
Scouts, Promoters, and Connectors: The Roles of Ratings
in Nearest Neighbor Collaborative Filtering

Bharath Kumar Mohan
Dept. of CSA

Indian Institute of Science
Bangalore 560 012, India

mbk@csa.iisc.ernet.in

Benjamin J. Keller
Dept. of Computer Science
Eastern Michigan University

Ypsilanti, MI 48917, USA

bkeller@emich.edu

Naren Ramakrishnan
Dept. of Computer Science
Virginia Tech, Blacksburg

VA 24061, USA
naren@cs.vt.edu

ABSTRACT
Recommender systems aggregate individual user ratings into
predictions of products or services that might interest vis-
itors. The quality of this aggregation process crucially af-
fects the user experience and hence the effectiveness of rec-
ommenders in e-commerce. We present a novel study that
disaggregates global recommender performance metrics into
contributions made by each individual rating, allowing us
to characterize the many roles played by ratings in nearest-
neighbor collaborative filtering. In particular, we formulate
three roles—scouts, promoters, and connectors—that cap-
ture how users receive recommendations, how items get rec-
ommended, and how ratings of these two types are them-
selves connected (resp.). These roles find direct uses in im-
proving recommendations for users, in better targeting of
items and, most importantly, in helping monitor the health
of the system as a whole. For instance, they can be used
to track the evolution of neighborhoods, to identify rating
subspaces that do not contribute (or contribute negatively)
to system performance, to enumerate users who are in dan-
ger of leaving, and to assess the susceptibility of the system
to attacks such as shilling. We argue that the three rating
roles presented here provide broad primitives to manage a
recommender system and its community.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of
Systems—Decision support ; J.4 [Computer Applications]:
Social and Behavioral Sciences

General Terms
Algorithms, Human Factors

Keywords
Recommender systems, collaborative filtering, neighborhoods,
user-based and item-based algorithms, scouts, promoters,
connectors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’06, June 11–15, 2006, Ann Arbor, Michigan, USA.
Copyright 2006 ACM 1-59593-236-4/06/0006 ...$5.00.

1. INTRODUCTION
Recommender systems have become integral to e-commerce,

providing technology that suggests products to a visitor
based on previous purchases or rating history. Collabora-
tive filtering, a common form of recommendation, predicts
a user’s rating for an item by combining (other) ratings of
that user with other users’ ratings. Significant research has
been conducted in implementing fast and accurate collab-
orative filtering algorithms [2, 7], designing interfaces for
presenting recommendations to users [1], and studying the
robustness of these algorithms [8]. However, with the ex-
ception of a few studies on the influence of users [10], little
attention has been paid to unraveling the inner workings
of a recommender in terms of the individual ratings and the
roles they play in making (good) recommendations. Such an
understanding will give an important handle to monitoring
and managing a recommender system, to engineer mecha-
nisms to sustain the recommender, and thereby ensure its
continued success.

Our motivation here is to disaggregate global recommender
performance metrics into contributions made by each indi-
vidual rating, allowing us to characterize the many roles
played by ratings in nearest-neighbor collaborative filtering.
We identify three possible roles: (scouts) to connect the user
into the system to receive recommendations, (promoters) to
connect an item into the system to be recommended, and
(connectors) to connect ratings of these two kinds. Viewing
ratings in this way, we can define the contribution of a rat-
ing in each role, both in terms of allowing recommendations
to occur, and in terms of influence on the quality of recom-
mendations. In turn, this capability helps support scenarios
such as:

1. Situating users in better neighborhoods: A user’s rat-
ings may inadvertently connect the user to a neighbor-
hood for which the user’s tastes may not be a perfect
match. Identifying ratings responsible for such bad
recommendations and suggesting new items to rate can
help situate the user in a better neighborhood.

2. Targeting items: Recommender systems suffer from
lack of user participation, especially in cold-start sce-
narios [13] involving newly arrived items. Identifying
users who can be encouraged to rate specific items
helps ensure coverage of the recommender system.

3. Monitoring the evolution of the recommender system
and its stakeholders: A recommender system is con-
stantly under change: growing with new users and

items, shrinking with users leaving the system, items
becoming irrelevant, and parts of the system under at-
tack. Tracking the roles of a rating and its evolution
over time provides many insights into the health of the
system, and how it could be managed and improved.
These include being able to identify rating subspaces
that do not contribute (or contribute negatively) to
system performance, and could be removed; to enu-
merate users who are in danger of leaving, or have left
the system; and to assess the susceptibility of the sys-
tem to attacks such as shilling [5].

As we show, the characterization of rating roles presented
here provides broad primitives to manage a recommender
system and its community. The rest of the paper is orga-
nized as follows. Background on nearest-neighbor collabo-
rative filtering and algorithm evaluation is discussed in Sec-
tion 2. Section 3 defines and discusses the roles of a rating,
and Section 4 defines measures of the contribution of a rat-
ing in each of these roles. In Section 5, we illustrate the use
of these roles to address the goals outlined above.

2. BACKGROUND

2.1 Algorithms
Nearest-neighbor collaborative filtering algorithms either

use neighborhoods of users or neighborhoods of items to
compute a prediction. An algorithm of the first kind is
called user-based, and one of the second kind is called item-
based [12]. In both families of algorithms, neighborhoods are
formed by first computing the similarity between all pairs
of users (for user-based) or items (for item-based). Predic-
tions are then computed by aggregating ratings, which in a
user-based algorithm involves aggregating the ratings of the
target item by the user’s neighbors and, in an item-based
algorithm, involves aggregating the user’s ratings of items
that are neighbors of the target item. Algorithms within
these families differ in the definition of similarity, forma-
tion of neighborhoods, and the computation of predictions.
We consider a user-based algorithm based on that defined
for GroupLens [11] with variations from Herlocker et al. [2],
and an item-based algorithm similar to that of Sarwar et
al. [12].

The algorithm used by Resnick et al. [11] defines the sim-
ilarity of two users u and v as the Pearson correlation of
their common ratings:

sim(u, v) =

P
i∈Iu∩Iv

(ru,i − r̄u)(rv,i − r̄v)qP
i∈Iu

(ru,i − r̄u)2
qP

i∈Iv
(rv,i − r̄v)2

,

where Iu is the set of items rated by user u, ru,i is user u’s
rating for item i, and r̄u is the average rating of user u (simi-
larly for v). Similarity computed in this manner is typically
scaled by a factor proportional to the number of common
ratings, to reduce the chance of making a recommendation
made on weak connections:

sim′(u, v) =
max(|Iu ∩ Iv|, γ)

γ
· sim(u, v),

where γ ≈ 5 is a constant used as a lower limit in scaling [2].
These new similarities are then used to define a static neigh-
borhood Nu for each user u consisting of the top K users
most similar to user u. A prediction for user u and item

i is computed by a weighted average of the ratings by the
neighbors

pu,i = r̄u +

P
v∈V sim′(u, v)(rv,i − r̄v)P

v∈V sim′(u, v)
(1)

where V = Nu ∩Ui is the set of users most similar to u who
have rated i.

The item-based algorithm we use is the one defined by
Sarwar et al. [12]. In this algorithm, similarity is defined as
the adjusted cosine measure

sim(i, j) =

P
u∈Ui∩Uj

(ru,i − r̄u)(ru,j − r̄u)qP
u∈Ui

(ru,i − r̄u)2
qP

u∈Uj
(ru,j − r̄u)2

(2)

where Ui is the set of users who have rated item i. As for
the user-based algorithm, the similarity weights are adjusted
proportionally to the number of users that have rated the
items in common

sim′(i, j) =
max(|Ui ∩ Uj |, γ)

γ
· sim(i, j). (3)

Given the similarities, the neighborhood Ni of an item i is
defined as the top K most similar items for that item. A
prediction for user u and item i is computed as the weighted
average

pu,i = r̄i +

P
j∈J sim′(i, j)(ru,j − r̄j)P

j∈J sim′(i, j)
(4)

where J = Ni ∩ Iu is the set of items rated by u that are
most similar to i.

2.2 Evaluation
Recommender algorithms have typically been evaluated

using measures of predictive accuracy and coverage [3]. Stud-
ies on recommender algorithms, notably Herlocker et al. [2]
and Sarwar et al. [12], typically compute predictive accuracy
by dividing a set of ratings into training and test sets, and
compute the prediction for an item in the test set using the
ratings in the training set. A standard measure of predictive
accuracy is mean absolute error (MAE), which for a test set
T = {(u, i)} is defined as,

MAE =

P
(u,i)∈T |pu,i − ru,i|

|T | . (5)

Coverage has a number of definitions, but generally refers
to the proportion of items that can be predicted by the al-
gorithm [3].

A practical issue with predictive accuracy is that users
typically are presented with recommendation lists, and not
individual numeric predictions. Recommendation lists are
lists of items in decreasing order of prediction (sometimes
stated in terms of star-ratings), and so predictive accuracy
may not be reflective of the accuracy of the list. So, instead
we can measure recommendation or rank accuracy, which
indicates the extent to which the list is in the correct or-
der. Herlocker et al. [3] discuss a number of rank accuracy
measures, which range from Kendall’s Tau to measures that
consider the fact that users tend to only look at a prefix of
the list [5]. Kendall’s Tau measures the number of inversions
when comparing ordered pairs in the true user ordering of

Jim

Tom

Jeff

My Cousin Vinny

The Matrix

Star Wars

The Mask

Figure 1: Ratings in simple movie recommender.

items and the recommended order, and is defined as

τ =
C −Dp

(C + D + TR)(C + D + TP)
(6)

where C is the number of pairs that the system predicts in
the correct order, D the number of pairs the system pre-
dicts in the wrong order, TR the number of pairs in the true
ordering that have the same ratings, and TP is the num-
ber of pairs in the predicted ordering that have the same
ratings [3]. A shortcoming of the Tau metric is that it is
oblivious to the position in the ordered list where the inver-
sion occurs [3]. For instance, an inversion toward the end
of the list is given the same weight as one in the beginning.
One solution is to consider inversions only in the top few
items in the recommended list or to weight inversions based
on their position in the list.

3. ROLES OF A RATING
Our basic observation is that each rating plays a differ-

ent role in each prediction in which it is used. Consider a
simplified movie recommender system with three users Jim,
Jeff, and Tom and their ratings for a few movies, as shown
in Fig. 1. (For this initial discussion we will not consider the
rating values involved.) The recommender predicts whether
Tom will like The Mask using the other already available
ratings. How this is done depends on the algorithm:

1. An item-based collaborative filtering algorithm con-
structs a neighborhood of movies around The Mask by
using the ratings of users who rated The Mask and
other movies similarly (e.g., Jim’s ratings of The Matrix

and The Mask; and Jeff’s ratings of Star Wars and The

Mask). Tom’s ratings of those movies are then used to
make a prediction for The Mask.

2. A user-based collaborative filtering algorithm would
construct a neighborhood around Tom by tracking other
users whose rating behaviors are similar to Tom’s (e.g.,
Tom and Jeff have rated Star Wars; Tom and Jim have
rated The Matrix). The prediction of Tom’s rating for
The Mask is then based on the ratings of Jeff and Tim.

Although the nearest-neighbor algorithms aggregate the rat-
ings to form neighborhoods used to compute predictions, we
can disaggregate the similarities to view the computation of
a prediction as simultaneously following parallel paths of
ratings. So, irrespective of the collaborative filtering algo-
rithm used, we can visualize the prediction of Tom’s rating
of The Mask as walking through a sequence of ratings. In

Jim

Tom

Jeff

The Matrix

Star Wars

The Mask
q1

q2 q3

p1 p2

p3

Figure 2: Ratings used to predict The Mask for Tom.

Jim

Tom
Jeff

The Matrix

Star Wars

The Mask
q1

q2
q3

p1 p2
p3

Jerry
r2

r3

Figure 3: Prediction of The Mask for Tom in which a
rating is used more than once.

this example, two paths were used for this prediction as de-
picted in Fig. 2: (p1, p2, p3) and (q1, q2, q3). Note that these
paths are undirected, and are all of length 3. Only the order
in which the ratings are traversed is different between the
item-based algorithm (e.g., (p3, p2, p1), (q3, q2, q1)) and the
user-based algorithm (e.g., (p1, p2, p3), (q1, q2, q3).) A rating
can be part of many paths for a single prediction as shown
in Fig. 3, where three paths are used for a prediction, two
of which follow p1: (p1, p2, p3) and (p1, r2, r3).

Predictions in a collaborative filtering algorithms may in-
volve thousands of such walks in parallel, each playing a part
in influencing the predicted value. Each prediction path con-
sists of three ratings, playing roles that we call scouts, pro-
moters, and connectors. To illustrate these roles, consider
the path (p1, p2, p3) in Fig. 2 used to make a prediction of
The Mask for Tom:

1. The rating p1 (Tom 7→ Star Wars) makes a connection
from Tom to other ratings that can be used to predict
Tom’s rating for The Mask. This rating serves as a
scout in the bipartite graph of ratings to find a path
that leads to The Mask.

2. The rating p2 (Jeff 7→ Star Wars) helps the system rec-
ommend The Mask to Tom by connecting the scout to
the promoter.

3. The rating p3 (Jeff 7→ The Mask) allows connections to
The Mask, and, therefore, promotes this movie to Tom.

Formally, given a prediction pu,a of a target item a for user
u, a scout for pu,a is a rating ru,i such that there exists a
user v with ratings rv,a and rv,i for some item i; a promoter
for pu,a is a rating rv,a for some user v, such that there exist
ratings rv,i and ru,i for an item i, and; a connector for pu,a

Jim

Tom

Jeff

Jerry

My Cousin Vinny

The Matrix

Star Wars

The Mask

Jurasic Park

Figure 4: Scouts, promoters, and connectors.

is a rating rv,i by some user v and rating i, such that there
exists ratings ru,i and rv,a. The scouts, connectors, and
promoters for the prediction of Tom’s rating of The Mask

are p1 and q1, p2 and q2, and p3 and q3 (respectively). Each
of these roles has a value in the recommender to the user,
the user’s neighborhood, and the system in terms of allowing
recommendations to be made.

3.1 Roles in Detail
Ratings that act as scouts tend to help the recommender

system suggest more movies to the user, though the extent
to which this is true depends on the rating behavior of other
users. For example, in Fig. 4 the rating Tom 7→ Star Wars

helps the system recommend only The Mask to him, while
Tom 7→ The Matrix helps recommend The Mask, Jurassic

Park, and My Cousin Vinny. Tom makes a connection to
Jim who is a prolific user of the system, by rating The

Matrix. However, this does not make The Matrix the best
movie to rate for everyone. For example, Jim is benefited
equally by both The Mask and The Matrix, which allow the
system to recommend Star Wars to him. His rating of The

Mask is the best scout for Jeff, and Jerry’s only scout is his
rating of Star Wars. This suggests that good scouts allow
a user to build similarity with prolific users, and thereby
ensure they get more from the system.

While scouts represent beneficial ratings from the perspec-
tive of a user, promoters are their duals, and are of benefit
to items. In Fig. 4, My Cousin Vinny benefits from Jim’s
rating, since it allows recommendations to Jeff and Tom.
The Mask is not so dependent on just one rating, since the
ratings by Jim and Jeff help it. On the other hand, Jerry’s
rating of Star Wars does not help promote it to any other
user. We conclude that a good promoter connects an item to
a broader neighborhood of other items, and thereby ensures
that it is recommended to more users.

Connectors serve a crucial role in a recommender system
that is not as obvious. The movies My Cousin Vinny and
Jurassic Park have the highest recommendation potential
since they can be recommended to Jeff, Jerry and Tom based
on the linkage structure illustrated in Fig. 4. Beside the
fact that Jim rated these movies, these recommendations are
possible only because of the ratings Jim 7→ The Matrix and
Jim 7→ The Mask, which are the best connectors. A connec-
tor improves the system’s ability to make recommendations
with no explicit gain for the user.

Note that every rating can be of varied benefit in each of
these roles. The rating Jim 7→ My Cousin Vinny is a poor
scout and connector, but is a very good promoter. The

rating Jim 7→ The Mask is a reasonably good scout, a very
good connector, and a good promoter. Finally, the rating
Jerry 7→ Star Wars is a very good scout, but is of no value
as a connector or promoter. As illustrated here, a rating
can have different value in each of the three roles in terms of
whether a recommendation can be made or not. We could
measure this value by simply counting the number of times
a rating is used in each role, which alone would be help-
ful in characterizing the behavior of a system. But we can
also measure the contribution of each rating to the quality
of recommendations or health of the system. Since every
prediction is a combined effort of several recommendation
paths, we are interested in discerning the influence of each
rating (and, hence, each path) in the system towards the
system’s overall error. We can understand the dynamics of
the system at a finer granularity by tracking the influence
of a rating according to the role played. The next section
describes the approach to measuring the values of a rating
in each role.

4. CONTRIBUTIONS OF RATINGS
As we’ve seen, a rating may play different roles in different

predictions and, in each prediction, contribute to the quality
of a prediction in different ways. Our approach can use any
numeric measure of a property of system health, and assigns
credit (or blame) to each rating proportional to its influence
in the prediction. By tracking the role of each rating in a
prediction, we can accumulate the credit for a rating in each
of the three roles, and also track the evolution of the roles
of rating over time in the system.

This section defines the methodology for computing the
contribution of ratings by first defining the influence of a
rating, and then instantiating the approach for predictive
accuracy, and then rank accuracy. We also demonstrate how
these contributions can be aggregated to study the neighbor-
hood of ratings involved in computing a user’s recommenda-
tions. Note that although our general formulation for rating
influence is algorithm independent, due to space considera-
tions, we present the approach for only item-based collabo-
rative filtering. The definition for user-based algorithms is
similar and will be presented in an expanded version of this
paper.

4.1 Influence of Ratings
Recall that an item-based approach to collaborative filter-

ing relies on building item neighborhoods using the similar-
ity of ratings by the same user. As described earlier, similar-
ity is defined by the adjusted cosine measure (Equations (2)
and (3)). A set of the top K neighbors is maintained for all
items for space and computational efficiency. A prediction
of item i for a user u is computed as the weighted deviation
from the item’s mean rating as shown in Equation (4). The
list of recommendations for a user is then the list of items
sorted in descending order of their predicted values.

We first define impact(a, i, j), the impact a user a has in
determining the similarity between two items i and j. This
is the change in the similarity between i and j when a’s
rating is removed, and is defined as

impact(a, i, j) =
|sim′(i, j)− sim′

ā(i, j)|P
w∈Cij

|sim′(i, j)− sim′
w̄(i, j)|

where Cij = {u ∈ U | ∃ ru,i, ru,j ∈ R(u)} is the set of coraters

of items i and j (users who rate both i and j), R(u) is the set
of ratings provided by user u, and sim′

ā(i, j) is the similarity
of i and j when the ratings of user a are removed

simā(i, j) =

P
v∈U\{a} (ru,i − r̄u)(ru,j − r̄u)qP

u∈U\{a}(ru,i − r̄u)2
qP

u∈U\{a}(ru,j − r̄u)2
,

and adjusted for the number of raters

sim′
ā(i, j) =

max(|Ui ∩ Uj | − 1, γ)

γ
· sim(i, j).

If all coraters of i and j rate them identically, we define the
impact as

impact(a, i, j) =
1

|Cij |

since
P

w∈Cij
|sim′(i, j)− sim′

w̄(i, j)| = 0.

The influence of each path (u, j, v, i) = [ru,j , rv,j , rv,i] in
the prediction of pu,i is given by

influence(u, j, v, i) =
sim′(i, j)P

l∈Ni∩Iu
sim′(i, l)

· impact(v, i, j)

It follows that the sum of influences over all such paths, for
a given set of endpoints, is 1.

4.2 Role Values for Predictive Accuracy
The value of a rating in each role is computed from the

influence depending on the evaluation measure employed.
Here we illustrate the approach using predictive accuracy as
the evaluation metric.

In general, the goodness of a prediction decides whether
the ratings involved must be credited or discredited for their
role. For predictive accuracy, the error in prediction e =
|pu,i − ru,i| is mapped to a comfort level using a mapping
function M(e). Anecdotal evidence suggests that users are
unable to discern errors less than 1.0 (for a rating scale of 1
to 5) [4], and so an error less than 1.0 is considered accept-
able, but anything larger is not. We hence define M(e) as
(1 − e) binned to an appropriate value in [−1,−0.5, 0.5, 1].
For each prediction pu,i, M(e) is attributed to all the paths
that assisted the computation of pu,i, proportional to their
influences. This tribute, M(e)∗influence(u, j, v, i), is in turn
inherited by each of the ratings in the path [ru,j , rv,j , rv,i],
with the credit/blame accumulating to the respective roles
of ru,j as a scout, rv,j as a connector, and rv,i as a pro-
moter. In other words, the scout value SF (ru,j), the con-
nector value CF (rv,j) and the promoter value PF (rv,i) are
all incremented by the tribute amount. Over a large num-
ber of predictions, scouts that have repeatedly resulted in
big error rates have a big negative scout value, and vice
versa (similarly with the other roles). Every rating is thus
summarized by its triple [SF, CF, PF].

4.3 Role Values for Rank Accuracy
We now define the computation of the contribution of rat-

ings to observed rank accuracy. For this computation, we
must know the user’s preference order for a set of items for
which predictions can be computed. We assume that we
have a test set of the users’ ratings of the items presented
in the recommendation list. For every pair of items rated
by a user in the test data, we check whether the predicted
order is concordant with his preference. We say a pair (i, j)

is concordant (with error ε) whenever one of the following
holds:

• if (ru,i < ru,j) then (pu,i − pu,j < ε);

• if (ru,i > ru,j) then (pu,i − pu,j > ε); or

• if (ru,i = ru,j) then (|pu,i − pu,j | ≤ ε).

Similarly, a pair (i, j) is discordant (with error ε) if it is not
concordant. Our experiments described below use an error
tolerance of ε = 0.1.

All paths involved in the prediction of the two items in
a concordant pair are credited, and the paths involved in
a discordant pair are discredited. The credit assigned to a
pair of items (i, j) in the recommendation list for user u is
computed as

c(i, j) =

(
t
T
· 1

C+D
if (i, j) are concordant

− t
T
· 1

C+D
if (i, j) are discordant

(7)

where t is the number of items in the user’s test set whose
ratings could be predicted, T is the number of items rated
by user u in the test set, C is the number of concordances
and D is the number of discordances. The credit c is then
divided among all paths responsible for predicting pu,i and
pu,j proportional to their influences. We again add the role
values obtained from all the experiments to form a triple
[SF, CF, PF] for each rating.

4.4 Aggregating rating roles
After calculating the role values for individual ratings, we

can also use these values to study neighborhoods and the
system. Here we consider how we can use the role values
to characterize the health of a neighborhood. Consider the
list of top recommendations presented to a user at a spe-
cific point in time. The collaborative filtering algorithm tra-
versed many paths in his neighborhood through his scouts
and other connectors and promoters to make these recom-
mendations. We call these ratings the recommender neigh-
borhood of the user. The user implicitly chooses this neigh-
borhood of ratings through the items he rates. Apart from
the collaborative filtering algorithm, the health of this neigh-
borhood completely influences a user’s satisfaction with the
system. We can characterize a user’s recommender neigh-
borhood by aggregating the individual role values of the rat-
ings involved, weighted by the influence of individual ratings
in determining his recommended list. Different sections of
the user’s neighborhood wield varied influence on his rec-
ommendation list. For instance, ratings reachable through
highly rated items have a bigger say in the recommended
items.

Our aim is to study the system and classify users with
respect to their positioning in a healthy or unhealthy neigh-
borhood. A user can have a good set of scouts, but may
be exposed to a neighborhood with bad connectors and pro-
moters. He can have a good neighborhood, but his bad
scouts may ensure the neighborhood’s potential is rendered
useless. We expect that users with good scouts and good
neighborhoods will be most satisfied with the system in the
future.

A user’s neighborhood is characterized by a triple that
represents the weighted sum of the role values of individual
ratings involved in making recommendations. Consider a
user u and his ordered list of recommendations L. An item i

in the list is weighted inversely, as K(i), depending on its po-

sition in the list. In our studies we use K(i) =
p

position(i).
Several paths of ratings [ru,j , rv,j , rv,i] are involved in pre-
dicting pu,i which ultimately decides its position in L, each
with influence(u, j, v, i).

The recommender neighborhood of a user u is character-
ized by the triple, [SFN(u), CFN(u), PFN(u)] where

SFN(u) =
X
i∈L

 P
[ru,j ,rv,j ,rv,i]

SF (ru,j)influence(u, j, v, i)

K(i)

!

CFN(u) and PFN(u) are defined similarly. This triple esti-
mates the quality of u’s recommendations based on the past
track record of the ratings involved in their respective roles.

5. EXPERIMENTATION
As we have seen, we can assign role values to each rating

when evaluating a collaborative filtering system. In this sec-
tion, we demonstrate the use of this approach to our overall
goal of defining an approach to monitor and manage the
health of a recommender system through experiments done
on the MovieLens million rating dataset. In particular, we
discuss results relating to identifying good scouts, promot-
ers, and connectors; the evolution of rating roles; and the
characterization of user neighborhoods.

5.1 Methodology
Our experiments use the MovieLens million rating dataset,

which consists of ratings by 6040 users of 3952 movies. The
ratings are in the range 1 to 5, and are labeled with the time
the rating was given. As discussed before, we consider only
the item-based algorithm here (with item neighborhoods of
size 30) and, due to space considerations, only present role
value results for rank accuracy.

Since we are interested in the evolution of the rating role
values over time, the model of the recommender system is
built by processing ratings in their arrival order. The times-
tamping provided by MovieLens is hence crucial for the anal-
yses presented here. We make assessments of rating roles at
intervals of 10,000 ratings and processed the first 200,000
ratings in the dataset (giving rise to 20 snapshots). We
incrementally update the role values as the time ordered
ratings are merged into the model. To keep the experiment
computationally manageable, we define a test dataset for
each user. As the time ordered ratings are merged into the
model, we label a small randomly selected percentage (20%)
as test data. At discrete epochs, i.e., after processing every
10,000 ratings, we compute the predictions for the ratings
in the test data, and then compute the role values for the
ratings used in the predictions. One potential criticism of
this methodology is that the ratings in the test set are never
evaluated for their roles. We overcome this concern by re-
peating the experiment, using different random seeds. The
probability that every rating is considered for evaluation is
then considerably high: 1 − 0.2n, where n is the number
of times the experiment is repeated with different random
seeds. The results here are based on n = 4 repetitions.

The item-based collaborative filtering algorithm’s perfor-
mance was ordinary with respect to rank accuracy. Fig. 5
shows a plot of the precision and recall as ratings were
merged in time order into the model. The recall was always
high, but the average precision was just about 53%.

0

0.2

0.4

0.6

0.8

1

1.2

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

11
00

00

13
00

00

15
00

00

Ratings merged into model

V
al

u
e Precision

Recall

Figure 5: Precision and recall for the item-based
collaborative filtering algorithm.

5.2 Inducing good scouts
The ratings of a user that serve as scouts are those that

allow the user to receive recommendations. We claim that
users with ratings that have respectable scout values will
be happier with the system than those with ratings with
low scout values. Note that the item-based algorithm dis-
cussed here produces recommendation lists with nearly half
of the pairs in the list discordant from the user’s preference.
Whether all of these discordant pairs are observable by the
user is unclear, however, certainly this suggests that there
is a need to be able to direct users to items whose ratings
would improve the lists.

The distribution of the scout values for most users’ rat-
ings are Gaussian with mean zero. Fig. 6 shows the fre-
quency distribution of scout values for a sample user at a
given snapshot. We observe that a large number of ratings
never serve as scouts for their users. A relatable scenario
is when Amazon’s recommender makes suggestions of books
or items based on other items that were purchased as gifts.
With simple relevance feedback from the user, such ratings
can be isolated as bad scouts and discounted from future
predictions. Removing bad scouts was found to be worth-
while for individual users but the overall performance im-
provement was only marginal.

An obvious question is whether good scouts can be formed
by merely rating popular movies as suggested by Rashid et
al. [9]. They show that a mix of popularity and rating
entropy identifies the best items to suggest to new users
when evaluated using MAE. Following their intuition, we
would expect to see a higher correlation between popularity-
entropy and good scouts. We measured the Pearson correla-
tion coefficient between aggregated scout values for a movie
with the popularity of a movie (number of times it is rated);
and with its popularity*variance measure at different snap-
shots of the system. Note that the scout values were initially
anti-correlated with popularity (Fig. 7), but became moder-
ately correlated as the system evolved. Both popularity and
popularity*variance performed similarly. A possible expla-
nation is that there has been insufficient time for the popular
movies to accumulate ratings.

-10

0

10

20

30

40

50

60

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Scout Value

F
re

q
u

en
cy

Figure 6: Distribution of scout values for a sample
user.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

30000 60000 90000 120000 150000 180000

Popularity
Pop*Var

Figure 7: Correlation between aggregated scout
value and item popularity (computed at different
intervals).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

30000 60000 90000 120000 150000 180000

Figure 8: Correlation between aggregated promoter
value and user prolificity (computed at different in-
tervals).

Table 1: Movies forming the best scouts.
Best Scouts Conf. Pop.
Being John Malkovich (1999) 1.00 445
Star Wars: Episode IV - A New Hope (1977) 0.92 623
Princess Bride, The (1987) 0.85 477
Sixth Sense, The (1999) 0.85 617
Matrix, The (1999) 0.77 522
Ghostbusters (1984) 0.77 441
Casablanca (1942) 0.77 384
Insider, The (1999) 0.77 235
American Beauty (1999) 0.69 624
Terminator 2: Judgment Day (1991) 0.69 503
Fight Club (1999) 0.69 235
Shawshank Redemption, The (1994) 0.69 445
Run Lola Run (Lola rennt) (1998) 0.69 220
Terminator, The (1984) 0.62 450
Usual Suspects, The (1995) 0.62 326
Aliens (1986) 0.62 385
North by Northwest (1959) 0.62 245
Fugitive, The (1993) 0.62 402
End of Days (1999) 0.62 132
Raiders of the Lost Ark (1981) 0.54 540
Schindler’s List (1993) 0.54 453
Back to the Future (1985) 0.54 543
Toy Story (1995) 0.54 419
Alien (1979) 0.54 415
Abyss, The (1989) 0.54 345
2001: A Space Odyssey (1968) 0.54 358
Dogma (1999) 0.54 228
Little Mermaid, The (1989) 0.54 203

Table 2: Movies forming the worst scouts.
Worst scouts Conf. Pop.
Harold and Maude (1971) 0.46 141
Grifters, The (1990) 0.46 180
Sting, The (1973) 0.38 244
Godfather: Part III, The (1990) 0.38 154
Lawrence of Arabia (1962) 0.38 167
High Noon (1952) 0.38 84
Women on the Verge of a... (1988) 0.38 113
Grapes of Wrath, The (1940) 0.38 115
Duck Soup (1933) 0.38 131
Arsenic and Old Lace (1944) 0.38 138
Midnight Cowboy (1969) 0.38 137
To Kill a Mockingbird (1962) 0.31 195
Four Weddings and a Funeral (1994) 0.31 271
Good, The Bad and The Ugly, The (1966) 0.31 156
It’s a Wonderful Life (1946) 0.31 146
Player, The (1992) 0.31 220
Jackie Brown (1997) 0.31 118
Boat, The (Das Boot) (1981) 0.31 210
Manhattan (1979) 0.31 158
Truth About Cats & Dogs, The (1996) 0.31 143
Ghost (1990) 0.31 227
Lone Star (1996) 0.31 125
Big Chill, The (1983) 0.31 184

By studying the evolution of scout values, we can identify
movies that consistently feature in good scouts over time.
We claim these movies will make viable scouts for other
users. We found the aggregated scout values for all movies
in intervals of 10,000 ratings each. A movie is said to induce
a good scout if the movie was in the top 100 of the sorted
list, and to induce a bad scout if it was in bottom 100 of
the same list. Movies appearing consistently high over time
are expected to remain up there in the future. The effective
confidence in a movie m is

Cm =
Tm −Bm

N
(8)

where Tm is the number of times it appeared in the top
100, Bm the number of times it appeared in the bottom
100, and N is the number of intervals considered. Using
this measure, the top few movies expected to induce the
best scouts are shown in Table 1. Movies that would be bad
scout choices are shown in Table 2 with their associated con-
fidences. The popularities of the movies are also displayed.
Although more popular movies appear in the list of good
scouts, these tables show that a blind choice of scout based
on popularity alone can be potentially dangerous. Interest-
ingly, the best scout—‘Being John Malkovich’—is about a
puppeteer who discovers a portal into a movie star, a movie
that has been described variously on amazon.com as ‘makes
you feel giddy,’ ‘seriously weird,’ ‘comedy with depth,’ ‘silly,’
‘strange,’ and ‘inventive.’ Indicating whether someone likes
this movie or not goes a long way toward situating the user
in a suitable neighborhood, with similar preferences.

On the other hand, several factors may have made a movie
a bad scout, like the sharp variance in user preferences in
the neighborhood of a movie. Two users may have the
same opinion about Lawrence of Arabia, but they may dif-
fer sharply about how they felt about the other movies they
saw. Bad scouts ensue when there is deviation in behavior
around a common synchronization point.

5.3 Inducing good promoters
Ratings that serve to promote items in a collaborative fil-

tering system are critical to allowing a new item be recom-
mended to users. So, inducing good promoters is important
for cold-start recommendation. We note that the frequency
distribution of promoter values for a sample movie’s ratings
is also Gaussian (similar to Fig. 6). This indicates that the
promotion of a movie is benefited most by the ratings of a
few users, and are unaffected by the ratings of most users.
We find a strong correlation between a user’s number of rat-
ings and his aggregated promoter value. Fig. 8 depicts the
evolution of the Pearson correlation co-efficient between the
prolificity of a user (number of ratings) versus his aggre-
gated promoter value. We expect that conspicuous shills,
by recommending wrong movies to users, will be discred-
ited with negative aggregate promoter values and should be
identifiable easily.

Given this observation, the obvious rule to follow when
introducing a new movie is to have it rated directly by pro-
lific users who posses high aggregated promoter values. A
new movie is thus cast into the neighborhood of many other
movies improving its visibility. Note, though, that a user
may have long stopped using the system. Tracking pro-
moter values consistently allows only the most active recent
users to be considered.

5.4 Inducing good connectors
Given the way scouts, connectors, and promoters are char-

acterized, it follows that the movies that are part of the best
scouts are also part of the best connectors. Similarly, the
users that constitute the best promoters are also part of the
best connectors. Good connectors are induced by ensur-
ing a user with a high promoter value rates a movie with a
high scout value. In our experiments, we find that a rating’s
longest standing role is often as a connector. A rating with a
poor connector value is often seen due to its user being a bad
promoter, or its movie being a bad scout. Such ratings can
be removed from the prediction process to bring marginal
improvements to recommendations. In some selected exper-
iments, we observed that removing a set of badly behaving
connectors helped improve the system’s overall performance
by 1.5%. The effect was even higher on a few select users
who observed an improvement of above 10% in precision
without much loss in recall.

5.5 Monitoring the evolution of rating roles
One of the more significant contributions of our work is

the ability to model the evolution of recommender systems,
by studying the changing roles of ratings over time. The role
and value of a rating can change depending on many factors
like user behavior, redundancy, shilling effects or proper-
ties of the collaborative filtering algorithm used. Studying
the dynamics of rating roles in terms of transitions between
good, bad, and negligible values can provide insights into the
functioning of the recommender system. We believe that a
continuous visualization of these transitions will improve the
ability to manage a recommender system.

We classify different rating states as good, bad, or negli-
gible. Consider a user who has rated 100 movies in a par-
ticular interval, of which 20 are part of the test set. If a
scout has a value greater than 0.005, it indicates that it is
uniquely involved in at least 2 concordant predictions, which
we will say is good. Thus, a threshold of 0.005 is chosen to
bin a rating as good, bad or negligible in terms of its scout,
connector and promoter value. For instance, a rating r, at
time t with role value triple [0.1, 0.001,−0.01] is classified as
[scout +, connector 0, promoter −], where + indicates good,
0 indicates negligible, and − indicates bad.

The positive credit held by a rating is a measure of its con-
tribution to the betterment of the system, and the discredit
is a measure of its contribution to the detriment of the sys-
tem. Even though the positive roles (and the negative roles)
make up a very small percentage of all ratings, their contri-
bution supersedes their size. For example, even though only
1.7% of all ratings were classified as good scouts, they hold
79% of all positive credit in the system! Similarly, the bad
scouts were just 1.4% of all ratings but hold 82% of all dis-
credit. Note that good and bad scouts, together, comprise
only 1.4% + 1.7% = 3.1% of the ratings, implying that the
majority of the ratings are negligible role players as scouts
(more on this later). Likewise, good connectors were 1.2%
of the system, and hold 30% of all positive credit. The bad
connectors (0.8% of the system) hold 36% of all discredit.
Good promoters (3% of the system) hold 46% of all credit,
while bad promoters (2%) hold 50% of all discredit. This
reiterates that a few ratings influence most of the system’s
performance. Hence it is important to track transitions be-
tween them regardless of their small numbers.

Across different snapshots, a rating can remain in the
same state or change. A good scout can become a bad scout,
a good promoter can become a good connector, good and
bad scouts can become vestigial, and so on. It is not prac-
tical to expect a recommender system to have no ratings in
bad roles. However, it suffices to see ratings in bad roles ei-
ther convert to good or vestigial roles. Similarly, observing
a large number of good roles become bad ones is a sign of
imminent failure of the system.

We employ the principle of non-overlapping episodes [6]
to count such transitions. A sequence such as:

[+, 0, 0] → [+, 0, 0] → [0, +, 0] → [0, 0, 0]

is interpreted as the transitions

[+, 0, 0] ; [0, +, 0] : 1

[+, 0, 0] ; [0, 0, 0] : 1

[0, +, 0] ; [0, 0, 0] : 1

instead of

[+, 0, 0] ; [0, +, 0] : 2

[+, 0, 0] ; [0, 0, 0] : 2

[0, +, 0] ; [0, 0, 0] : 1.

See [6] for further details about this counting procedure.
Thus, a rating can be in one of 27 possible states, and there
are about 272 possible transitions. We make a further sim-
plification and utilize only 9 states, indicating whether the
rating is a scout, promoter, or connector, and whether it
has a positive, negative, or negligible role. Ratings that
serve multiple purposes are counted using multiple episode
instantiations but the states themselves are not duplicated
beyond the 9 restricted states. In this model, a transition
such as [+, 0, +] ; [0, +, 0] : 1 is counted as

[scout+] ; [scout0] : 1

[scout+] ; [connector+] : 1

[scout+] ; [promoter0] : 1

[connector0] ; [scout0] : 1

[connector0] ; [scout+] : 1

[connector0] ; [promoter0] : 1

[promoter+] ; [scout0] : 1

[promoter+] ; [connector+] : 1

[promoter+] ; [promoter0] : 1

Of these, transitions like [pX] ; [q0] where p 6= q, X ∈
{+, 0,−} are considered uninteresting, and only the rest are
counted.

Fig. 9 depicts the major transitions counted while pro-
cessing the first 200,000 ratings from the MovieLens dataset.
Only transitions with frequency greater than or equal to 3%
are shown. The percentages for each state indicates the
number of ratings that were found to be in those states.
We consider transitions from any state to a good state as
healthy, from any state to a bad state as unhealthy, and
from any state to a vestigial state as decaying.

From Fig. 9, we can observe:

• The bulk of the ratings have negligible values, irre-
spective of their role. The majority of the transitions
involve both good and bad ratings becoming negligi-
ble.

Scout +
(2%)

Scout -
(1.5%)

Scout 0
(96.5%)

Connector +
(1.2%)

Connector -
(0.8%)

Connector 0
(98%)

Promoter +
(3%)

Promoter -
(2%)

Promoter 0
(95%)

84%

84%

81%

74%

10%

6%

11%

77%

8%

7%
8%

82%

4%

86%

4%

68% 15%

13%

5%

5%

77%

11%

7%

5%

4%

3%

3%

3%

Healthy

Unhealthy

Decaying

Figure 9: Transitions among rating roles.

• The number of good ratings is comparable to the bad
ratings, and ratings are seen to switch states often,
except in the case of scouts (see below).

• The negative and positive scout states are not reach-
able through any transition, indicating that these rat-
ings must begin as such, and cannot be coerced into
these roles.

• Good promoters and good connectors have a much
longer survival period than scouts. Transitions that
recur to these states have frequencies of 10% and 15%
when compared to just 4% for scouts. Good connec-
tors are the slowest to decay whereas (good) scouts
decay the fastest.

• Healthy percentages are seen on transitions between
promoters and connectors. As indicated earlier, there
are hardly any transitions from promoters/connectors
to scouts. This indicates that, over the long run, a
user’s rating is more useful to others (movies or other
users) than to the user himself.

• The percentages of healthy transitions outweigh the
unhealthy ones — this hints that the system is healthy,
albeit only marginally.

Note that these results are conditioned by the static nature
of the dataset, which is a set of ratings over a fixed window
of time. However a diagram such as Fig. 9 is clearly useful
for monitoring the health of a recommender system. For in-
stance, acceptable limits can be imposed on different types
of transitions and, if a transition fails to meet the thresh-
old, the recommender system or a part of it can be brought
under closer scrutiny. Furthermore, the role state transition
diagram would also be the ideal place to study the effects of
shilling, a topic we will consider in future research.

5.6 Characterizing neighborhoods
Earlier we saw that we can characterize the neighborhood

of ratings involved in creating a recommendation list L for

a user. In our experiment, we consider lists of length 30,
and sample the lists of about 5% of users through the evo-
lution of the model (at intervals of 10,000 ratings each) and
compute their neighborhood characteristics. To simplify our
presentation, we consider the percentage of the sample that
fall into one of the following categories:

1. Inactive user: (SFN(u) = 0)

2. Good scouts, Good neighborhood:

(SFN(u) > 0) ∧ (CFN(u) > 0 ∧ PFN(u) > 0)

3. Good scouts, Bad neighborhood:

(SFN(u) > 0) ∧ (CFN(u) < 0 ∨ PFN(u) < 0)

4. Bad scouts, Good neighborhood:

(SFN(u) < 0) ∧ (CFN(u) > 0 ∧ PFN(u) > 0)

5. Bad scouts, Bad neighborhood:

(SFN(u) < 0) ∧ (CFN(u) < 0 ∨ PFN(u) < 0)

From our sample set of 561 users, we found that 476 users
were inactive. Of the remaining 85 users, we found 26 users
had good scouts and a good neighborhood, 6 had bad scouts
and a good neighborhood, 29 had good scouts and a bad
neighborhood, and 24 had bad scouts and a bad neighbor-
hood. Thus, we conjecture that 59 users (29+24+6) are in
danger of leaving the system.

As a remedy, users with bad scouts and a good neigh-
borhood can be asked to reconsider rating of some movies
hoping to improve the system’s recommendations. The sys-
tem can be expected to deliver more if they engineer some
good scouts. Users with good scouts and a bad neighbor-
hood are harder to address; this situation might entail se-
lectively removing some connector-promoter pairs that are
causing the damage. Handling users with bad scouts and
bad neighborhoods is a more difficult challenge.

Such a classification allows the use of different strategies
to better a user’s experience with the system depending on
his context. In future work, we intend to conduct field stud-
ies and study the improvement in performance of different
strategies for different contexts.

6. CONCLUSIONS
To further recommender system acceptance and deploy-

ment, we require new tools and methodologies to manage
an installed recommender and develop insights into the roles
played by ratings. A fine-grained characterization in terms
of rating roles such as scouts, promoters, and connectors,
as done here, helps such an endeavor. Although we have
presented results on only the item-based algorithm with list
rank accuracy as the metric, the same approach outlined
here applies to user-based algorithms and other metrics.

In future research, we plan to systematically study the
many algorithmic parameters, tolerances, and cutoff thresh-
olds employed here and reason about their effects on the
downstream conclusions. We also aim to extend our for-
mulation to other collaborative filtering algorithms, study
the effect of shilling in altering rating roles, conduct field
studies, and evaluate improvements in user experience by
tweaking ratings based on their role values. Finally, we plan
to develop the idea of mining the evolution of rating role

patterns into a reporting and tracking system for all aspects
of recommender system health.

7. REFERENCES
[1] Cosley, D., Lam, S., Albert, I., Konstan, J., and

Riedl, J. Is Seeing Believing?: How Recommender
System Interfaces Affect User’s Opinions. In Proc.
CHI (2001), pp. 585–592.

[2] Herlocker, J. L., Konstan, J. A., Borchers, A.,
and Riedl, J. An Algorithmic Framework for
Performing Collaborative Filtering. In Proc. SIGIR
(1999), pp. 230–237.

[3] Herlocker, J. L., Konstan, J. A., Terveen,
L. G., and Riedl, J. T. Evaluating Collaborative
Filtering Recommender Systems. ACM Transactions
on Information Systems Vol. 22, 1 (2004), pp. 5–53.

[4] Konstan, J. A. Personal communication. 2003.

[5] Lam, S. K., and Riedl, J. Shilling Recommender
Systems for Fun and Profit. In Proceedings of the 13th
International World Wide Web Conference (2004),
ACM Press, pp. 393–402.

[6] Laxman, S., Sastry, P. S., and Unnikrishnan,
K. P. Discovering Frequent Episodes and Learning
Hidden Markov Models: A Formal Connection. IEEE
Transactions on Knowledge and Data Engineering
Vol. 17, 11 (2005), 1505–1517.

[7] McLaughlin, M. R., and Herlocker, J. L. A
Collaborative Filtering Algorithm and Evaluation
Metric that Accurately Model the User Experience. In
Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (2004), pp. 329 – 336.

[8] O’Mahony, M., Hurley, N. J., Kushmerick, N.,
and Silvestre, G. Collaborative Recommendation:
A Robustness Analysis. ACM Transactions on
Internet Technology Vol. 4, 4 (Nov 2004), pp. 344–377.

[9] Rashid, A. M., Albert, I., Cosley, D., Lam, S.,
McNee, S., Konstan, J. A., and Riedl, J. Getting
to Know You: Learning New User Preferences in
Recommender Systems. In Proceedings of the 2002
Conference on Intelligent User Interfaces (IUI 2002)
(2002), pp. 127–134.

[10] Rashid, A. M., Karypis, G., and Riedl, J.
Influence in Ratings-Based Recommender Systems:
An Algorithm-Independent Approach. In Proc. of the
SIAM International Conference on Data Mining
(2005).

[11] Resnick, P., Iacovou, N., Sushak, M.,
Bergstrom, P., and Riedl, J. GroupLens: An
Open Architecture for Collaborative Filtering of
Netnews. In Proceedings of the Conference on
Computer Supported Collaborative Work (CSCW’94)
(1994), ACM Press, pp. 175–186.

[12] Sarwar, B., Karypis, G., Konstan, J., and Reidl,
J. Item-Based Collaborative Filtering
Recommendation Algorithms. In Proceedings of the
Tenth International World Wide Web Conference
(WWW’10) (2001), pp. 285–295.

[13] Schein, A., Popescu, A., Ungar, L., and
Pennock, D. Methods and Metrics for Cold-Start
Recommendation. In Proc. SIGIR (2002),
pp. 253–260.

