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Abstract

This paper studies the evaluation of routing algorithms from the perspective of reachability routing, where the
goal is to determine all paths between a sender and a receiver. Reachability routing is becoming relevant with the
changing dynamics of the Internet and the emergence of low-bandwidth wireless/ad-hoc networks. We make the
case for reinforcement learning as the framework of choice to realize reachability routing, within the confines of
the current Internet infrastructure. The setting of the reinforcement learning problem offers several advantages,
including loop resolution, multi-path forwarding capability, cost-sensitive routing, and minimizing state overhead,
while maintaining the incremental spirit of current backbone routing algorithms. We identify research issues
in reinforcement learning applied to the reachability routing problem to achieve a fluid and robust backbone
routing framework. This paper also presents the design, implementation and evaluation of a new reachability
routing algorithm that uses a model-based approach to achieve cost-sensitive multi-path forwarding; performance
assessment of the algorithm in various troublesome topologies shows consistently superior performance over
classical reinforcement learning algorithms. The paper is targeted toward practitioners seeking to implement a
reachability routing algorithm.

1 Introduction

With the continuing growth and dynamicism of large scale networks, alternative evaluation criteria for routing al-
gorithms are becoming increasingly important. The emergence of low-bandwidth ad-hoc mobile networks requires
routing algorithms that can distribute data traffic across multiple paths and quickly adapt to changing conditions.
Multi-path routing offers several advantages, including better bandwidth utilization, bounding delay variation, min-
imizing delay, and improved fault tolerance. Furthermore, current single path routing algorithms face route oscil-
lations (or flap), since they switch routes as a step function. The solution has been to choose low variance routing
metrics that are not amenable to route flap, which incidentally are also metrics that don’t represent the true state
of the network. Good multi-path routing involves gradual changes to routes and should work well even with high
variance routing metrics.

While multi-path routing is a desirable goal, the current Internet routing framework cannot be easily extended
to support it. One solution is to develop a new multi-path routing framework, which necessitates changes to the
Internet’s networking protocol (IP). The main problem here stems from deployability concerns. Our approach is
to study multipath routing within the confines of the current Internet protocol, which leads to interesting design
decisions.

In this paper, we approach multi-path routing from the limiting perspective of reachability routing, where the
routing algorithm attempts to determine all paths between a sender and a receiver. We present a survey of algo-
rithm design methodologies, with specific reference to capturing reachability considerations. The paper is struc-
tured as a series of arguments and observations that lead to identifying reinforcement learning as the framework to
achieve reachability routing. We consider tradeoffs in configuring reinforcement learning and pitfalls in traditional
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Figure 1: Organization of a network.

approaches. These ideas and arguments are focused in the end of the paper toward the practical design, implementa-
tion, and evaluation of a reachability routing algorithm on concrete topologies. By identifying novel dimensions for
characterizing routing algorithms and showcasing important implementation considerations, our work helps provide
organizing principles for the development of practical reachability routing algorithms.

2 Definitions

A network (see Fig. 1) consists of nodes, where a node may be a host or a router. Hosts generate and consume the
data that travels through the network. Routers are responsible for forwarding data from a source host to a destination
host. Physically, a router is a switching device with multiple ports (also called interfaces). Ports are used to connect
a router to either a host or another router. On receiving a data packet through a port, a router extracts the destination
address from the packet header, consults its routing table, and determines the outgoing port for that data packet.
The routing table is a data structure internal to the router and associates destination network addresses with outgoing
ports. Routing is thus a many-to-one function which maps (many) destination network addresses to an outgoing port.
In the case of IP networks, this function maps a 32 bit IP address space to a 4-7 bit output port number. Intuitively,
the quality of routing is directly influenced by the accuracy of the mapping function in determining the correct
output port. The reader should keep in mind that routers are physically distinct entities that can only communicate
by exchanging messages. The process of creating routing tables hence involves a distributed algorithm (the routing
protocol) executing concurrently at all routers. The goal of the routing protocol is to derive loop-free paths.

Organizationally, a network is divided into multiple autonomous systems (AS). An autonomous system is defined
as a set of routers that use the same routing protocol. Generally, an autonomous system contains routers within a
single administrative domain. An Interior Gateway Protocol (IGP) is used to route data traffic between hosts (or
networks) belonging to a single AS. An Exterior Gateway Protocol (EGP) is used to route traffic between distinct
autonomous systems.

The effectiveness of a routing protocol directly impacts both the end-to-end throughout and end-to-end delay.
Current network routing protocols are primarily concerned with deriving shortest cost routes between a source and
a destination. This focus on an optimality metric1 means that current protocols are tailored toward single path

1Note that the notion of optimality is used in this paper with respect to a node’s view of the network, and does not reflect optimality
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Figure 2: Four basic categories of algorithms for multi-path routing. The shaded region depicts the class of algo-
rithms studied in this paper.

routing2. In the recent past, there has been an increasing emphasis on multi-path routing, where routers maintain
multiple distinct paths of arbitrary costs between a source and a destination.

Multi-path routing presents several advantages. First, a multi-path routing protocol is capable of meeting multi-
ple performance objectives — maximizing throughput, minimizing delay, bounding delay variation, and minimizing
packet loss. Second, from a scalability perspective, multi-path routing makes effective use of the graph structure of a
network (as opposed to single-path routing, which superimposes a logical routing tree upon the network topology).
Third, multi-path routing protocols are more tolerant of network failures. Finally, multi-path routing algorithms are
less susceptible to route oscillations, which enables the use of high-variance cost metrics that are better congestion
indicators. In a single-path routing algorithm, use of a good congestion indicator (such as average queue length at a
router) as a cost metric leads to route oscillations.

Multi-path routing can be qualified by the state maintained at each router and the routing granularity. For
instance, a routing algorithm can maintain multiple, distinct, shortest-cost routing tables, where each table is based
on a different cost metric. We refer to this as a multi-metric, multi-path routing approach . A second approach is
to allow multiple network paths between a source-destination pair for a single cost metric. This means that routers
may use sub-optimal paths; for instance a router may send data on multiple paths to maximize network throughput.
We refer to this a single-metric, multi-path routing approach.

Multi-path routing algorithms can also be distinguished by the routing granularity into coarse grain, connection-
(or flow-) oriented or fine grain, connectionless approaches. The former adopts a path-per-connection view where
all packets belonging to a single connection follow the same path. However, different connections between the same
source and destination hosts may follow different paths. In contrast, connectionless networks have no mechanism to
associate packets with any higher-level notion of a connection; hence multi-path routing in connectionless networks
requires a fine-grained approach. For true multi-path routing, the routing algorithm should forward packets between
a single source-destination pair along multiple paths, which may not necessarily be shortest-cost paths. The focus
of this paper is on such fine grain multi-path routing algorithms within a single-metric domain (see Fig. 2). These
algorithms can be trivially extended for use in both coarse grain as well as multi-metric routing domains.

One way to achieve this form of multi-path routing is to extend existing single path network routing protocols.
This extension is non-trivial for two reasons. First, we need mechanisms to incorporate state corresponding to mul-
tiple (possibly non-optimal) paths into the routing table. More importantly, we need new loop detection algorithms;
current shortest-path routing algorithms use their optimality metric to implicitly eliminate loops. This assumption
is untenable for multi-path routing in a single-metric domain. Resolving these issues typically requires routers to
maintain (and keep consistent) routing state proportional to the number of paths in the network.

according to some global criterion (such as minimizing total traffic). For a comprehensive treatment of globally optimal routing algorithms,
refer to [3].

2This scheme can be trivially extended to the case when there are multiple shortest-path routes.
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In this paper, we approach multi-path routing from the terminal perspective of reachability routing. The goal
of reachability routing is to determine all paths between a sender and a receiver, without the aforementioned state
or consistency maintenance overhead. This paper introduces two forms of reachability routing. In hard reacha-
bility, the routing table at each router contains all and only loop free paths that exist in the network topology. Soft
reachability, on the other hand, merely requires that all loop free paths be represented in the routing table. While
basic reachability routing is primarily concerned with determining multiple paths through the network, practical
implementations are also interested in determining the relative quality of these paths, a form we call cost-dependent
reachability routing.

As we will show later, practical limitations on the amount of state that can be carried by a network packet
preclude any solution for hard reachability3 . Hence, this paper addresses the problem of soft reachability. We
argue that even this goal cannot be achieved by directly extending existing routing protocols or even by explicitly
programming for it. Instead, we achieve reachability routing by exploiting the underlying semantics of probabilistic
routing algorithms. The algorithms we advocate ensure correct operation of the network even under soft reachability.

3 Background

Before we look at algorithm design methodologies, it would be helpful to review the standard algorithms that form
the bulwark of the current network routing infrastructure. While some of these have not been designed with reach-
ability in mind, they are nevertheless useful in characterizing the design space of routing algorithms. The survey
below is merely intended to be representative of current network routing algorithms; for a more complete survey,
see [20]. This section addresses deterministic routing algorithms and the next addresses probabilistic routing al-
gorithms. What is relevant for our purposes are not the actual algorithms but rather their signature patterns of
information exchange.

3.1 Link State Routing (OSPF)

Link-state algorithms are characterized by a global information collection phase, where each router broadcasts its
local connectivity to every other router in the network. Every router independently assimilates the topology infor-
mation to build a complete map of the network, which is then used to construct routing tables. The most common
manifestation of link-state algorithms is the Open Shortest Path First (OSPF) routing protocol [17, 18], developed
by the IETF for TCP/IP networks. OSPF is an Interior Gateway Protocol in that it is used to communicate routing
information between routers belonging to the same autonomous system [8].

The connectivity information broadcast by every router includes the list of its neighboring routers and the cost to
reach every one of them, where a neighboring router is an adjacent node in the topology map. After such broadcasts
have flooded through the network, every router running the link-state algorithm constructs a map of the (global)
network topology and computes the cost — a single valued dimensionless metric — of each link of the network.
Using the network topology, each router then constructs a shortest path tree to all other routers in the autonomous
system, with itself as the root of the tree. This is typically done using Dijkstra’s shortest path algorithm. While the
shortest path tree gives the entire path to any destination in the AS, a router need only know the outgoing interface
for the next hop along a path. This information is captured in the routing table maintained by each router. The
routing table thus contains routing entries which associate a destination address in an incoming data packet with the
appropriate outgoing physical interface. The defining characteristic of a link state algorithm is that each router sends
information about local neighbors to all participating routers.

3To achieve hard reachability for single-metric fine grain routing, the data packet has to carry an arbitrary-length list of visited routers.
Fixed-length network packet headers cannot accommodate this information.
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Link-state algorithms are generally dynamic in nature. As the network topology or link costs change, routers
exchange information and recompute shortest path trees to ensure that their local database is consistent with the
current state of the network. The optimality principle ensures that as long the topological maps are consistent, the
routing tables computed by each router will also be consistent.

To derive the time complexity of the link-state routing algorithm, note that computing the routing table involves
running Dijkstra’s algorithm on the network topology. If the network contains R routers, the asymptotic behavior of
the standard implementation of Dijkstra’s algorithm is given by O(R2). A heap based implementation of Dijkstra’s
algorithm reduces the computational complexity to O(R log R). This computational cost is lower than the distance-
vector protocol discussed in the next section. However, link-state algorithms trade off communication bandwidth
against computational time. To derive the communication cost, note that the size of the routing topology transmission
by each router is proportional to N , the number of neighbors connected to the router. Since the routing topology
is broadcast to every other router, every routing transmission travels over all links (L) in the network. Hence, the
communication cost of a routing topology transmission by a single router is O(NL) and the cumulative cost of the
routing transmissions by all routers is O(RNL). We make three observations about link-state algorithms.

Observation 1. Routers participating in a link-state algorithm transmit raw or non-computed information among
themselves, which is then used as the basis for deriving routing tables. The advantage of this scheme is that a
router only sends information it is sure of, as opposed to ‘hearsay’ information used by the distance-vector routing
protocols described in the next section.

Observation 2. Link-state algorithms are intrinsically targeted towards single-path routing since they base their
correctness on the optimality principle. A trivial extension allows OSPF (in particular) to use multi-path routing
when two paths have identical costs, since this does not violate the optimality principle. Another extension allows
multiple shortest path trees, where each tree is based on a different cost metric.

Observation 3. Link-state algorithms have an explicit global information collection phase before they can populate
routing tables and begin routing.

3.2 Distance Vector Routing (RIP)

As opposed to link-state algorithms, which have a global information collection phase, distance-vector algorithms
build their routing tables by an iterative computation of the distributed Bellman-Ford algorithm. The most common
manifestation of distance-vector algorithms in the TCP/IP Internet is in the form of the Routing Information Protocol
(RIP) [13, 15]. RIP is based on the 1970s Xerox network protocols used in XNS networks, with adaptations to enable
it to work in IP networks.

In the distance-vector protocol (DVP), every router maintains a routing database, which only contains the best
known path costs to each destination router in the AS. In each iteration, every router in the AS sends its routing
tables, to all its neighbors. On receiving a routing table, each target router compares the routing entries in the
received routing table with its own entries. If the received routing table entry has a better cost, the target router
replaces its path cost and corresponding outgoing interface with the information received, and propagates the new
information. The algorithm stabilizes when every router in the system has indirectly received routing tables from
every other router in the AS. The defining characteristic of DVP algorithms is that each router sends information
about all participating routers to its local neighbors.

When the DVP algorithm begins, each DVP router knows the link cost to its neighbors. In the first iteration of
the DVP algorithm, each router sends information about its neighbors to its neighbors. At the end of the iteration,
each router knows the current best path costs to all routers within 1 hop from itself – a graph with a diameter of 2.
With every passing iteration, each router expands its horizon by 1, i.e., the diameter of the graph known to a router
increases by 1. The algorithm finally stabilizes when each router has expanded its horizon to the diameter of the
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network.
To derive the time complexity of this algorithm, note that on each iteration, a router receives O(N) routing tables,

where N is the number of neighbors. Each routing table contains R entries, where R is the number of participating
routers in the AS. On each iteration, every router in the AS expands the network neighborhood that it knows about
by 1. The algorithm stabilizes when each router has expanded its horizon to the diameter of the network D. Hence
the time complexity of DVP is O(NRD).

The traditional DVP suffers from a classic convergence problem called ‘count to infinity.’ Assume a network
with 4 routers A, B, C and D connected linearly, i.e. A ↔ B ↔ C ↔ D. Assume that A’s best path cost to D is x.
If router D is removed from the network, C advertises a path cost (to D) of infinity to B, but in the same iteration A
announces its previous best path cost x to B, without realizing that its route to D goes through B. Since x is less than
infinity, B essentially ignores the update from C. In the next iteration, B then propagates its best cost to D to routers
A and C. In the following iteration, A updates its path cost estimate to D since it received an update from B, which
affects its lowest cost route to D. This change in the lowest cost is sent to B on the next iteration, which updates its
estimate again. The routers are now stuck in a loop, incrementing their path costs on each iteration, till they reach
the upper bound on path costs, which is nominally defined to be infinity.

The standard solution to the count to infinity problem is to enforce an upper bound on the path costs. The path
cost metric generally used in DVP is the length of the path. Hence, the upper bound on path costs translates to an
upper bound on the diameter of the network. The RIP (v1; [13]) restricts the diameter of the network to 15 hops.

The problem with the traditional solution is twofold. First, restricting the network to small diameters impedes
scalability. Second, the length of a path is not a good indicator of the quality of the path. The problem with choosing
better cost metrics — such as average queue length at a router or minimum available bandwidth along a path — is
that it increases convergence time significantly. Several solutions have attempted to address this issue by speeding
up the time taken to count to infinity. However, note that there is no solution to eliminate the count to infinity
problem, using just the information collected by the DVP. The only solution to the count to infinity problem is to
maintain explicit path information along with the best cost estimate. This mechanism is used by the path vector
routing protocol described later.

The main advantage of the DVP is that amount of routing information sent is quite small. In contrast to the link-
state algorithm, routing information is only sent to neighbors, which significantly reduces the network bandwidth
requirement. Furthermore, DVP does not have an explicit information collection phase — it builds its routing tables
incrementally. Hence, it can begin routing as soon as it has any path cost estimate to a destination. From the
perspectives of this paper, we make two observations about distance-vector protocols.

Observation 4. Distance-vector protocols pass computed information or ‘hearsay’ among themselves. This hearsay
is not qualified in any way — for instance, routers indicate their best path cost, but not the path itself.

Observation 5. Distance-vector protocols are intrinsically targeted towards single-path routing, since each router
filters the routing updates it receives and only transmits the best route.

3.3 Comparing Link-State and Distance-Vector Protocols

The distance-vector and link-state protocols have traditionally been considered as two orthogonal approaches to
network routing. Alternatively, we can view them as two extremes along a ‘scope of information qualification’
axis, which allows us to interpolate between these algorithms. In the link-state protocol, each router sends raw cost
information about its immediate connectivity. In this case, we define the scope of information qualification to be 1,
or the distance to the immediate neighbor. At the other extreme, we have the distance-vector protocol in which each
router sends cost information about every other router, i.e., the scope of information qualification is infinity, or more
precisely the diameter of the network. A generalized algorithm will employ a parameter α to denote the diameter
of the neighborhood that is viewed as a single ‘super node’ by the routing algorithm. Within the super node, the
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Figure 3: Topology of the data network (a) and the topologies of the corresponding control networks for a link-state
algorithm (b) and a distance-vector algorithm (c).

distance-vector protocol is used to compute paths, and the link-state protocol operates at the level of super-nodes.
As α tends to the diameter of the network, the size of the super node tends to the size of the entire network, which
collapses the generalized algorithm to the distance-vector protocol.

In addition to the interpolatory viewpoint, it is instructive to contrast the operational behavior of the link-state and
distance-vector routing protocols. We can think of a single network as consisting of two superimposed components:
a data network, which only carries end user data and a control network, which carries the routing information used by
routers to determine routes in the data network. This viewpoint studies the topology of the control network induced
by a routing protocol and its relation to the topology of the data communication network (see Fig. 3).

Observation 6. A link-state algorithm broadcasts raw topology information to all routers in the network using a
pruned flooding approach to eliminate data loops. Since the raw topology information can be locally collected by
each router, the topology of the parallel control network is distinct from the topology of the data network. Every
node in the control network is connected to every other node. This illustrates the fact that the environment about
which we learn (to route) is distinct from the mechanism used to communicate the routing information. Such a
distinction enables the separation of the data collection and routing phases.

Observation 7. In contrast, in the distance-vector algorithm each router communicates best-cost path information
to all its neighbors. Computing the best-cost path requires that the paths present in the data network be present in the
control network as well. Hence, the topology of the control network has to be identical to the data network topology.
In effect, each link in the control network mirrors a physical link in the data network. This illustrates the fact that
the mechanism used to communicate routing information is the same as the environment where the information is to
be used.

3.4 Path Vector Routing (BGP, IDRP)

The path vector algorithm improves the basic distance-vector protocol to include additional information qualifiers
to eliminate the count-to-infinity problem. The Border Gateway Protocol (BGP) and the Inter-Domain Routing
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Protocol (IDRP) are two common implementations of path vector routing algorithms. Unlike the link-state and
distance-vector routing algorithms, path vector algorithms are generally used between autonomous systems, i.e.,
path vector is an exterior gateway protocol, operating at the scope of a backbone ‘network of networks.’ The main
motivation behind the path vector algorithm is to allow autonomous systems greater control in routing decisions.

In the path vector algorithm, routers are identified by unique numerical identifiers. Each router maintains a
routing table, where each entry in the routing table contains a list of explicit paths — specified as a sequence of
router identifiers (path-vector) — to a destination router. The list of path-vectors is ordered based on domain-
specific policy decisions — such as contractual agreements between autonomous systems, rather than a quantitative
cost metric. This scheme avoids imposing a single, universally adopted cost-metric.

In each iteration, every router in the AS transmits a subset of its routing tables to all its neighbors. In the
transmitted subset, each routing table entry contains a single ‘best’ path-vector to destination router. The ‘best’
path-vector is the first path-vector in an ordered list of path-vectors. For each routing entry in a received routing
table, a router (a) adds its router identifier to the path-vector, (b) checks the newly created path-vector to ensure
there are no loops, (c) inserts the path-vector into its own routing table, and (d) sorts the list of path-vectors based on
its selection criteria. Paths with loops are discarded, which in effect eliminates the count-to-infinity problem. The
algorithm progresses similar to the distance-vector protocol, with each router expanding its horizon by 1 on each
iteration. The algorithm finally stabilizes when each router has expanded its horizon to the diameter of the network.

Observation 8. Path vector algorithms are intrinsically targeted towards single-path routing, since each router filters
the routing updates it receives and only transmits the best path-vector. Interestingly, the ingress router has a choice
of routes; intermediate routers along a path do not have a choice.

Observation 9. Path vector algorithms pass qualified computed information among themselves. While the qualifi-
cation serves to eliminate problems such as count to infinity, it is generally not sufficient to invert the computation
function — to obtain the raw data carried by messages in a link-state algorithm. Lack of raw data complicates the
credit assignment problem for cost-dependent reachability routing. The credit assignment problem here is primarily
structural: of all the nodes, links, and subpaths that contribute to a certain quality metric in a path (e.g., transmission
time, path cost), which ones should be rewarded (or penalized)?

3.5 Hierarchical Routing

In TCP/IP networks, each host is identified by a unique numerical identifier (IP address), which consists of a network
component and a host component. The network component of the IP address is hierarchically organized, allowing
a set of networks to be viewed as a single node in a higher layer of the hierarchy. This hierarchical organization is
used to reduce the scope of the routing problem. At the lowest level, routing within a single network translates to
routing among the end-hosts. At the highest level, the network can be viewed as a collection of nodes, where each
node is a network in itself, running an internal routing algorithm, whose presence is opaque to the higher levels of
the hierarchy. This organization allows each level in hierarchy the freedom to choose a routing algorithm suited to
its needs.

4 Reinforcement Learning Algorithms

Reinforcement learning (RL) [14] is a branch of machine learning that is increasingly finding use in many important
applications, including routing. The ant-based algorithms of Subramanian et al. [21] and the stigmergetic routing
framework described in [10] are examples of reinforcement learning algorithms for routing. Here, populating routing
tables is viewed as a problem of learning the entries; we hence use the term learning in this paper synonymously
with the task of determining routing table entries.
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Figure 4: Routing table structure for (left) deterministic routing algorithms and (right) probabilistic routing algo-
rithms.

The salient feature of RL algorithms is the probabilistic nature of their routing table entries. In the previously
reviewed deterministic routing algorithms, a routing table entry contains an outgoing interface identifier and a cost.
In contrast, routing table entries in RL algorithms contain all outgoing interfaces and associated use probabilities
(see Fig. 4). The probabilities are typically designed to reflect the router’s sense of optimality, thus an interface with
higher probability than another lies on a better path to the given destination. A router can hence use the probabilities
for making forwarding decisions in a non-deterministic manner.

Observation 10. The probabilistic nature of routing tables in RL algorithms make them suitable for either single
path or multi-path routing. If a router deterministically chooses the outgoing link that has the highest probability, it
is implicitly performing single path routing. If the router distributes traffic in proportion to the link probabilities, it
is performing multi-path routing.

Learning in RL is based on trial-and-error and organized in terms of episodes. An episode consists of a packet
finding its way from an originating source to its prescribed destination. Routing table probabilities are initialized
to small random values (taking care to ensure that the sum of the probabilities for choosing among all possible
outgoing interfaces is one). A router can thus begin routing immediately except, of course, most of the routing
decisions will not be optimal or even desirable (e.g., they might lead to a dead-end). To improve the quality of the
routing decision, a router can ‘try out’ different links to see if they produce good routes, a mode of operation called
exploration. Information learnt during exploration can be used to drive future routing decisions. Such a mode is
called exploitation. Both exploration and exploitation are necessary for effective routing.

In either mode of operation, choice of the outgoing interface can be viewed as an action taken by the router and
RL algorithms assign credit to actions based on reinforcement (rewards) from the environment. The reinforcement
may take the form of a cost update or a measurable quantity such as bandwidth or end-to-end delay. In response, the
probabilities are then nudged slightly up or down to reflect the reinforcement signal. When such credit assignment is
conducted systematically over a large number of episodes and so that all actions have been sufficiently explored, RL
algorithms converge to solve stochastic shortest-path routing problems. Since learning is happening concurrently at
all routers, the reinforcement learning problem for routing is properly characterized as a multi-agent reinforcement
learning problem.

The multi-path forwarding capability of RL algorithms is similar in principle to hot potato or deflection rout-
ing [1], where each router assumes that it can reach every other router through any outgoing interface. The motivation
in hot potato routing is to minimize router buffering requirements by using the network (or more precisely the delay
bandwidth product) as a storage element. Routers maintain routing tables of the form shown in Fig. 4 (left). How-
ever, if more than one incoming packet tries to transit the same outgoing link, instead of buffering the excess packets
as traditional routers do, hot potato routing selects a free outgoing link randomly and transmits the packets. The
randomly routed packets will eventually reach their destinations, albeit by following circuitous paths.
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Observation 11. While the nature of routing tables in hot potato routing is targeted toward single path routing, the
ability to deflect packets for the same destination along multiple links, in fact, realizes soft reachability routing. In
contrast to hot potato routing’s mechanism of indiscriminately selecting alternatives, the goal in RL is to make an
informed decision about reachable routes.

4.1 Novel Features of RL Algorithms

Algorithms for reinforcement learning face the same issues as traditional distributed algorithms, with some addi-
tional peculiarities. First, the environment is modeled as stochastic (especially links, link costs, traffic, and conges-
tion), so routing algorithms can take into account the dynamics of the network. However, no model of the dynamics
is assumed to be given. This means that RL algorithms have to sample, estimate, and perhaps build models of perti-
nent aspects of the environment. RL algorithms range from those that build elaborate models to those that function
without ever building a model.

Second, reinforcement from trying out route possibilities almost always takes the form of evaluative feedback,
and is rarely instructive [22]. For instance, a router conducting RL will be told that its decision to forward packet
for destination C onto outgoing interface i3 resulted in a travel time of 16ms, but not if this travel time is good,
bad, or the best possible. Since trip time is composed of all subpath elapsed times, it is computed (and delayed)
information, and can only be used as a reinforcement signal and not as an instructive signal. Credit assignment based
on the reinforcement signal is hence central to RL algorithms, and is conducted over learning episodes. Episodes are
typically sampled to uniformly cover the space of possibilities. To guarantee convergence in stochastic environments,
some form of an iterative improvement algorithm is often used.

Finally RL algorithms, unlike other machine learning algorithms, do not have an explicit learning phase followed
by evaluation. Learning and evaluation are assumed to happen continually. As mentioned earlier, this brings out
the tension between exploration and exploitation. Should the router choose an outgoing interface that has been
estimated to have a certain quality metric (exploitation) or should it choose a new interface to see if it might lead to a
better route (exploration)? In a dynamic environment, exploration never stops and hence balancing the two tensions
is important. The combination of trial-and-error, reinforcement from delayed information, and the exploration-
exploitation dilemma make RL an important subject in its own right. For a nice introduction to RL, we refer the
reader to [22]. A more mathematical overview is provided in the formally titled Neuro-Dynamic Programming [4].

4.2 Q-Routing: An Asynchronous Bellman-Ford Algorithm

To make our discussion concrete, we present the basics of Q-routing [6], one of the first RL algorithms for routing. It
is an online asynchronous relaxation of the Bellman-Ford algorithm used in distance vector protocols. Every router
x maintains a measure Qx(d, is) that reflects a metric for delivering a packet intended for destination d via interface
is. In the original formulation presented in [6], Q is set to be the estimated time for delivery. We can think of
the routing probabilities as being indirectly derived from Q. There are several alternatives here. For instance, the
probability that router x will route a packet for destination d via is can be defined to be

Qx(d, is)
∑

k Qx(d, ik)

Alternatively, in [6], the authors actually learn a deterministic routing policy, so the packet is routed along

argmaxkQx(d, ik)

With this formulation, in Fig. 4, data packets bound for destination A will be routed to interface i3.
The operation of the routing algorithms is as follows. All the Q entries are initialized to some small values.

Given a packet, a router x deterministically forwards the packet to the best next router y, determined from Q. Upon
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receiving this packet, y immediately provides x an estimate of its best Q (to reach the destination). x then updates
its Q-values to incorporate the new information. In [6], the following update rule is presented:

Qx(d, is) = Qx(d, is) + η{(maxkQy(d, ik) + ζ) − Qx(d, is)}

where ζ accounts for the time spent by the packet in x’s queue and also the transmission time from x to y. η is called
a learning rate or a stepsize and is a standard fixture in iterative improvement algorithms [5]. It is typically set to
produce a stepsize schedule that satisfies the stochastic approximation convergence conditions [4]. It should be clear
to the reader that this is actually a relaxation of the Bellman-Ford algorithm.

Of course, Q-routing is not guaranteed to converge to the shortest path. In fact, as Subramanian et al. [21] point
out, the algorithm will switch to using a different interface only when the one with the current highest Q metric
experiences a decrease. An improvement (e.g., shorter delay) in an interface that doesn’t have the highest Q metric
will usually go unnoticed. In other words, exploration only happens along the currently exploited path. Another
problem with the Q-routing algorithm is that the routing overhead is proportional to the number of data packets.

4.3 Ants as a Communication Mechanism

To circumvent these difficulties, Subramanian et al. propose the separation of the data collection aspects from the
packet routing functionality. In their ant based algorithms, messages called ants are used to probe the network
and provide reinforcements for the update equations. Ants proceed from randomly chosen sources to destinations
independently of the data traffic. An ant is a small message moving from one router to another that enables the router
to adjust its interface probabilities. Each ant contains the source where it was released, its intended destination, and
the cost c experienced thus far. Upon receiving an ant, a router updates its probability to the ant source (not the
destination), along the interface by which the ant arrived. This is a form of backward learning and is a trick to
minimize ant traffic.

Specifically, when an ant from source s to destination d arrives along interface ik to router r, r first updates c
(the cost accumulated by the ant thus far) to include the cost of traveling interface ik in reverse. r then updates its
entry for s by slightly nudging the probability up for interface ik (and correspondingly decreasing the probabilities
for other interfaces). The amount of the nudge is a function of the cost c accumulated by the ant. It then routes the
ant to its desired destination d. In particular, the probability pk for interface ik is updated as:

pk =
pk + ∆pk

1 + ∆pk

whereas the other probabilities are adjusted as:

pj =
pj

1 + ∆pk

where ∆pk ∝ 1/f(c), with f being some non-decreasing function of the cost c.
The only pending issue is how the ants should be routed. Subramanian et al. provide two types of ants. In the

first, so-called regular ants, the ants are forwarded probabilistically according to the routing tables. This ensures that
the routing tables converge deterministically to the shortest paths in the network. In the uniform ants version, the ant
forwarding probability is a uniform distribution i.e., all links have equal probability of being chosen. This ensures a
continued mode of exploration. In such a case, the routing tables do not converge to a deterministic answer; rather,
the probabilities are partitioned according to the costs.

Observation 12. The regular ants algorithm treats the probabilities in the routing tables as merely an intermediate
stage toward learning a deterministic routing table. Except in the transient learning phase, this algorithm is targeted
toward single path routing.
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Observation 13. The constant state of exploration maintained by the uniforms ants algorithm ensures a true multi-
path forwarding capability. This observation is echoed in [21].

The reader will appreciate the tension between exploration and exploitation brought out by the two types of ants.
Regular ants are good exploiters and are beneficial for convergence in static environments. Uniform ants are explor-
ers and help keep track of dynamic environments. Subramanian et al. propose ‘mixing’ the two types of ants to avail
the benefits of both modes of operation.

4.4 Stigmergetic Control

The assumption of link cost symmetry made by both the ant algorithms is a rather simplistic, but serious one. In
addition, the update equations are not adept at handling dynamic routing conditions and bursty traffic. The AntNet
system of Di Caro and Dorigo [10] is a very sophisticated reinforcement learning framework for routing. Like the
algorithm of Subramanian et al., this system uses ants to probe the network and sufficient exploration is built in to
prevent convergence to non-optimal tables in many situations. However, the update rules are very carefully designed
and implemented to ensure proper credit assignment. For instance, the costs accumulated by ants are not used to
update the link probabilities in reverse. Instead, a so-called backward ant is generated that travels the followed path
in reverse and updates the link probabilities in the correct, forward, direction. Cycles encountered by an ant result
in the ant being discarded. Every router also maintains a model of the local traffic experienced and this model is
adaptively refined and utilized to score ant travel times.

5 Design Methodologies for Reachability Routing Algorithms

We now have the necessary background to study how reachability routing algorithms can be designed. We begin by
identifying two dimensions along which they can be situated.

5.1 Constructive vs. Destructive Algorithms

Constructive algorithms begin with an empty set of routes and incrementally add routes till they reach the final
routing table. Current network routing protocols based upon distance-vector, link-state, and path-vector routing are
all examples of constructive algorithms. In contrast, destructive algorithms begin by assuming that all possible paths
in the network are valid i.e., they treat the network as a fully connected graph. Starting from this initial condition,
destructive algorithms cull paths that do not exist in the physical network. Intuitively, a constructive algorithm treats
routes as ‘guilty until proven innocent,’ whereas a destructive algorithm treats routes as ‘innocent until proven guilty.’
The exploration mode of reinforcement learning algorithms allows us to think of them as destructive algorithms.

Let us consider the amount of work that needs to be done by an algorithm to achieve reachability routing. For a
destructive algorithm, the work done is W ∝ c, the number of culled edges. In the case of constructive algorithms,
the work W ∝ l, the number of added edges.

It is instructive to examine the intermediate stages of the operation of constructive and destructive algorithms.
By its very nature, a destructive algorithm stays within the space of connected graph topologies. On the other hand,
a constructive algorithm starts with a null set of routes and builds up toward the minimum 1-connected topology. In
this interim, the routing tables depict multiple disjoint graphs and do not reflect a physical reality. Intuitively, this
translates to a hold time, during which a constructive algorithm cannot route to all destinations, whereas a destructive
algorithm can. Fig. 5 depicts this scenario.

Tied to the idea of a space of connected topologies is the notion of incremental computation of routing tables, as
motivated by anytime algorithms. As originally defined by Dean and Boddy [9], an anytime algorithm is one that
provides approximate answers in a way that i) an answer is available at any point in the execution of the algorithm
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Figure 5: Space of solutions for constructive and destructive algorithms.

and ii) the quality of the answer improves with execution time. For our purposes, a chief characteristic of an anytime
algorithm is its interruptibility. In Fig. 5, anytime algorithms can be thought to be traversing the line(s) in the
directions shown. They are contrasted by algorithms that experience a sudden transition from the initial state to the
final answer. Such algorithms require complete system state information to be able to make such an abrupt transition.

Observation 14. Constructive algorithms cannot function in an anytime mode, before they derive the minimally
connected topology. In contrast, destructive algorithms lend themselves naturally to an anytime mode of operation.
This means that a destructive algorithm can begin routing immediately.

5.2 Deterministic vs. Probabilistic Routing Algorithms

This is a distinction made earlier; deterministic routing algorithms such as link-state and distance-vector map a
destination address to a specific output port. Probabilistic algorithms map a destination address to a set of output
ports based on link probabilities.

Observation 15. For a deterministic algorithm, loops are catastrophic. If a data packet encounters a loop, an external
mechanism (event or message) is required to break the loop. In contrast, probabilistic algorithms do not require an
external mechanism for loop resolution, since the probability of continuing in a loop exponentially decays to zero.

We will explore these classes of algorithms along an axis orthogonal to the constructive versus destructive distinction,
leading to four main categories of algorithms (see Fig. 6). Some categories are more common than others.

1. Constructive Deterministic: Current network protocols based on link-state, distance-vector, and path-vector
algorithms fall in this category. As mentioned earlier, these algorithms focus on single-path routing. To extend
them to achieve reachability routing, we need additional qualifiers for routing information. Recall that loops
are fatal for deterministic algorithms; hence constructive deterministic algorithms need to qualify the entire
path to achieve single-metric multi-path routing. This information qualification can take two forms. In the
first form, routers build multiple distinct routing tables to every destination. The data packet then carries
information that explicitly selects a particular routing table. This form of qualification requires that each
router maintain a routing table entry for every possible path in the network, resulting in significant memory
overhead. In the second form, data packets can carry a list of previously visited routers which can then be used
to dynamically determine a path to the destination. This form of qualification trades time complexity for space
complexity and is referred to as path-prefix routing. Note that path-prefix routing requires that each router
know the entire topology of the network. While this is not an issue for link-state algorithms, it is contrary to
the design philosophy of distance-vector algorithms.

13



deterministic probabilistic

constructive

destructive

Figure 6: Design methodologies for reachability routing algorithms. We argue for the use of destructive probabilistic
algorithms.

2. Destructive Deterministic: Destructive algorithms work by culling links from their initial assumption of a
fully connected graph. In the intermediate stages of this culling process, the logical topology (as determined
by the routing tables) will contain a significant number of loops. Since deterministic algorithms have no
implicit mechanism for loop detection and/or avoidance, they cannot operate in destructive mode.

3. Constructive Probabilistic: This classification can be interpreted to mean an algorithm that performs no
exploration. This can be achieved by having an explicit data collection phase prior to learning. Such algorithms
lead to asynchronous versions of distributed dynamic programming [2]. Intuitively, such an algorithm can be
thought of as a form of link-state algorithm deriving probabilistic routing tables rather than using Dijkstra’s
algorithm to derive shortest-path routing tables. The main drawback of this approach is that the communication
cost of the data collection phase hinders scalability. This is also the reason why link-state algorithms are not
used for routing at the level of the Internet backbone.

4. Destructive Probabilistic: By definition, an RL algorithm belongs in this category. In addition to the advan-
tages offered by probabilistic algorithms (loop resolution, multi-path forwarding), RL algorithms can operate
in an anytime mode. Since many RL algorithms are forms of iterative improvement, they conduct indepen-
dent credit assignment across updates. This feature reduces the state overhead maintained by each router and
enables deployment in large scale networks.

The above categorization clearly builds the case for investigating reachability routing algorithms from the perspective
of destructive probabilistic algorithms, particularly as a unified design methodology for large scale networks. The
rest of this paper hence concentrates on RL algorithms and identifies practical considerations for their design and
deployment.

6 Practical Considerations

There is a stronger motivation to focus on destructive probabilistic algorithms for reachability routing. To see this,
we need to analyze the requirements of multi-path routing within the constraints imposed by the current internet-
working protocol IP. For a deterministic algorithm to achieve multipath routing, it needs some mechanism to qualify
a route (or path) [24]. There are two extremes of qualification: (a) explicit route qualification and (b) implicit route
qualification. In (a), each node in the graph has complete topology information, which it uses to build one or more
routes to each destination. Each route specifies the complete path — as a list of routers — to the destination. When a
data packet arrives at an ingress router, the router embeds the path into the data packet header and sends it to the next
router. Each router retrieves the path from the data packet header, and forwards it to the specified ‘next-hop’ and
so on. This scheme is similar to source routing since, from a routing perspective, the source host can be considered
synonymous to the ingress router.
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In (b), each router may or may not have complete topology information. The path is selected by imposing a met-
ric upon the system, whose evaluation returns the same result independent of the router performing the evaluation. A
simple example of such a metric is an optimality criterion. In this case, the path is qualified implicitly, since the data
packet does not carry any explicit path information. The problem however, is that purely implicit route qualification
leads to single path routing. It may be possible to achieve limited multi-path routing by selecting multiple implicit
criteria and signaling the choice of the routing criterion within the header of the data packet.

However, practical design constraints do not permit any form of explicit signaling. In particular, the IP header
does not have any space for either carrying a complete route or even signaling an implicit choice of a route. While
earlier versions of IP permitted source-routing, it is not used in the current Internet due to security concerns. Further-
more, routers need to both know the complete network topology as well as maintain its consistency to ensure loop
resolution. Given the dynamism of the Internet, and the relatively high communication latencies, it is practically
impossible to consistently maintain network topology information across routers spanning the globe. Backbone
routing algorithms hence have to work with incomplete topology information.

Given the above considerations, it is infeasible to achieve multi-path routing in a deterministic framework, even
with complete knowledge of network. It thus does not bode well for achieving multipath routing with incomplete
knowledge. Our viewpoint is that forsaking deterministic algorithms relaxes consistency constraints, which are
critical for their functioning. This leads us to a probabilistic routing framework.

7 Elements of an Effective RL Framework

Our approach to reachability routing exploits the inherent semantics of Markov decision processes (MDPs) as mod-
eled by reinforcement learning algorithms. RL embodies three fundamental aspects [22] of our routing context.
First, RL problems are selectional – the task involves selecting among different actions. Second, RL problems are
associative – the task involves associating actions with situations. Third, RL supports learning from delayed rewards
– reinforcement about a particular routing decision is not immediate and hence supervised learning methods are not
suitable.

Before developing the elements of an RL framework, we need to model our problem domain as an RL task. An
RL problem is defined by a set of states, a set of allowable actions at each state, rewards for transitions between
states, and a value function that describes the objective of the RL problem. In our case, the states are the routers and
an action denotes the choice of the outgoing link. Notice that state transitions here are deterministic, since a physical
link always interconnects the same two routers. This means that the stochastics of the problem primarily emerge
from any non-determinism in the router’s policy of choosing among a set of outgoing links. This is in sharp contrast
to typical RL settings where the choice of the action and the state-transition matrix are stochastic.

Rewards are supplied by the environment and the value function describes the goal imposed on the RL algorithm.
The value function typically tries to maximize or minimize an objective function. For instance, learning shortest-
cost paths by maximization can be modeled by negating link costs and setting the value function to be equal to
the cumulative path cost. To model basic reachability routing, all rewards are set to zero except for the egress link
leading to the destination, which is set to 1. To model cost-dependent reachability routing, rewards are set to reflect
the quality of the paths.

Given the modeling of an RL problem, we need strategies for a) gathering information about the environment, b)
deriving routing tables by credit assignment, and possibly c) building models of relevant aspects of the environment.
This section studies ways of configuring each of these aspects and their impact on a reachability routing framework.
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7.1 Information Gathering

Since RL algorithms employ evaluative feedback, all of them rely on sample episodes to gather information. While
data traffic routing is episodic in its behavior, the information carried by packets is not expressive enough for RL
algorithms. Data packets only contain the source host address and, in particular, do not carry any information about
the path traversed to reach the destination. Since it is not possible to determine the ingress router from the source host
address and because routers maintain routing tables only to other routers, the information carried in a data packet is
insufficient to aid routing. Furthermore data packets do not contain any fields that can carry path-cost metrics that
are required for generating reinforcement signals in cost-dependent reachability routing. This argument forms the
basis for explicit information carriers. In current networks this is achieved by routing messages. In the context of
RL algorithms, the same effect is achieved by ants.

Even with explicit information carriers, it is imperative to distinguish data traffic patterns from ant/control traffic
patterns. Simple-minded schemes like Q-routing fall into the trap of learning about only those paths traversed by
data traffic. Ideally the construction and maintenance of a routing table should be independent of the data traffic
pattern, since it is well known that the data traffic on the Internet is highly skewed in its behavior [7]. While it may
be argued that reinforcing well used paths (‘greasing’) is desirable, it does not lead to reachability routing or even
multi-path routing.

The ant algorithms described in Section 4.3 can be viewed as a mechanism to segregate control traffic from
data traffic patterns. The parameters of interest are the rate of generation of ants, the choice of their destinations,
and the routing policy used for ants. Current network routing protocols generate routing messages periodically at
a rate independent of their target environment. The signature pattern here is the information carried by the control
traffic and not the rate of control traffic. This suffices because these are deterministic algorithms and rate merely
influences the recency of the information. In contrast, RL algorithms perform iterative stochastic approximation and
the rate of ant generation implicitly affects their convergence properties [10], and hence the quality of the learned
routing tables. It is for this reason that considerable attention is devoted to tuning ant generation distributions. For
instance, RL algorithms may selectively use a higher ant generation rate to improve the quality of routes to oft-used
destinations.

The second parameter of interest is the choice of ant destinations. It may be argued that it is beneficial to use non-
uniform distributions favoring oft-used destinations. For instance, in the client-server model prevalent in the current
Internet, data traffic is inherently skewed toward servers. Intuitively, it appears that a non-uniform distribution
favoring servers will lead to better performance. However, from the perspective of reachability routing, we would
like to choose destinations that will provide the most useful reinforcement updates, which are not necessarily the oft-
used destinations. In the absence of a model of the environment, a uniform distribution policy at least assures good
exploration. Model-based RL algorithms studied later in this section have more sophisticated means of distributing
ant destinations.

The policy used to route ants affects the paths that are selectively reinforced by the RL algorithm. If the goal of
the RL algorithm is to do some form of minimal routing, it is beneficial to improve the quality of ‘good’ routes that
have already been learnt. To achieve this, the ant routing policy is the same as the policy used to route data traffic.
However, from a reachability routing perspective our goal is to discover all possible paths. Hence the policy used
to route ants is independent of the data traffic carried by the network. It is interesting to note that cost-dependent
reachability routing may be achieved by using a judicious mix of the above two routing policies. This is not as
intuitive as it appears – see Observation 2 of the next section.

7.2 Credit Assignment Strategies

In the context of an RL framework, effective credit assignment strategies rely on the expressiveness of the informa-
tion carried by ants. The central ideas behind credit assignment are determining the relative quality of a route and
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Modeling the RL Problem
- States
- Actions
- Rewards
- Value functions

Information Gathering
- Rate of ant generation
- Choice of ant destinations
- Ant routing policy

Credit Assignment Strategies
- What to reinforce

- Backward directions
- Forward directions

- How much to reinforce
- Defining update formulas

Models in RL
- For learning
- For planning

Table 1: Characteristics of an RL formulation for reachability routing.

apportioning blame. In our domain, credit assignment creates a ‘push-pull’ effect. Since the link probabilities have
to sum to one, positively reinforcing a link (push) implies negative reinforcements (pull) for other links. All the RL
algorithms studied earlier use positive reinforcement as the driver for the push-pull effect.

In the simplest form of credit assignment, ants carry information about the ingress router and path cost as
determined by the network’s cost metrics. At the destination, this information can be used to derive a reinforcement
for the link along which the ant arrived [21] (backward learning). Asymmetric link costs – e.g., in technologies like
xDSL, cable modems — can be accommodated by using the reverse link costs instead of forward link costs.

Another strategy is to reinforce the link in the forward direction by sending an ant to a destination and bouncing
it back to the source [10]. The ant carries a stack where each element of the stack describes a node, the accumulated
path cost to reach that node and the chosen outgoing interface. When the ant reaches its destination, it is turned back
to its source. During the backtracking phase, the information carried by the ant reinforces the appropriate interface
in the intermediate nodes.

The above discussion has concentrated on ‘what to reinforce,’ rather than ‘how much to reinforce.’ For cost
c accumulated by an ant, most RL algorithms generate a reinforcement update that is proportional to 1

f(c) where
f(c) is a non-decreasing function of c. Sophisticated approaches may include local models of traffic/environment
to improve the quality of the reinforcement update. Di Caro and Dorigo [10] provide an elaborate treatment of this
subject.

7.3 Models in RL Algorithms

The primary purpose of building a model is to improve the quality of reinforcement updates. For instance, in a simple
model, a router may maintain a history of past updates and rely on this experience to generate different reinforcement
signals, even when given the same cost update. This is an example where the router has a notion of a ‘reference
reward’ that is used to evaluate the current reward [22]. More sophisticated models — such as actor-critic — have
an explicit ‘critic’ module that is itself learning to be a good judge of rewards and reinforcements.
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A model-based approach can also be used for directed exploration, where the model suggests possible destina-
tions and routes for an ant. In RL literature, this is referred to as the use of a model for planning. Here, it is important
that the model track the dynamics of the environment faithfully. An inconsistent model can be worse than having no
model at all, in particular, when the environment improves to become better than the model and the model is used
for exploration. Of the RL algorithms studied in this paper, Q-routing and the algorithms of Subramanian et al. [21]
are model-free. The stigmergetic framework of [10] builds localized traffic models to guide reinforcement updates.

While a model-based approach improves the quality of reinforcement updates, it effectively violates the notion of
independent credit assignment. The main benefit of forsaking independent credit assignment is that we can maintain
context across learning episodes. However, we have to be careful to ensure that convergence of the RL algorithm
is not compromised. Table 1 summarizes the main characteristics of RL algorithms that have to be configured for a
reachability routing solution.

8 Observations

We now present a series of observations identifying research issues in the application of RL algorithms to the
reachability routing problem.

1. Many RL algorithms model their environment as either a Markov decision process (MDP) or a partially ob-
servable Markov decision process (POMDP). Both MDPs and POMDPs are too restrictive for modeling a
routing environment. For instance, to avoid network loops the choice of an outgoing link made at a node
depends on the path used to arrive at the node. This form of hidden state has been referred to as Non-Markov
hidden state [16] and can be solved with additional space complexity. However, there are other hidden state
variables (e.g., downstream congestion) that cannot be locally observed and which need to be factored into the
routing decision. While additional information qualifiers may improve the quality of the routing decision, the
dynamics of the network, the high variance of parameters of interest, and communication latencies make it
practically impossible to eliminate hidden state. Hence, any effective RL formulation of the routing problem
has to work with incomplete information.

2. Since RL algorithms work by iterative improvement, the rate of reinforcement updates and the magnitudes of
the updates affect their convergence. Consider the ‘velcro’ topologies shown in Fig. 7. Ideally, in Fig. 7 (left)
we would like a multi-path routing algorithm to distribute traffic in a 1:10 ratio between the direct A → B
path and the other paths. In Fig. 7 (right) we desire a multi-path routing algorithm that can distribute traffic in
a 2:1 ratio between the direct A → B path and the other paths.

In Subramanian et al.’s formulation of the RL algorithm [21], uniform ants are used for exploration and regular
ants are used as shortest-path finders. Since uniform ants explore all links with equal probability, in Fig. 7
(left) they will carry high cost updates for the ‘loopy’ path with high probability. The probability of carrying
the correct path cost update of 10 can be made infinitesimally close to zero. On the other hand, regular ants
will discover and converge to the path cost of 10 along the loopy part of the graph. To achieve our goal of
multi-path routing we can use a combination of uniform ants and regular ants, relying on the former to provide
the correct cost update for the direct A → B path and the latter for the loopy path. In this example the learning
problem has been effectively decomposed into two disjoint subtasks, each of which is suited for learning by a
different type of ant.

On the other hand, in Fig. 7 (right), regular ants will converge to the direct A → B path. Since uniform
ants are incapable of deriving correct cost updates for the loopy path, both uniform and regular ants reinforce
the direct A → B path. In this topology, even a mix of regular and uniform ants is incapable of achieving
multi-path routing.
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Figure 7: Two ‘velcro’ topologies that require substantially different types of information gathering mechanisms.

The AntNet algorithm [10] recognizes that loops can cause inordinately high cost updates and eliminates them
by destroying the cost update. This effectively impacts the rate of received updates. While the beneficial side-
effect of this strategy is that it reduces network traffic, its performance is no different from that of uniform
ants which carry very small updates. The drastically reduced rate of correct updates equates the reinforcement
effect to that of uniform ants.

Thus, information-gathering mechanisms in a network should take into account the rate-based nature of RL
algorithms. Even seemingly intuitive exploration mechanisms (uniform ants) can be misled.

3. The above observation leads us to the question: can an RL algorithm adapt its behavior based on its ‘posi-
tion’ within the network? This requires a) additional information qualifiers to determine the position, and
b) co-ordinating the operation of the RL algorithm executing at distinct nodes [12]. For instance, an RL al-
gorithm may provide an additional information qualifier that tracks the rate of successful explorations. This
information can be used to cluster the nodes into equivalence classes, each of which involves co-ordinated
reinforcement. In Fig. 7, the rate of successful explorations along the loopy paths can guide the nodes into
co-ordination.

4. The reader may recall that our discussion so far has focused on soft reachability. To achieve hard reachability,
each router needs to know the predecessor path of an arriving packet. As mentioned earlier, practical consid-
erations preclude data packets from carrying this information. The question here is: can we do better than soft
reachability using an RL algorithm?

For instance, given a finite number of memory slots in a data packet header, can we embed router identifiers
of sufficient resolving power that can eliminate certain categories of loops? We can pose this as a problem of
maximizing/minimizing the probability of achieving a goal function. Goal functions may be eliminating more
loops, eliminating larger/expensive loops, or exiting a loop, once entered.

5. RL algorithms typically use positive reinforcement as a driver for credit assignment. In this mode of operation,
link probabilities go down (are negatively reinforced) only when some other link receives a positive reinforce-
ment. Is it possible to have a primarily negative mode of reinforcement? This is harder than it appears.
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Figure 8: Three topologies for assessing the amount of information qualification required for negative reinforcement.

To see why, consider what negative reinforcement might mean in a reachability routing framework. While
positive reinforcement merely indicates that a destination may be reached via the outgoing link, negative
reinforcement implies that the destination definitely cannot be reached without encountering a loop. Note
that reachability routing is fundamentally a binary process — destinations are either reachable or not reach-
able. Reinforcement of reachable destinations affords significant laxity in the decision process whereas non-
reachability is necessarily definitive.

Such a drastic form of negative reinforcement constitutes instructive feedback as opposed to evaluative feed-
back, since we are informing the algorithm what the right answer should be. With evaluative feedback, shades
of (positive) reinforcement can exist which will interact to ensure the convergence of the RL algorithm. With
instructive feedback, we should be careful to ensure that convergence properties are not affected by incorrect
instructions. This means that the onus is on us to explore all alternatives before concluding that a link does
not lead to a given destination.

To create an RL algorithm that uses negative reinforcement, let us study situations where definite conclusions
can be made about the non-reachability of destinations. The simplest case is illustrated in Fig. 8 (left). Here,
if an ant originating at A and destined for B ends up at node C, C can send a negative reinforcement signal
indicating that B is not reachable via i2. The negative reinforcement signal relies on the fact that node C can
clearly determine that it is a leaf node and is not the intended destination. Hence, no loop-free path to node B
can be found via node C. At a leaf node, knowledge of the destination is sufficient to assess the availability of
a loop-free path.

This simplistic scheme is not capable of resolving paths in Fig. 8 (middle). Consider an ant originating at
node A and destined for node E. If the ant traverses the path ≺A, i1�,≺B, i4�,≺D, i5�,≺C, i3�, node
B can determine that the ant has entered a loop and send a negative reinforcement signal to node C. The
negative reinforcement signal tells node C that destination E is not reachable via link i3, which is incorrect.
The observation here is that the destination address alone is insufficient to qualify the negative reinforcement
signal.

Let us augment the information maintained by the routing algorithm to include source addresses. The routing
table thus contains entries that associate a source-destination address pair with an outgoing link, a scheme
called source-destination routing. If we employ source-destination routing on the network in Fig. 8 (middle),
B’s negative reinforcement signal effectively tells node C that link i3 (in the C to B direction) cannot be used
for a packet originating at A and destined for E, which is correct. Likewise, the reader can verify that the
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counter-clockwise loop from B to D through C can be resolved.

Before we adopt this as a solution, consider Fig. 8 (right). In this case, a negative reinforcement signal from
B indicates to C that link i3 cannot be used for a packet from A destined for E, which is incorrect, since a
packet from A arriving at C on link i7 can indeed use outgoing link i3. In this case, we need an additional
information qualifier (the incoming link) to resolve the negative reinforcement signal.

The astute reader may have observed that even this information qualification is insufficient; technically, the
entire predecessor path may be required to resolve negative reinforcement signals. The issue of interest here is,
for a given topology, is it possible to adaptively determine the ‘right’ information qualifier to resolve negative
reinforcement signals?

6. Reinforcement learning supports a notion of hierarchical modeling (e.g., see [11]) where different subnet-
works/domains have different goals (value functions). Is it possible to have an information communication
mechanism so that this hierarchical decomposition is automatic? Fundamentally, can RL be used to suggest
better organization of communication networks?

7. Is it possible to classify/qualify graphs based on the expected performance of RL algorithms? Akin to Observa-
tion 3 above, this information can then be used for specializing RL algorithms for specific routing topologies.
For instance, in the velcro topology studied earlier, the RL algorithm operating in the loopy part can determine
that uniform ants have a low probability of reaching the destination and change its behavior in only this part of
the network. Such a scheme can be combined with the previous observation to create a more fluid definition
of hierarchical decompositions.

8. The Internet’s routing model evolved from its original co-operative underpinnings to a competitive model,
owing to commercial interests. Each administrative domain uses an internal value function that are not com-
municated to their peer domains. It is of scientific interest to determine the value function employed by a
routing protocol.

Inverse reinforcement learning (IRL) [19] is a recently developed framework that can be used to address pre-
cisely this question. As the name suggests, IRL seeks to reverse-engineer the value function from a converged
policy. IRL’s assumption that the policy is optimal with respect to some metric generally holds true in the
routing domain. Operationally, IRL can be used on the temporal and spatial distributions of probe packets
traversing an unknown network – which is treated as a black box.

If IRL can be used to approximate the value function, it would enable differentiated services routing, without
requiring any changes to the existing backbone routing infrastructure. An AS can observe the end-to-end
behavior of another AS and use it to improve the performance for its own clients. From a game-theoretic
perspective, this raises interesting questions of how competition and co-operation can co-exist among agents
conducting inverse reinforcement learning.

9 Design and Implementation of a Reachability Routing Algorithm

As a demonstrator of the many ideas presented in this paper, we present the implementation and evaluation of a
multi-path reachability routing algorithm in the reinforcement learning framework. The primary design objective
here is to achieve cost-sensitive multi-path forwarding while at the same time, eliminating the entry of loops as
much as possible. We begin with the uniform ants version of the Subramanian et al. [21] routing algorithm (as it is
designed with multi-path routing in mind) and describe a series of improvements, culminating in a new model-based
reachability routing algorithm.
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Figure 9: Uniform ants tend to reinforce a path with the least amount of decision making. Such a path may be the
cheapest (left), among one of many cheapest paths (middle), or actually the costliest path (right).

Let us consider how the uniform ants algorithm behaves in the three ‘velcro’ topologies of Fig. 9. These topolo-
gies have the same underlying graph structure but differ in the costs associated with the main branch paths (the
direct path from 0 to 19, and the path through nodes 1, 7, and 13). Uniform ants explore all available interfaces
with equal probability; while this makes them naturally suitable for multi-path routing, it also creates a tendency to
reinforce paths that have the least amount of decision making. To see why, recall that the goodness of an interface
is inversely proportional to a non-decreasing function of the cost of the path along that interface. The cost is not
simply the cost of the shortest path along the interface, but is itself assessed by the ants during their exploration;
hence the routing probability for choosing a particular interface is implicitly dependent on the number of ways in
which a costly path can be encountered along the considered interface. The presence of loops along an interface
means that there are greater opportunities for costly paths to be encountered (causing the interface to be reinforced
negatively) or for the ants to loop back to their source (causing their absorption, and again, no positive reinforcement
along the interface). The basic problem can be summarized by saying that ‘interfaces that provide an inordinate
number of options involving loops will not be reinforced, even if there exist high-quality loop-free subpaths along
those interfaces.’ Mathematically, this is a race between the negative reinforcements due to many loops (and hence
absorptions), and positive reinforcements due to one (or few) short or cheap paths. As a result, the interface with the
fewer possibilities for decision making wins, irrespective of the path cost. Notice that using regular ants to prevent
this incessant multiplication of probabilities is not acceptable, as we will be giving up the multi-path forwarding
capability of uniform ants.

Ideally, we want our ants to have selective amnesia, behaving as uniform ants when it is important to have multi-
path forwarding and metamorphing into regular ants when we do not want loops overshadowing the existence of
a cheap, loop-free, path. We present a model-based approach that achieves this effect by maintaining a statistics
table independent of the routing table. The basic idea is to make routers recognize that they constitute the fulcrum
of a loop with respect to a larger path context. For instance, in Fig. 9, nodes 1, 7, and 13 form fulcrums of loops,
which should not play a role in multi-path forwarding from, say, node 0 to node 19. The statistics table keeps track,
for every router (node) and destination, the number of ants generated by it and that returned (without reaching its
intended destination). Using this statistic, for instance, node 1 can reason that all ants meant for destination 19
returned to it, when sent along the interface leading to node 2. This information can be used to reduce the scope of
multi-path forwarding, on a per-destination basis.
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Figure 10: Two velcro topologies with substantially different sizes of subgraphs rooted at the fulcrum nodes.

Notice that it would not do to accumulate the statistics for all ants passing through a given node and intended
for a given destination. To see why, consider Fig. 10 — both graphs here have fulcrums but the relative sizes of the
subgraphs situated at the fulcrums are different. In Fig. 10 (right), the loop situated at node 7 is considerably larger
than the one situated at node 15. Consider an ant destined for node 0 of Fig. 10 (right) and generated by one of the
nodes in the subgraph rooted at node 7. Let us examine the statistics collection from the viewpoint of the fulcrum
node 7. The ant has a considerable probability of looping back into the subgraph after visiting node 7, where it
will eventually reach its sender again, and be absorbed. From node 7’s point of view, through which the ant has
passed, this would count as an ant that successfully reached its destination; leading to an incorrect reinforcement
of an interface that is actually entering a loop. To circumvent this problem, it is imperative that node 7 maintain
statistics about only those ants that it generates.

The role of the statistics table is to serve as a discriminant function for the choices indicated by the routing table.
While the routing table entries reflect the reinforcement provided by the uniform ants, the statistics table effectively
allows us to discard those interfaces that had a 100% probability of leading into a loop (assuming lossless links).
We thus use the statistics table to reduce the scope of probability distribution to only those interfaces that have a
< 100% probability of a loop-free path. The reader might argue that we can go a step further and deterministically
choose the interface that has the lowest probability (from the statistics table) of leading into a loop. Besides going
against the spirit of multi-path routing, this approach spells danger in transient network conditions where larger loops
envelop the fulcrum loops, and once a packet enters the larger loop, it might never reach its intended destination.
In other words, one should be careful that improvements to reinforcement learning do not collectively constitute the
realization of a deterministic algorithm.

Two final improvements over the uniform ants algorithm of Subramanian et al. [21] are included in our imple-
mentation. The approach given in [21] reinforces all subpaths along the path taken by an ant, and this can cause
some nodes to experience greater reinforcements simply because they present interfaces to more destinations than
other nodes. Our solution to this problem is to conduct the reinforcement updates at a node only if that node was
the intended destination of the ant. Arguably this goes against classical reinforcement learning algorithms but this
consideration is echoed by many other researchers as important for practical deployment (e.g., see [10] for a differ-
ent perspective on such ‘selective’ subpath reinforcement). And finally, in Subramanian et al.’s original formulation,
the probabilities for forwarding uniform ants are apportioned among all interfaces, including the interface along
which the ant arrived. In our ‘no send-back’ implementation, the incoming interface will not be chosen as a possible
outgoing interface unless the node is a leaf node.
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Figure 11: (left) A velcro topology with cost proportion 2:1 between the left and right paths, from node 0 to node
19. (right) Results of model-based reinforcement learning, revealing the convergence to the 2:1 cost ratio.

9.1 Results

The implementation choices outlined above lead to a new model-based approach to achieving cost-sensitive reach-
ability routing. In contrast, [21] uses a model-free approach, which does not achieve multi-path routing in ‘loopy’
topologies. While [10] presents a model-based approach to routing, the model is used to improve routing decisions
by taking into account local traffic distributions at each node. This approach also does not achieve multi-path routing
in the topologies considered here.

In this section, we present simulation results from our implementation that clearly show the performance bene-
fits of our approach. We focus on topologies modeled after the velcro graph — topologies with significant amount
of decision making — for two reasons. First, these topologies embody the most difficult situations that can be en-
countered by a reachability routing algorithm. Second, it is very hard for deterministic algorithms to achieve true
multi-path routing on such topologies without encountering an combinatorial explosion in state. Finally, existing
RL approaches to multi-path routing perform poorly on these topologies, thus discriminating the benefits of our ap-
proach. It should be stressed that our approach is generalized and works for a wide variety of topologies, presenting
the greatest benefits in topologies that involve significant decision making.

Recall that our approach starts with the uniform ants algorithm of Subramanian et al. [21] and adds the three cru-
cial components of (i) the statistics table, (ii) no subpath reinforcement, and (iii) no send back. In all the simulations
presented here, we begin by apportioning the probabilities among all available interfaces, conduct the reinforcement
updates and, when the statistics have stabilized begin employing the statistics table in conjunction with the learned
routing probabilities. This switching threshold was chosen to allow stabilization of the routing table entries (as
determined by the conventional reinforcements) and facilitates a meaningful comparison.

To measure the performance of our cost-sensitive reachability routing algorithm, we coded a detailed discrete
event simulator in C, which simulates a standard point-to-point topology based network. The simulated network
is modeled as a set of nodes interconnected over point-to-point links, with an associated cost. The discrete event
simulator was derived from work done in [23], and has been used in several networking courses to model routing
algorithms.

We begin with the simple velcro topology shown in Fig. 11 (left) where the two paths from node 0 to 19 have a
2:1 cost ratio, if the loops in the left path are avoided. As Fig. 11 (right) shows, the uniform ants initially prefer the
loop-free path by a ratio of 3:1. When the statistics table is employed, this ratio gets moderated to 2:1 which more
accurately reflects the cost ratios of the two paths. For a more dramatic demonstration of the effect of the statistics
table, let us turn to the topologies shown in Fig. 12 (left).

In the first topology of Fig. 12, the cost ratio is 1:25 (in favor of the loopy path). In the second topology, the cost
ratio is 1:2.5. As the results show, both graphs demonstrate a marked change in the routing probabilities at switchover
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Figure 12: (top left) A velcro topology with cost proportion 1:25, and (top right) corresponding results for model-
based reinforcement learning. (bottom left) A topology with cost proportion 1:2.5, and (bottom right) corresponding
results.

time (0.125 on the ‘Normalized Time’ axis). The effect in Fig. 12 (top) is to further drive the probabilities away
from each other, from the uniform ants estimate of 55% versus 45% to the model-based assessment of 96% versus
4%. The latter percentages very nearly reflect the cost ratio of 1:25.

Fig. 12 (bottom) clearly demonstrates the effectiveness of our model-based approach for cost-sensitive reacha-
bility routing. Recall from our earlier discussion that the uniform ants approach chooses the higher cost non-loopy
path since it involves fewer decisions. In our model-based approach, node 0 begins by assigning a probability of 0.5
to each of the two links leading to node 19. Initially, the uniform ants approach tends to reinforce the higher cost
non-loopy path. After the statistics table goes into effect, we observe a dramatic flip in the routing probabilities,
which then converges to the ratio of the path costs.

Fig. 13 shows a topology similar to what we have considered so far, except that both the loopy and loop-free
paths have the same cost. As the results show, use of the statistics table causes both probabilities to converge to near
equal values. Fig. 14 drives home the point by introducing a third path between nodes 0 and 19 and our model-based
approach once again learns to apportion equal probability among the loopy and the middle paths. As indicated by
the costs, we obtain a 2:2:1 ratio of choosing among all three paths.

Fig. 15 describes a new topology and an experiment designed to show the importance of avoiding subpath
reinforcement. Fig. 15 (middle) shows the results with subpath reinforcement and reveal that both paths from node
5 to node 2 are reinforced near equally, even though the path employing the direct link to node 4 has a higher cost.
When subpath reinforcement is removed, as Fig. 15 (right) shows, the roundabout path gets a greater reinforcement,
as desired.

25



1


1


1

1


1


1


1


1

1


1


1


1

1


1


2


2


0


1


2
3


4


5

6


7


8
9


10


11
 12


13


14
15


16


17
 18


19


1


8


2


2


1


1


1


0.2 0.4 0.6 0.8 1
Simulation Time (Normalized)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
te

rf
ac

e 
R

ou
tin

g 
Pr

ob
ab

ili
tie

s

Loopy path
Non Loopy Path

Figure 13: (left) A velcro topology with equal cost paths from node 0 to node 19 and (right) corresponding results.
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Figure 14: (left) A velcro topology with three paths from node 0 to node 19 and (right) corresponding results.
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Figure 15: (left) A ‘dumbbell’ topology where the direct path from node 5 to node 4 is costlier than the round-
about path. (middle) Using subpath reinforcement does not capture this aspect, whereas (right) avoiding subpath
reinforcement learns the correct apportionment of probabilities.
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Figure 16: A topology with loops at many levels, the goal is to learn to route to node 19. The results of model-based
reinforcement learning are superimposed as arrows at the various nodes. Different colors indicate different choices
of starting nodes and the thickness of arrows indicate greater probabilities along those interfaces (for a given choice
of starting node).

Finally, Fig. 16 shows the operation of our algorithm on a topology where there are loops involving the fulcrums,
in addition to loops rooted at the fulcrums. This is an example where we want loop resolution at one level, while
retaining some element of the loops at another level (to achieve multi-path routing). All arrows in Fig. 16 depict
interface probabilities for routing to destination node 19, from various nodes. To understand the results, let us look at
node 1 which has two paths of equal cost (and equal hops) to the destination. Nevertheless, the steady state routing
probabilities reflect a preference to use the interface leading to node 7 over the one leading to node 13. This is
because our algorithm tends to choose paths that have higher probability of reaching the destination, factoring all the
possibilities for entering loops and absorption. As a simple recurrence calculation will show, node 7 is better than
node 13 in terms of probability of reaching 19.

10 Conclusion

In this paper, we have argued for the reinforcement learning approach to achieve reachability routing, where the goal
of the routing algorithm is to efficiently distribute traffic among all paths leading to a destination. We also presented
a new model-based RL algorithm, which achieves true cost-sensitive reachability routing, even in network topologies
that pose problems to both deterministic routing as well as classical RL formulations. The evaluation results clearly
indicate that our approach achieves true multi-path routing, with traffic distributed among the multiple paths in
inverse proportion to their costs. By helping maintain the incremental spirit of current backbone routing algorithms,
this approach has the potential to form the basis of the next generation of routing protocols, enabling a fluid and
robust backbone routing framework. Several possibilities for future work are now being investigated, many along
the ideas presented in Sec 8.
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