with DQAG. In this manner, the recommender directs the flow of the composed 
application using the primitives supported by Weaves. 
 
Note that DQAG has the same type signature as DQAGS; this need not be the case in general. In order to 
properly prepare the calls to new procedures, the runtime system provides modifiable “continuation 
hooks” that are invoked before function calls. These continuation hooks expose the parameters of the 
original function call to the recommender, which can use domain-specific knowledge to massage/prepare 
the function invocation to the newly selected routine, to be invoked by the continuation. The return type 
can also be similarly massaged. 
 
5.2.2 Sweep3D 
 
Sweep3D is an ASCI benchmark for discrete ordinates neutron transport. Available in FORTRAN code in 
the public domain, it forms the kernel of an ASCI application and involves solving a group of time-
independent neutron particle transport equations on a XYZ cartesian cube [Koch et al., 1992]. The code 
uses a logical discretization of the 3D geometry, taking care to ensure that physical symmetries are not 



distorted, angular dependencies are preserved, and derivatives w.r.t. the angular coordinates are 
maintained. 
 
The main characteristic of Sweep3D is that it uses no global variables. Since the application only relies on 
local state, multiple instantiations of local state should be enough to create a VM abstraction. This 
characteristic makes Sweep3D inherently thread-safe, which enables its modeling by either the threads or 
process models. However, since the application is written in Fortran 77, with dynamic array extensions, 
modeling with the threads and processes models present interesting implementation problems. While 
trying to model the application using POSIX threads, we found that there was substantial global state in 
the .data section of the ELF executable, a Fortran compiler issue, which essentially made the code-base 
“thread unsafe”. Weaving the Sweep3D code-base created independent namespaces, resulting in a 
thread-safe version. 
 
To support the message passing primitives used by Sweep3D, we created a simple threaded MPI 
emulator, which implements only the nine MPI primitives used by Sweep3D. To ensure correctness, the 
MPI emulator implementation follows the guidelines set forth in the MPI specification. Our MPI emulator 
is intended as a test prototype and is neither as comprehensive nor as capable as a complete MPI 
implementation. 
 
In the weaved implementation, we create n distinct virtual machines, each of which executes an 
independent instantiation of the Sweep3D application. To do this, we create n distinct Sweep3D beads 
and n weaves, where each weave has a distinct Sweep3D bead and a shared emulator bead. Each weave 
also has a single string associated with it. The n distinct virtual machines run on a single processor 
workstation. 
 
We compared the performance of our single processor weaved implementation of Sweep3D against 
measured values from real runs for up to 150 processors. Measurements for the real runs were made on 
our 200 processor cluster (1GHz AMD Athlon ™ processors over Myrinet™) Anantham. Since the 
Sweep3D application performs its own timing measurements, we compared the timing numbers (CPU 
Time) of the weaved version of Sweep3D with the measurements from actual runs. The two input files 
(50x50x50 and 150x150x150 decompositions) provided in the Sweep3D distribution were used to drive 
the Sweep3D application. 
 
For upto 150 processors, the timing results from the weaved implementation and the actual runs were 
consistent to within 0.2%. Furthermore, we tested the weaved version of Sweep3D with over 1000 
weaves on a single processor. The variation in the timing results between multiple runs was within 0.2%. 
This clearly shows that even at high levels of scalability (over 1000 weaves/processor) context switch 
time does not impact the efficacy of our runtime compositional framework.  

6 Discussion 
This paper has described a novel runtime compositional system for supporting adaptive scientific 
computations in PSEs. Weaves serves as a true generalization of the threads and processes models of 
programming and provides immediate benefits in object-based composition, checkpointing, migrating, 
and dynamic reconfiguration of scientific applications. Runtime recommender systems encapsulate 
knowledge about which solution components perform well (and for which situations) and provide 
intelligent decision support for configuring and managing large-scale computations. Together, they 
constitute a powerful mode of developing and deploying adaptive scientific applications. 
 
The work presented here has interesting parallels to research in many different areas – we survey a 
collection of references topically. At a basic level, Weaves’s capabilities as a programming model can be 



compared to that of distributed OO [Gannon and Grimshaw, 1998], parallel programming primitives 
[Foster, 1996; Skillicorn and Talia, 1998], agent-based composition [Drashansky et al., 1999], and 
service-based systems integration [Foster et al., 2002]. The design of the Weaves system bears a strong 
resemblance to the OO framework of Mentat propounded in [Grimshaw et al., 1996]. However, unlike 
Mentat, which requires creating code objects in an OO language, Weaves can create an object based 
framework from code written in any language, allowing the reuse of the vast repository of legacy codes. 
 
Significant research has also been conducted to realize adaptivity in distributed scientific computations 
are well studied, e.g., in the contexts of performance modeling [Vraalsen et al., 2001; Adve et al., 2002], 
application tuning [Chang and Karamcheti, 2001], and meta-modeling and control [Ribler et al. 2001; 
Kennedy et al., 2002]. Many of these applications are focused on selecting system configurations, 
identifying optimal application parameters, and exploiting opportunities for application scheduling over 
the Grid. The notion of runtime recommendation presented here applies more broadly to selecting 
algorithms and code modules, and the knowledge-based framework allows application-specific context 
about the suitability of algorithms to be exploited. The algorithmic framework used for runtime 
recommendation (namely, reinforcement learning) is very powerful, and is part of a larger family of 
strategies for adaptive control of algorithm executions. 
 
As HPC infrastructure (e.g., the Grid) improves and newer applications are explored, we believe the 
importance of PSE programming primitives will be better appreciated. It will be especially crucial that the 
programming primitives allow rich forms of adaptivity to be specified and captured without the need for 
low-level system configuration. There are many recent steps taken in this direction (e.g., the compiler 
directed frameworks described in [Adve and Sakellariou, 2000]). The central idea here is to encode 
adaptivity as operations on a suitably defined task graph, which serves as an intermediate representation 
of the dynamic behavior of an application. In addition to operationalizing adaptivity, such a representation 
allows systematic performance characterization of scientific applications using multiple methodologies 
[Browne et al., 2000]. In our work, the intermediate representation is the purview of the runtime 
recommender but dynamic operations of spatial and temporal adaptivity are handled by the checkpointing 
and composition framework supplied by Weaves. We are currently in the process of defining a language 
for declaring search primitives (akin to a branch-and-bound operation for optimistic simulation) that can 
be used as building blocks of adaptivity. The advantage with this formulation is that adaptivity is taking 
place at the level of code modules and hence can be made as coarse or fine grained as necessary. It also 
allows for ease of specification by the PSE application composer. 
 
The eventual success of a PSE will lie in “what it lets you get away with.” By factoring support for 
adaptivity in a runtime recommender system and operationalizing parallel composition, checkpointing, 
and migration using the Weaves framework, the ideas presented here allow us to transparently realize the 
promise of adaptive PSE applications. 
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