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Abstract 

Background: Bistable systems, i.e., systems that exhibit two stable steady states, are 
of particular interest in biology. They can implement binary cellular decision mak-
ing, e.g., in pathways for cellular differentiation and cell cycle regulation. The onset of 
cancer, prion diseases, and neurodegenerative diseases are known to be associated 
with malfunctioning bistable systems. Exploring and characterizing parameter spaces 
in bistable systems, so that they retain or lose bistability, is part of a lot of therapeutic 
research such as cancer pharmacology.

Results: We use eigenvalue sensitivity analysis and stable state separation sensitivity 
analysis to understand bistable system behaviors, and to characterize the most sensi-
tive parameters of a bistable system. While eigenvalue sensitivity analysis is an estab-
lished technique in engineering disciplines, it has not been frequently used to study 
biological systems. We demonstrate the utility of these approaches on a published 
bistable system. We also illustrate scalability and generalizability of these methods to 
larger bistable systems.

Conclusions: Eigenvalue sensitivity analysis and separation sensitivity analysis prove 
to be promising tools to define parameter design rules to make switching decisions 
between either stable steady state of a bistable system and a corresponding monosta-
ble state after bifurcation. These rules were applied to the smallest two-component 
bistable system and results were validated analytically. We showed that with multiple 
parameter settings of the same bistable system, we can design switching to a desirable 
state to retain or lose bistability when the most sensitive parameter is varied according 
to our parameter perturbation recommendations. We propose eigenvalue and stable 
state separation sensitivity analyses as a framework to evaluate large and complex 
bistable systems.

Keywords: Eigenvalue sensitivity, Sensitivity analysis, Parameter design, Steady state 
separation, Bistable switching, Distance to bifurcation

Background
Many important biological mechanisms have an underlying molecular interaction 
network which enables them to reside in potentially two stable states. Such bista-
ble networks orchestrate the two differentiated states of a cell [1, 2] or two states of a 
biochemical pathway [3, 4], depending on various external or internal factors. Cellular 
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processes governed by bistable networks include cellular differentiation, the MAPK 
signal transduction cascade, cell cycle regulation [5–7] and programmed cell death or 
apoptosis [8, 9]. Studies on such fundamental mechanisms subject to heavy regulation 
by bistable systems lead to a hypothesis that any damage to the bistable machinery can 
potentially lead to undesirable outcomes for the cell. Recent advances in cancer research 
show that the apoptotic bistable system is mutated in malignant cells [10, 11], and there 
is considerable optimism in studies related to inducing cell death to control tumor pro-
gression and to improve treatment response [12, 13]. Similarly, Alzheimer’s disease 
which is a progressive neurodegenerative disorder has an underlying bistable system 
which has switched from a normal, healthy state to an irreversible pathological state, 
with the threshold-like transition after a slow accumulation of symptoms [14, 15]. Such 
observations warrant fine-grained control over the bistable systems to design the param-
eters in such a way that the cell reaches desirable outcomes. Such accomplishments can 
help in developing therapeutic protocols, for instance, to improve efficacy of antican-
cer therapies in re-activating bistability, and hence apoptosis, in an otherwise apoptosis-
resistant cell [16–18].

Many such biological bistable systems have been mathematically modeled and our 
observation is that only a fraction of those mathematical models are investigated experi-
mentally, such as [7, 19]. In-depth analysis of mathematical models reveals insights for 
biologists to design their experiments [20]. The tools and techniques available to sys-
tems biologists to analyze bistable systems are commonly centered around bifurcation 
analysis and time course simulations. Observations drawn using bifurcation analysis 
are either qualitative or visual and they predominantly draw inferences about system 
properties [21]. Analyzing a large collection of bistable systems and their parameters 
becomes practically strenuous and this requirement demands metrics and pipelines that 
are both scalable and quantitative. In this work we provide new analysis methods for 
bistable systems to determine measures that can provide quantitative insights and help 
identify parameters to push the system to a desirable cellular decision, as in the case of 
triggering apoptosis in a tumor cell.

The term sensitivity has different interpretations depending on context and sub-dis-
cipline. One interpretation concerns with finding an input to the system at the lowest 
resolution that can create a significant change in an output; this is practiced in stud-
ies involving assays [22]. Another approach to sensitivity analysis is to determine the 
input–output relationship of a system by varying input signals or parameters as pro-
posed by Goldbeter and Koshland in their classic work [23, 24]. Such an analysis has 
various applications: as an example, a dynamic sensitivity analysis on NF-κ B pathway 
revealed that only a subset of parameters has significant influence on the system oscilla-
tions [25]. Similarly, Von Dassow et al. [26] investigated the possibility of whether insect 
segmentation is a modular process and whether each module has an intrinsic response 
to an external transient stimulus. They systematically analyzed the system’s sensitivity to 
initial conditions and observed that the topology of the segmentation network can cre-
ate multiple solutions that are robust to input fluctuations. Thus, in many applications, 
sensitivity analysis can play a role in model validation, model reduction, parameter esti-
mation, and experimental designs [25]. Comprehensive summaries of various sensitivity 
analysis techniques are discussed in [27–30].
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In this work we propose to do eigenvalue sensitivity analysis as well as steady state 
separation sensitivity analysis. Eigenvalue sensitivity analysis is an established technique 
in engineering. First- and second-order eigenvalue sensitivity have been used to identify 
stability problems and weak lines in power systems [31]. Information about sensitivity of 
dominant eigenvalues is frequently used in mechanical structural analysis for dynamic 
improvements [32, 33]. Root-locus analysis is a classical technique, based on the change 
of eigenvalues of a system w.r.t. parameters or gains, and is used to tune feedback control 
systems [34]. While these approaches are commonplace within the engineering commu-
nity, they are not too frequently applied in systems biology or to gain insights for tuning 
a bistable system or for parameter design. One such application is eigenvalue analysis on 
a cell cycle model [21] where the authors divided the temporal evolution of the system 
into different phases based on the sign of the underlying Jacobian’s eigenvalues. Also, 
there have been classical approaches in engineering disciplines to combine sensitivity 
of eigenvalues and eigenvectors w.r.t. system parameters to optimize designs for speci-
fied design criteria [35, 36]. These have been studied in engineering using approaches 
that differ based on the independent variables (state or design parameter), the sensitivity 
computation method, the set of eigenvectors considered (right or left), and the applica-
tion domain; however, application of these methods in biochemical reaction networks 
is limited. For instance, [37] computes the eigenvalue sensitivities of network edges 
based on random stochastic disturbances in the Jacobian matrix and stops short of pro-
viding insight into the critical parameters that are key to stabilizing or destabilizing the 
network.

Eigenvalue analysis can be used to detect bistability using constrained optimization 
with the determinant of the Jacobian as the objective function as in [38]. For the sensitiv-
ity analyses proposed in this work, existence of bistability is necessary without having to 
consider how they are detected. While classical input–output sensitivity analysis for a 
model could potentially measure the steady state concentration change w.r.t. change in 
parameter, such analysis is not able to provide information regarding the parameter that 
needs to be modified to influence the stability characteristics of the system. Such insight 
regarding stability based on parameter sensitivity is a contribution of our analysis.

In this work we implement two measures of sensitivity to mathematical models 
representing bistable systems. We use the sensitivity analysis principle proposed by 
Ferrel [39] to compute input and output sensitivity using fold changes. While this 
formulation has been used for input/output sensitivity, to the best of our knowledge 
this formulation has not been used frequently for eigenvalue sensitivity analysis on 
bistable systems before. To evaluate the sensitivity of each parameter, we perturb 
the parameter, and compute two sensitivity values: eigenvalue sensitivity and sta-
ble state separation sensitivity, and list out reactions associated with most sensitive 
parameters. Biologically, the sensitive reactions are the points of regulation. Sensi-
tive reactions suggest the identification of processes frequently mutated in disease 
or potentially modifiable using therapeutic drugs [40]. We demonstrate the pro-
posed quantitative analysis technique using the smallest published bistable system 
[41] as well as a larger bistable system [42]. We selected the smallest system because 
its lowest dimensionality as a bistable system helps in demonstration and validation 
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of our approach. We also illustrate that the analyses are scalable and generalizable 
and propose this approach as a framework to analyze more complex databases of 
bistable systems [42]. Furthermore, our sensitivity analysis pipeline can potentially 
enhance experimental validation of bistable mathematical models through effective 
parameter design.

Results
We introduce two sensitivity measures in this work, namely eigenvalue sensitivity and 
stable state separation sensitivity. We define eigenvalue sensitivity as the measure of the 
rate of change of stability of a bistable system w.r.t. parameter changes. We use stable 
state separation sensitivity as a measure of “goodness” of a bistable switch. Together, the 
two measures can assist in efficiently designing the system parameters to achieve desired 
state transitions.

We applied these sensitivity analyses to a published two-molecule bistable system 
[41]. A detailed description and dynamical systems analysis of that system, referred to 
as the smallest bistable system, is provided in the Additional file 1. The chemical reac-
tions, reaction rate equations, null-clines and the bifurcation diagrams for this system 
are shown in Fig. 1 and summary of eigenvalue analysis is given in Table 1.

Measurement of change in stability and goodness of a bistable switch

We quantified the change in stability of the system in Fig.  1 as parameters are varied 
from their nominal values, by computing the sensitivity w.r.t. parameter pj of the spec-
tral abscissa αi for each stable steady state i in the bistable system ( i ∈ {1, 2} ) using cen-
tered difference estimate:

Here α{}
i = max Re ���i

{} are the spectral abscissa [43], i.e. largest real part of all eigen-
values ���i , for each stable steady state i for percentage perturbations ǫj to either side, posi-
tive and negative, of the nominal parameter values p∗j  . The mathematical operator Re(z) 
denotes the real part of the complex number z. We chose the largest real part, α+

i  and 
α−
i  , for parameter perturbations to either side of the nominal value because it princi-

pally governs the stability characteristics of a given stable steady state. For simplicity, we 
use the term “eigenvalue sensitivity” to mean spectral abscissa sensitivity and “maximum 
eigenvalue” to mean the spectral abscissa.

(1)m̂ij =

(

α+
i − α−

i

2ǫjp
∗
j

)

p∗j

α∗
i

Fig. 1 The smallest bistable chemical system proposed by Wilhelm [41]. In this work, we applied eigenvalue 
and steady state separation sensitivity analyses on this system. (a) Chemical reactions where species 
concentrations [X] and [Y] are considered to be the two states of the system. (b) Reaction rate equations 
where x and y are the time-dependent states of the system. The reaction rate constants k1 , k2 , k3 , and k4 are 
non-dimensional. (c) x- and y-nullclines of the system, showing the two stable steady states (blue markers) 
and saddle node (red marker) at the points of intersection. (d) One-parameter bifurcation diagrams (or 
S-curves) corresponding to parameters k1 through k4 . The width of the S-curve for each parameter represents 
the bistable region. (See Additional file 1 for more details of the system)

(See figure on next page.)
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The eigenvalue sensitivity measure m̂ij is dimensionless, signed, and represents a 
polynomial exponent of the functional relationship between the maximum eigenvalue 
and parameters. The sign of m̂ij suggests whether the parameter stabilizes (positive) or 

Fig. 1 (See legend on previous page.)
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destabilizes (negative) the stable state when this parameter is increased and its magni-
tude suggests the influence this parameter has over the maximum eigenvalue. The proce-
dure is summarized in the flowchart in Fig. 2. See the methods section for more details.

Characteristics of a good switch have been discussed previously [44]. It is well under-
stood that a bistable switch becomes more immune to noise or fluctuations when the 
two stable states are maximally separated. We used the Euclidean distance �SS to meas-
ure the separation between two stable steady states, SS1 and SS2 . Sensitivity of stable 
state separation �SS with respect to variation in parameters kj was computed as:

Table 1 Summary of eigenvalue analysis on the simplest bistable system [41]

For each steady state solution, the corresponding Jacobian, eigenvalues, and stability are listed. There are two stable steady 
states, which make this system bistable

Solution 1 Solution 2 Solution 3

Steady States (x, y) (0,0) (2, 0.5) (6, 4.5)

Jacobian J
(

−1.5 16

0 − 8

) (

−6 14

4 − 8

) (

−18 10

12 − 8

)

Eigenvalues (�1, �2) (−1.5,−8) (−14.5, 0.54) (−25.04,−0.95)

Stability Property Stable Saddle node Stable

Fig. 2 Eigenvalue sensitivity analysis flowchart. A mass-action kinetics model of a bistable system 
is perturbed in both positive and negative directions of a nominal parameter setting. Using the 
centered-difference method, the rate of change in eigenvalue w.r.t change in parameter is computed. The 
above workflow is repeated for all parameters one at a time. Based on the eigenvalue sensitivity, parameters 
can be clustered automatically. The clusters corresponding to the higher eigenvalue sensitivities are prime 
candidates to modify the stability characteristics of the system via parameter design
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Stable state separation sensitivity ŝj (called separation sensitivity hereafter for brevity) is 
signed and dimensionless, just like eigenvalue sensitivity. However, separation sensitivity 
is different from eigenvalue sensitivity in that the former is a property of the entire net-
work while the latter is applicable only to a given stable state.

Quantitative analysis of parameter influence on stability and goodness of a switch

The results for the application of eigenvalue sensitivity analysis to the smallest bistable 
system are shown in Fig.  3. This figure shows the eigenvalue sensitivity of both stable 
states for all parameters at the nominal parameter setting of the model.

The eigenvalue sensitivity for SS1 does not change except w.r.t k4 . This finding from our 
analysis is insightful to design parameters in the system and can be validated as follows 
for a simple system such as this. The Jacobian J for SS1 is already in echelon form (see 
Additional file  1) which suggests that the diagonal elements J11 and J22 are the eigen-
values. Among these eigenvalues, J11 is maximum because k4 < k1 (refer the nominal 
parameter values in the Additional file 1). So, the maximum eigenvalue is only affected 
by k4 and linearly so, as correctly measured by the eigenvalue sensitivity shown by Fig. 3a 
(if the eigenvalue sensitivity is unity, then the maximum eigenvalue is a first degree poly-
nomial function of the given parameter). However, this linear dependence is not evident 
from inspecting the bifurcation plot (or s-curve) shown in Fig. 1d. This observation sug-
gests that eigenvalue sensitivity can potentially expose stability behavior that may not be 
observable from the s-curve. Also, for SS1 , the analysis points to k4 as the only means to 
“change” the system to make a transition to monostable region because the other param-
eters do not govern the dominant eigenvalue of the system.

(2)ŝj =
(�SS+ −�SS−)

2ǫp∗j

p∗j

�SS∗

Fig. 3 Summary of sensitivity analyses for the smallest bistable system (a) Eigenvalue sensitivity m̂ for 
stable state 1 and 2 ( SS1 , SS2 ), with parameter perturbations for k1 through k4 . For SS1 (0, 0) the maximum 
eigenvalue is influenced only by k4 ; k1 , k2 , and k3 do not influence it (shown by the zero eigenvalue sensitivity). 
For SS2 (6, 4.5), k1 and k2 perturbations in the positive direction stabilize it while a similar change in k3 and 
k4 destabilizes it. (b) Sensitivity of separation between stable steady states for the system. Parameter k1 
has minimal effect on the goodness of this switch. When perturbed in the positive direction, parameter 
k2 increases the separation between SS1 and SS2 . Parameters k3 and k4 both need to be perturbed in the 
negative direction to increase separation, k3 having the largest influence. For a simple system such as the one 
investigated here, these trends are visually evident in the one-parameter bifurcation curves in Fig. 1d
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The results of separation sensitivity are shown in Fig. 3b. The insights from our quanti-
tative analysis discussed below can be verified visually from the one-parameter bifurca-
tion plots (Fig. 1d) for a simple system such as the one investigated here:

• k1 does not significantly control the separation of stable states of this switch. Among 
all the s-curves, the vertical width of the red curve corresponding to k1 is the least.

• The separation between SS1 and SS2 increases when changes in k2 are positive. When 
the separation between stable states increases, the switch becomes more immune to 
noise and hence the goodness of the switch improves. The green s-curve (for k2 ) has 
a net positive slope indicating increasing stable state separation as k2 is increased.

• The separation sensitivity magnitude is the largest for k3 which indicates that it is the 
parameter that most controls the noise immunity of the network; however we know 
from Fig. 3 that k3 needs to be decreased to make the system more robust and stable. 
The magenta s-curve for k3 is a laterally inverted “S” and has a large negative slope.

• Parameter k4 behaves similar to k3 except that its influence on robustness is relatively 
less. The blue s-curve for k4 is also a laterally inverted “S” with negative slope.

Automatic clustering of parameters based on sensitivities

The sign of eigenvalue and separation sensitivity measures naturally clusters the param-
eters into meaningful sets. For instance, when these measures for the minimal bistable 
system are plotted in a sensitivity space as shown in Fig. 4, there is a positive correlation 

Fig. 4 Eigenvalue and separation sensitivity plotted in a sensitivity space. There is positive correlation 
between the two sensitivities. The clusters {k1, k2} and {k3, k4} correspond respectively to S-curve and laterally 
inverted S-curve
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between the two sensitivities and the parameters are clustered into two sets in the first 
and the third quadrants.

Specifically, eigenvalue sensitivity analysis on all parameters for a stable state automat-
ically yields clusters of parameters that stabilize and de-stabilize the given stable state. 
The cluster {k1, k2} (and therefore, reactions 1 and 2) of parameters with positive eigen-
value sensitivity ( m̂ij ) tend to stabilize SS2 when increased. This means that when {k1, k2} 
are perturbed in the positive direction at SS2, this stable state of the bistable switch is 
further stabilized; however when they are perturbed in the negative direction this sta-
ble state is destabilized, ultimately resulting in a monostable system after the bifurca-
tion point. The above behavior is the opposite for the cluster {k3, k4} which has negative 
values of m̂ij . A similar argument about parameter perturbation directions can be made 
based on the sign of separation sensitivity, except that this measure applies to the bista-
ble switch rather than to a given stable state.

The above information is summarized in Table  2. The trends for parameter clusters 
based on both sensitivities are similar because in effect these are clusters of “S-” and 
laterally-inverted “S” curves shown in Fig. 1d. The eigenvalue sensitivity measure table is 
based on the interpretation described later in Fig. 11 (see Methods section).

When a system with an intractably large number of parameters needs to be changed to 
make desirable state transitions, it can be hard to visually inspect the parameter bifurca-
tion diagrams and make qualitative decisions. In such cases, parameter clustering based 
on quantitative sensitivity analyses can be valuable, as discussed in the next subsection.

Dominant parameter cluster can be used to switch efficiently

By considering both eigenvalue sensitivity and separation sensitivity, we can identify the 
parameters that should be modified to achieve a particular switching goal. The different 
parameter design rules were summarized in Table 2. The rules can be used for modifying 
the stability of a given stable state and separation of the two stable states for desirable 
outcomes. The relevance of parameter design for systems biology applications has been 
discussed by Murphy et al. [45].

Table 2 Summary of parameter perturbation rules

Enumeration of parameter perturbation directions to: (i) stabilize or de-stabilize a given stable state (based on the sign 
of m̂ij ) and (ii) increase or decrease the separation between stable states (based on the sign of ŝj ). Parameter clusters 
corresponding to the stated conditions are also listed. Note that the trends for clusters based on both sensitivities are 
similar. The symbol ↑ indicates an increase in the stability property listed for that column and ↓ indicates the decrease 
thereof

Condition Stabilize  De-stabilize Parameter cluster 
for SS2

m̂ij < 0 Decrease k ↓ Increase k ↑ {k3, k4}

m̂ij > 0 Increase k ↑ Decrease k ↓ {k1, k2}

Condition Increase Decrease Parameter cluster
separation separation for switch

ŝj < 0 Decrease k ↓ Increase k ↑ {k3, k4}

ŝj > 0 Increase k ↑ Decrease k ↓ {k1, k2}
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To demonstrate the benefits of the parameter design rules, we considered the scenario 
of switching from SS2 in the bistable system to a monostable state after bifurcation. The 
motivation was to answer the following questions:

• What is the lowest parameter perturbation that can trigger the system state to switch 
from bistable to monostable system?

• Which parameter cluster does this lowest perturbation correspond to?
• Is there a correlation between most sensitive parameter cluster and the cluster that 

causes switching?
• How does the behavior of the deterministic model compare with that of a population 

of models, with regard to switching?

Validation of sensitivity analyses using a distance to “cliff” measure

A bistable system switches from the nominal ON state (in the bistable region) to a mon-
ostable state when the nominal parameter setting is progressively perturbed to the bifur-
cation point and eventually collapses into a monostable region. In order to validate our 
sensitivity analyses results - to evaluate which parameter pushes the system away from 
bistable region with the minimum perturbation - we defined a measure, distance to the 
cliff. This measures the distance of a perturbed model to the bifurcation point along the 
bifurcation curve. This measure was then used to determine the parameter(s) that will 
trigger a transition to the monostable state with the lowest perturbation.

Fig. 5 Arc length measure in parameter-state space. The parameter-state space consists of the perturbed 
parameter (one at a time) and the concentrations of the participating species. The bifurcation curve shown is 
in this space. Initial ON state corresponds to the nominal system model ( s = 0 ). After a non-zero perturbation 
along the k−axis, the system moves by an arc length s = D . When further perturbed, the system is eventually 
pushed to the bifurcation point ( s = soff  ) where it transitions to a monostable system at the bifurcation point 
labeled OFF
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To compare the system responses for various parameter perturbations, in our simula-
tions we used the arc length (s) in parameter-state space to define the distance to the 
cliff. With reference to Fig. 5, consider a model beginning in the ON state (where s = 0 ) 
which undergoes a perturbation in a given parameter, say k1 , that results in a new steady 
state (where s = D ). The arc length s is measured along the curve in parameter-state 
space that the system follows as the parameter k1 is perturbed until it arrives at the bifur-
cation point, labeled OFF in Fig. 5, where s = soff .

The system switches to a monostable state at the bifurcation point and hence results in 
a switching of the stable state to the monostable region. In other words, the maximum 
value of s, smax , before the system transitions to monostable region can be interpreted 
as a distance from the nominal model to the cliff (or bifurcation point). If the distance 
smax is known for a particular parameter, then the percent arc length is computed as 
sr = s/smax . In this case, the normalized distance to the cliff is computed as sc = 1− sr . 
(See the Methods section for details.)

Fig. 6 Sensitivity analyses agree with arc length measure in predicting switching. Relationship between 
eigenvalue sensitivity, separation sensitivity, and percent arc length to parameter perturbation. (Top) Arc 
length ratio is a definitive measure of when switching occurs ( s/smax = 1 ). This condition is first attained for 
perturbations ≈ 25% for {k1, k2} . For {k3, k4} this transition occurs after further perturbation of ≈ 30− 35% . 
Therefore, {k1, k2} is dominant parameter cluster in that lesser amount of perturbations in these parameters 
can lead to switching. (Middle) The vertical ordering of eigenvalue sensitivity curves indicates that the 
clustering observed in the arc length plot is reproduced.(Below) The trend seen with eigenvalue sensitivity is 
repeated with separation sensitivity results as well. This shows that the sensitivity analyses can be used as a 
proxy to predict which parameters will cause switching first when perturbed by the same amounts
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For deterministic simulations of a single cell modeled as the smallest bistable system, 
we tracked eigenvalue sensitivity, separation sensitivity, and percent arc length as the 
parameters are all perturbed by similar percent changes (Fig. 6).

In all three plots in Fig. 6, the same parameters reached the monostable region with 
lower perturbation. Parameters k1 , k2 switch with lower percent change while k3 , k4 
switch much later with relatively higher perturbations. Consistency of this clustering 
pattern shows that eigenvalue sensitivity and separation sensitivity measures are able to 
predict which parameters will cause the transition to the monostable region. In other 
words, they indicate quantitatively “how bistable” the system is. This verifies that eigen-
value and separation sensitivity analyses can be used as proxies to determine the domi-
nant parameter cluster that dictate switching.

Dominant parameter cluster for a population and a single model correlate

We validated that the dominant parameter cluster at the population level correlates to 
that from a single model presented above. We used the Monte Carlo method to deter-
mine the output distribution of percent arc length (see Methods section for details) for 
an input distribution of parameter values sampled from a log-normal distribution. This 
was performed for a population of 20, 000 models. Such parameterization has been used 
in the literature [42, 46] and ensures positive values for reaction rates. The mean and 

Fig. 7 Arc length and parameter perturbation at the population level. Maximum arc length ratio vs. 
percentage change in parameter value for a population of 20, 000 models. Each setting for a given parameter 
draws from a log-normal distribution with 3σ equal to the percent change. This generates an output 
distribution of arc length ratios, the maximum of which is considered. The parameter cluster {k1, k2} causes 
transition to the monostable state the earliest when compared to {k3, k4} . Lower panel shows a zoomed-in 
view of the upper panel capturing the instances where perturbation in each parameter achieves bifurcation
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three standard deviations ( 3σ ) of the input distribution were chosen to be the nomi-
nal parameter value and the percentage perturbation, respectively. Such systemic noise 
in reaction rate constants captures cell-to-cell variations [47]. The arc length percent 
measures were computed using deterministic simulation of the system for each sampled 
parameter setting. The maximum value of the output distribution (arc length percent 
distribution) that resulted from the perturbation for a given parameter was used to rep-
resent the proximity to the bifurcation point at that setting. This technique was repeated 
for multiple amounts of perturbation and the results are shown in Fig. 7. The parameter 
cluster {k1, k2} first cause the population to switch to the bifurcation point at a perturba-
tion value ≈ 27% , indicating that this is the dominant parameter cluster. At the popula-
tion level, the parameter set {k3, k4} also transition the system to the bifurcation point 
soon after but at a larger perturbation value ≈ 28% . This shows promise that the eigen-
value and separation sensitivity analyses can potentially predict the dominant parameter 
cluster for a population of cells. (Eigenvalue and separation sensitivity analyses at the 
population level are not included in this work).

Local sensitivity analysis is consistent with global trend within bistable region

The analysis thus far has only utilized a numerical estimate of eigenvalue sensitivity at 
the nominal parameter setting. For the smallest bistable system, we computed the eigen-
value sensitivity measure for the range of parameter settings spanning the width of the 
bifurcation curves that were shown in Fig. 1d, representing the global behavior of this 
measure. For a two-component system, this is computationally tractable, but a larger 
system may need significant computational power to accomplish the same task (because 
each parameter setting requires the solution of three eigenvalue problems). In Fig. 8, we 
have shown results of the local vs. global behavior of eigenvalue sensitivity.

For this system, the maximum eigenvalue ( �max ) at any given steady state was a contin-
uous function of the parameter, the curves with red markers in Fig. 8, which made it pos-
sible to compute a derivative during local sensitivity computation. A technique which is 
commonly used to tune engineering systems is the root-locus method [34] which exam-
ines the trajectories of the roots or eigenvalues of a system when a particular parameter 
of interest is varied. The red curves in this figure incorporate the same information as a 
root-locus plot and the eigenvalue sensitivity represents the derivative of this relation-
ship between eigenvalue and system parameter. The cyan line represents the nominal 
parameter setting ( knominal).

The curves with blue markers in Fig. 8 are the eigenvalue sensitivity ( m̂ ) plots. These 
curves cover the width of the bifurcation curve for each parameter. The m̂ values in these 
plots represent the stability change in the system within the bistable region.

At steady state 1 ( SS1 ), �max (red curve with triangular markers) is constant for per-
turbation in k1 , k2 , or k3 ; therefore, the eigenvalue sensitivity (blue curve with triangular 
markers) is zero (Fig. 8a-c). At the same time, �max variation w.r.t. k4 is a linear function 
resulting in unity eigenvalue sensitivity (Fig. 8d). These global trends are correlated with 
the local sensitivity analysis presented earlier in Fig. 3a.
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At steady state 2 ( SS2 ), �max (red curve with square markers) is not a linear function 
of any of the parameters, so eigenvalue sensitivity m̂ (blue curve with square markers) 
is not constant throughout the bistable region. In this case, the local sensitivity analy-
sis at knominal (Fig. 3a) is only a linear approximation of the non-linear global trend in 
the bistable region; however, the sign of m̂ is accurate and reliable for making switching 
decisions (the design rules of Table 2 are consistent with the global trend). Eigenvalue 
sensitivity has positive values for k1 and k2 , and is negative for k3 and k4.

Fig. 8 Comparison of local eigenvalue sensitivity analysis and its global trend within the bistable region. The 
smallest bistable system’s maximum eigenvalue (red markers) and eigenvalue sensitivity (blue markers) are 
plotted as a function of each system parameter (reaction rate constants k1 through k4 ) taken one at a time 
while others are retained at their nominal values. The parameter values span the system’s bistable region. The 
vertical cyan line shows the nominal parameter setting ( knominal ) and the local eigenvalue sensitivity analysis 
at this setting was shown earlier in Fig. 3a. The design rules presented earlier in Table 2, which was based on 
the local sensitivity analysis, are verified here to correlate with the global sensitivity trend: (a) and (b) show 
{k1, k2} stabilize the system (slope of the eigenvalue sensitivity curve decreased) as the parameter value is 
increased from the nominal setting. (c) and (d): {k3, k4} are de-stabilizing as the parameter value is increased 
from the nominal setting
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Fig. 9 Demonstrating eigenvalue sensitivity and separation sensitivity analyses on a 12-parameter bistable 
system (a) Reactions for a larger bistable system from [42]. See Additional file 1 for the system of ODEs and 
parameter values for this system. (b) The plot shows eigenvalue sensitivity and separation sensitivity for the 
12 parameters. Low values of separation sensitivity across all parameters indicate a good bistable switch

Fig. 10 Bezout Number vs. Run time of different bistable system models where sensitivity analyses were 
implemented. The x-axis shows Bezout number [48] which is the number of solutions of the system 
computed as the product of the polynomial orders of the system (for example, if we were to determine 
the solution for the intersection of two circles, the Bezout number is 4 which is the product of maximum 
degrees of two quadratic equations). Note that both axes are in log scale. Y-axis is the run time in minutes to 
determine the solution of the model
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Scalability of eigenvalue sensitivity and separation sensitivity analyses

We applied the proposed sensitivity analyses to a few larger (number of species 
greater than five and number of reactions greater than six) bistable systems from a 
library [42] of such systems with mass-action kinetics. An example of such a bista-
ble system has 6 ODEs consisting of 12 parameters. Our sensitivity analyses results 
in Fig. 9 show that the bistable system has constant separation between stable states 
because the separation sensitivity across all parameters cluster close to zero, indi-
cating that the switch is robust. Additionally, the eigenvalue sensitivity in that figure 
shows that the most sensitive parameters are k6 and k10 which are reaction constants 
belonging to a positive feedback loop consisting of autocatalysis and free-radical com-
bination reactions. This application illustrates that our methodology can be applied to 
a larger class of bistable systems with ODEs using mass-action kinetics. In our soft-
ware pipeline, the most computationally expensive steps to analyze these systems are 
homotopy continuation (used to compute steady states by solving a linear system of 
equations shown in line numbers 8 and 20 in Algorithm. 1) and eigenvalue analysis 
(shown in line numbers 16 and 28 in Algorithm. 1). We show in Fig. 10 how the com-
putation time increases with respect to the size of the ODE system measured in terms 
of the Bezout number [48]. In this section we have shown a few illustrations of sys-
tems that can be analyzed using these sensitivity methods; a complete description of 
such systems is beyond the scope of this work.

Discussion
Systems biologists have relied on classic approaches such as bifurcation and phase plane 
analysis to analyze bistable systems. While those methods convey qualitative informa-
tion about a system, eigenvalue sensitivity and stable state separation sensitivity analyses 
that we presented in this work are scalable quantitative techniques to provide insights 
regarding a system’s parameter dependence.

Eigenvalue sensitivity is the rate at which parameter perturbation affects stability. Sta-
ble state separation sensitivity is the change in Euclidean distance between stable states 
as parameters are changed; it represents the sensitivity of noise immunity. Separation 
sensitivity looks at the whole system while eigenvalue sensitivity is specific to each stable 
state. The signs of these measures indicate stabilizing or destabilizing trends depend-
ing on the direction of parameter change. Both these measures are dimensionless and, 
therefore, do not require the system to be non-dimensionalized.

Sensitivity analyses can help in designing a bistable switch to make desirable state tran-
sitions as shown in Fig. 6. Furthermore, sensitivity analyses can expose stability behav-
ior that may not be observable from the bifurcation plots. For example, it is not evident 
from the bifurcation plots (Fig. 1d) that perturbations in k1 , k2 , k3 do not affect the sta-
bility of the OFF state (or the low steady state). Separation sensitivity by itself provides 
limited information; however, together with eigenvalue sensitivity, it helps in identifying 
dominant parameters that govern the stability of the bistable system as shown in Fig. 6. 
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This allows to control the system by optimally ‘dialing in’ the dominant parameters. We 
demonstrated such control of a switch using sensitivity measures on the simplest pub-
lished bistable system.

Our goal with this work was to propose eigenvalue sensitivity analysis and separation 
sensitivity analysis as a framework to evaluate large and complex bistable systems. Dem-
onstration using the two-component tractable example validates the analyses because 
parameter design of a minimal bistable system can be done intuitively by manual 
inspection.

When parameters of such large-scale systems need to be modified to make desirable 
state transitions, it can be hard to visually inspect the parameter bifurcation diagrams 
and make qualitative decisions. In such cases, parameter clustering based on quantita-
tive sensitivity analyses presented in this work can be valuable. Eigenvalue and separa-
tion sensitivity are signed measures and we showed that a clustering of parameters using 
the sign of these measures provides design rules for bistable systems.

Application of these analyses to large-scale and complex bistable systems is valuable 
but not without challenges. The principal computational modules for techniques dis-
cussed here are root-finding for algebraic systems (to compute steady-states), solution of 
eigenvalue problems, and gradient computation (to compute sensitivities). In this work, 
we have used homotopy continuation for root-finding [48] which has also been demon-
strated for larger-scale algebraic systems. Solutions for steady states and the eigenvalue 
problem need to be determined three times for each parameter (one for the nominal 
setting and one each for the bidirectional perturbations), which can be computation-
ally intensive. We recommend using parallel computing as discussed in [42]. Sensitivity 
analysis relies on finite difference methods that may introduce numerical noise in the 
gradient estimates; however optimal stepping algorithms [49] can be used to improve 
gradient accuracy for large-scale systems.

In models where the system has some components which are not reducible to a Jac-
obian (e.g., signaling models with algebraic relationships between species, see models 
from the DOCQS database [50]) more sophisticated tools such as homotopy continua-
tion will be needed to map such systems to simpler systems for which we can determine 
a Jacobian and conduct the analysis as done here. This is beyond the scope of this paper.

In our analysis of the simplest bistable system, it became evident that it is important 
to consider the proximity of a nominal parameter setting to the edges of the bistable 
region in the bifurcation plots. We hypothesize that it is possible to measure this based 
on the eigenvalue sensitivity measure and nominal parameter set. For instance, using the 
first-order sensitivity and the maximum eigenvalue at the nominal parameter setting, we 
could iteratively estimate the parameter value at which bistability will be lost ( �max ≈ 0 ). 
This new measure could then tell us how close the nominal parameter setting is to the 
“cliff” of bistable bifurcation curve. Doing this on both sides of the parameter range, we 
can estimate the parameter range for bistability. This could also potentially be a measure 
for dialing in the optimal parameter set.



Page 18 of 24Sreedharan et al. BMC Bioinformatics          (2023) 24:136 

Conclusion
Many mechanisms in biology are governed by underlying bistable systems. This warrants 
designing bistable systems to regulate or synthesize such mechanisms. In this work, we 
propose eigenvalue sensitivity analysis as a metric which can determine the most sensi-
tive parameter of a bistable system. Eigenvalue sensitivity is computed as rate of change 
of eigenvalues with respect to change in parameter. The most sensitive parameter(s) can 
take the bistable system to a desirable state with minimal amount of perturbation. Simi-
larly we introduce stable state separation sensitivity analysis to determine how far apart 
the stable states are. Both these measures together dictate how easy it is to regulate a 
bistable system.

We applied our analysis to the smallest bistable system [41] and found two parameters 
having more sensitivity in regulating stable states of this system. We demonstrated that 
these parameters are indeed most easily modified in comparison to other parameters, 
to switch from a bistable steady state to a monostable steady state. Many therapeutic 
researches such as Cancer Pharmacology consider alternatives to design bistable sys-
tems to retain or to lose bistability.

Methods
Dynamical system models for chemical reactions networks

The dynamics of a chemical reaction network are described using a set of reaction rate 
equations:

where x ∈ R
n+ represents the species concentrations and p ∈ R

m+ is a system param-
eter vector which is usually constant for a given model. For a bistable network, there are 
three steady states xss for the system in Eq. 3, of which two are stable and one is a saddle 
node [51]. To determine stability, the Jacobian matrix ( A ∈ R

n×n ) is computed by lin-
earizing the system about each xss:

When the eigenvalues of A all have negative real parts, then the steady state is stable. 
If a system has at least two stable steady states, then the system is bistable and has the 
potential to behave like a biological switch. The maximum eigenvalue (spectral abscissa) 
represents how close the system is to instability. Such eigenvalue based classification is 
a basic step in understanding the stability of a system. We use homotopy continuation 
method using the HOMPACK package [48] to find steady state solutions of the system, 
and Maxima [52] to determine eigenvalues and stability of the corresponding steady 
state solutions. Subsequently, our algorithm generates the eigenvalue sensitivity vector, 
for each stable state, as described below.

(3)ẋ = f (x,p, t), x(0) = x0

(4)
�ẋ = A�x
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Algorithm for eigenvalue sensitivity analysis

The above analysis is carried out for two perturbations of a given parameter p∗j ∈ p , one 
to each side of the nominal parameter value using ǫj , a percentage perturbation scalar: 
p∗j (1− ǫj) and p∗j (1+ ǫj) . The eigenvalue sensitivity measure is computed, m̂ij , using the 
centered difference formula:

where α+
i  for the positive perturbation of the parameter about its nominal value is 

defined as:

The vector ���i contains all the eigenvalues for steady state i and the mathematical opera-
tor Re(z) denotes the real part of the complex number z. The maximum eigenvalue for 
the negative perturbation α−

i  is defined similarly.
The procedure is repeated for all parameters of interest, one parameter at a time in a 

mutually exclusive manner (similar to one-parameter bifurcation analysis). The sensitiv-
ity values are clustered and ranked to determine the destabilizing parameter set and the 
dominant parameter within this set. The eigenvalue sensitivity measure m̂ represents the 
polynomial order of the functional relationship between eigenvalue and given param-
eter, it is dimensionless, and signed. During post processing, the eigenvalue sensitivity 
vectors thus obtained can be used to determine (i) the cluster of parameters that de-
stabilize the system and (ii) the most critical parameter that dictates the stability of the 
model.

The purpose of the computational method below is to generate a vector of eigenvalue 
sensitivities for each mathematical model when parameters are perturbed sequentially. 
Input into this algorithm (see below) is a bistable model with a specific set of parameter 
values called the nominal parameter set. The output is a vector of eigenvalue sensitivity 
with respect to each parameter of the system, for each stable state of the system. Eigen-
value sensitivity measures how much the model’s stability is influenced by perturbation 
in each of the selected parameters.

We measure the rate at which a particular parameter perturbation can “push” a bista-
ble system into monostable region. Among all the parameters, we save the most sensitive 
parameter with the highest rate of change of eigenvalue (i.e. with maximum eigenvalue 
across both stable steady states). We compare eigenvalues corresponding to parameter 
changes in positive direction (i.e. right of nominal parameter value) with those in the 
negative direction (i.e. left of nominal parameter value). In each direction there are two 
stable steady states. So we ensure that we compared eigenvalues corresponding to the 
same stable steady states in either direction. This was to make sure that we are monitor-
ing eigenvalues for systems that are in the vicinity of each other. We use Euclidean dis-
tance between steady states as a similarity measure to perform this check.

(5)m̂ij =

(

α+
i − α−

i

2ǫjp
∗
j

)

p∗j

α∗

(6)α+
i = max

[

Re
(

���i

)]+
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In Algorithm  1, the eigenvalue sensitivity metric can be described as a generic 
function:

Equation 5 is a special case of Eq. 7 where the eigenvalue sensitivity is estimated using a 
centered difference method.

(7)mij = f (α+
i ,α

−
i , pj)
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Eigenvalue sensitivity measure

The eigenvalue sensitivity measure mij between the i-th maximum eigenvalue ( αi ), and the 
j-th parameter ( pj ), described in the algorithm section above, was analytically defined at a 
nominal operating point (α∗

i , p
∗
j ) as:

Equation 8 may be re-written as:

One advantage of formulating the sensitivity measure in this manner is that it is dimen-
sionless. This allows us to directly compare eigenvalue sensitivities across multiple 
parameters, despite their fundamentally different units and orders of magnitude. One 
requirement for this measure is that the nominal maximum eigenvalue α∗

i  should be 
non-zero. This requirement is satisfied if we consider systems that are bistable to begin 
with. Such a measure for input–output sensitivity was proposed by Ferrell and Ha [39].

Proposition 1 If the nominal maximum eigenvalue α∗
i  is stable, then mij > 0 implies 

that a positive parameter perturbation �pj stabilizes the maximum eigenvalue and a 
negative parameter perturbation �pj destabilizes the maximum eigenvalue.

Explanation. Suppose we start our analysis with a stable nominal point (i.e. α∗
i < 0 ). 

Given that pj > 0 ∀j , it follows from Eq. 8 that if mij > 0 , then sign( ∂αi
∂pj

) = sign(α∗
i ) = −1.

Alternatively, the eigensensitivity mij may be interpreted as a polynomial exponent 
based on Eq. 9:

where C is a constant, or,

This is equivalent to estimating the slope of the log-log plot. The slope indicates the pol-
ynomial exponent.

In Eqs. 10–11, if pj > 0 , then (pj)mij > 0 . Therefore, from Eq. 10, if our nominal point 
is stable, i.e. α∗

i < 0 , then C < 0 . From Eq. 11, we can therefore infer that when mij < 0 , 
∂αi
∂pj

> 0 , or destabilizing. Figure 11 illustrates the inverse relationship between these two 

quantities and enumerates all the possibilities to stabilize or destabilize a system using a 
parameter given the eigenvalue sensitivity.

Finding output distribution of percent arc-length measure

In this section, we describe the domain of input and output for the Monte Carlo method 
used to determine the dominant parameter cluster for a population of models. The per-
cent arc-length measure sr (introduced in the Results section) was described as:

(8)mij =
∂αi

∂pj

p∗j

α∗
i

(9)mij =

[

∂ ln(αi)

∂ ln(pj)

]

(α∗i ,p
∗
j )

(10)αi = C(pj)
mij

(11)
∂αi

∂pj
= mijC(pj)

mij−1
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where s is the arc-length along the bifurcation curve in parameter-state space from a 
given stable state on the nominal model to the same stable state on the perturbed model 
(i.e. model with the perturbed parameter setting). The distance to cliff (or bifurcation 
point) from the nominal model is represented by smax . The normalized distance to the 
cliff sc from the perturbed model is given by:

From this formulation, it follows that for the nominal model sr = 0 (since s = 0 ) and 
sc = 1 . Similarly, at the bifurcation point sr = 1 because s = smax , and sc = 0.

Consider a perturbation introduced in a given parameter pj +�pj for a population 
of models, all models beginning at the nominal parameter setting pnomj  in the ON state 
and perturbations for pj drawn from a log-normal distribution log(pj) ∼ N (µ, σ 2) . If the 
maximum perturbation introduced in pj is �pmax

j  , then µ = pnomj  and 3σ = �pmax
j  . The 

minimum value (among the population of models) of normalized distance, min(sc) , to 
the cliff in the resulting output distribution is the distance of the maximally perturbed 
model to the bifurcation point. The above procedure is repeated for progressively 
increasing values of �pmax

j  at equal steps and for all parameters. The parameter that 
achieved min(sc) = 0 with the lowest perturbation value �pmax

j  was ranked the highest.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05206-2.

Additional file 1. Bistable system models. This supplementary file includes mathematical as well as modeling details 
for the two bistable systems presented in this paper: (1) Chemical reaction network and system of ODE for the small-
est bistable system (2) Eigenvalue analysis for the smallest bistable system (3) System of ODE for a larger bistable 
system.

(12)sr = s/smax

(13)sc = 1− sr

Fig. 11 Interpretation of eigensensitivity measure m for a stable point. mij > 0 implies that the parameter 
should be increased ( �pj > 0 ) to increase the stability of the system and it should be decreased to 
destabilize the system. Similarly, mij < 0 implies that the parameter should be decreased ( �pj < 0 ) to 
increase the stability of the system and it should be increased to destabilize the system. The magnitude of m 
signifies how effective the parameter can be in stabilizing or destabilizing the system

https://doi.org/10.1186/s12859-023-05206-2
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