
Towards a Systematic Combination of Dimension Reduction
and Clustering in Visual Analytics

John Wenskovitch, Student Member, IEEE, Ian Crandell, Naren Ramakrishnan, Member, IEEE,
Leanna House, Scotland Leman, Chris North

Abstract— Dimension reduction algorithms and clustering algorithms are both frequently used techniques in visual analytics. Both
families of algorithms assist analysts in performing related tasks regarding the similarity of observations and finding groups in datasets.
Though initially used independently, recent works have incorporated algorithms from each family into the same visualization systems.
However, these algorithmic combinations are often ad hoc or disconnected, working independently and in parallel rather than integrating
some degree of interdependence. A number of design decisions must be addressed when employing dimension reduction and
clustering algorithms concurrently in a visualization system, including the selection of each algorithm, the order in which they are
processed, and how to present and interact with the resulting projection. This paper contributes an overview of combining dimension
reduction and clustering into a visualization system, discussing the challenges inherent in developing a visualization system that makes
use of both families of algorithms.

Index Terms—Dimension reduction, clustering, algorithms, visual analytics.

1 INTRODUCTION

Visual metaphors for exploring high-dimensional datasets come in a
variety of forms, each with their own strengths and weaknesses in both
visualization and interaction [37, 69]. In particular, datasets with high
dimensionality present tractability challenges for computation, design,
and interaction [29]. One frequently used method of visual abstraction
is to reduce a high-dimensional dataset into a low-dimensional space
while preserving properties of the high-dimensional structure (e.g., re-
tain or respect pairwise relationships from the higher dimensions in
the lower dimensional projection). Such dimension reduction algo-
rithms are useful abstractions because some of the dimensions in the
dataset may not be essential to understanding the underlying patterns
in the dataset [38]. Instead, a subset of the dimensions can be selected
or learned (or new dimensions introduced) to define the important
characteristics of the dataset. The visualization tasks associated with
dimension reduction algorithms have been well studied [14, 15].

Many dimension reduction algorithms employ a “proximity ≈ simi-
larity” metaphor, in which a distance function measures the similarity
of pairs of observations1 at the high-dimensional level and attempts to
preserve those distance relationships in the low-dimensional projection
by minimizing a stress function. Due to this “proximity ≈ similarity”
relationship, observations with high similarity or an underlying rela-
tionship can form implicit clusters in the low-dimensional projection.
Indeed, clustering can even be thought of as extremely low-resolution
dimension reduction, where knowledge about the various attributes
of the observations leads to a one-dimensional bin assignment (or a
set of probabilities for bin assignments). This relationship between
dimension reduction and clustering is also supported mathematically
in specific instances. For example, Ding and He [27] proved that prin-
cipal components are the continuous solutions to the discrete cluster
membership indicators for k-means clustering, indicating that Principal
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1In this work, we employ the convention of referring to the features of a
dataset as dimensions, individual data items as observations, and the features of
those observations as attributes.

Component Analysis (PCA) dimension reduction implicitly performs
data clustering as well.

Indications from previous studies [8, 33] have shown that analysts
use a complex combination of both developing clusters and organizing
observations in space in the sensemaking process [76] as they explore
a dataset. These explorations generate clusters created by the analyst
during exploratory interactions to spatially organize information on
the display, as well as clusters that naturally develop due to expressive
interactions updating the underlying layout (these interaction types are
defined by Endert et al [34]). Other studies have also linked dimension
reduction algorithms to clustered data; for example, Choo et al. dis-
cusses dimension reduction methods for two-dimensional visualization
of high-dimensional clustered data, proposing a two-stage framework
for visualizing such data based on dimension reduction methods [21].

While dimension reduction algorithms and clustering algorithms
have been implemented together in a number of visualization systems,
these algorithms often operate independently and in parallel. In other
words, each algorithm supports some analysis component in the system
without the influence of the other algorithm: perhaps a collection
of observations are clustered, but the output of that clustering has
limited or no effect on the dimension-reduced layout of the observations.
Alternatively, a change to the spatialization may perceptually imply
the need for a change to the cluster assignment, but no update to
the cluster assignment may occur. The second case can be seen in
the iVisClustering system [57]. This tool clusters documents into a
collection of topics and uses a force-directed layout in the Cluster
Relation View to present the documents spatially. However, making a
change to the layout of the projection (see Fig. 1) has no effect on the
clustering assignments of the documents.

Exploring the connections between dimension reduction and clus-

Fig. 1. The iVisClustering system [57] incorporates dimension reduction
and clustering algorithms in the same system; however, making a change
to the layout has no effect on the clustering assignment.



Table 1. A selection of dimension reduction algorithms, organized by
the complexity of manifold each can learn: linear manifolds, nonlinear
manifolds, and algorithms that have implementations of both types.

Selected Dimension Reduction Algorithms

Linear

Factor Analysis [43]
Principal Component Analysis (PCA) [74]
Probabilistic PCA (PPCA) [84]
Projection Pursuit [40]

Both

Feature Selection [42]
Independent Component Analysis (ICA) [49]
Multidimensional Scaling (MDS) [85]
Weighted MDS (WMDS) [18]

Nonlinear

Glimmer [50]
Isomap [82]
Latent Dirichlet Allocation (LDA) [11]
t-Distributed Stochastic Neighbor Embedding
(t-SNE) [65]

tering algorithms leads to several natural research questions. If the
data separates into implicit clusters, and the analyst sees advantages
in the creation of these implicit clusters, can we appropriately sup-
port explicit cluster definitions so that the dimension reduction and
clustering algorithms support each other rather than conflict with each
other (or simply do not interact with each other)? If so, how should we
define, visualize, and interact with both observations and clusters in
a dimension-reduced projection? And finally, is there a difference be-
tween how analysts interpret and interact with low-dimensional clusters
as opposed to high-dimensional clusters?

Our research explores initial steps to address these questions. In
particular, this work includes the following contributions:

1. An overview of combining dimension reduction and clustering
techniques into a visualization system, including a discussion of
algorithms, tasks, visualizations, and interactions.

2. A discussion of the design decisions that must be addressed when
creating a visualization system that combines dimension reduction
and clustering algorithms.

The remainder of this paper discusses these contributions through the
exploratory data analysis process. We begin by providing an overview
of existing dimension reduction and clustering algorithms in Sect. 2.
From there, we discuss common high-dimensional data analysis tasks
is Sect. 3, visualizations to support those tasks in Sect. 4, and interac-
tions on those visualizations in Sect. 5. We close with a discussion of
further challenges and lessons learned in Sect. 6 and conclude in Sect. 7
with a summary of design questions that should be considered when
developing a tool combining these algorithm families.

2 ALGORITHMS

In this section, we summarize the variety of algorithms that address
dimension reduction and clustering tasks in visualization systems.

2.1 Dimension Reduction Algorithms
The goal of dimension reduction algorithms is to represent high-
dimensional data in a low-dimensional space while preserving high-
dimensional structures, including outliers and clusters [58]. Dimension
reduction has a scalability advantage over other methods for visualizing
high-dimension data such as parallel coordinate plots and heatmaps, but
with the disadvantage of information loss when transforming the data
into the low-dimensional projection [37, 61, 69]. Here, we summarize
many of the common dimension reduction algorithms in the Visualiza-
tion field; more detailed surveys of dimension reduction algorithms can
be found in the literature [38, 39, 58, 91]. In addition, several tools have
been implemented that allow analysts to switch between and compare
dimension reduction algorithms [62, 77].

Dimension reduction algorithms can be divided into linear and non-
linear classes, referring to the structure of the underlying manifolds or
topological spaces that each class can learn. Linear dimension reduction
algorithms are limited to learning linear manifolds, while nonlinear di-
mension reduction algorithms can learn more complex manifolds. Still
other dimension reduction algorithms have been implemented in both
linear and nonlinear variants. Table 1 provides a set of commonly used
dimension reduction algorithms in the visualization literature, divided
into whether they are linear, nonlinear, or have implementations of both
levels of manifold complexity. Principal Component Analysis (PCA) is
perhaps the most frequently-used linear dimension reduction algorithm,
which works by determining the axes of maximum variance in the col-
lection of observations [74]. Another often-used dimension reduction
technique is Multidimensional Scaling (MDS), which computes pair-
wise distances between observations in the high-dimensional space and
attempts to preserve those distances in a low-dimensional projection.
MDS implementations exist in both linear and nonlinear forms.

Many of these dimension reduction algorithms require a distance
function as input, which provides the method for calculating the simi-
larity of each pair of observations. Much like the breadth of algorithms
discussed, a number of distance functions are used in Visualization
systems. The most popular metrics are those derived from p-norms,
which give distance functions of the form

dp(xi,x j) =

(
∑
k

∣∣xi,k− x j,k
∣∣p
)1/p

.

Such a distance is defined for any positive p. The most familiar ex-
amples are p = 1, which is known as Manhattan distance (due to the
city’s regular grid structure), and p = 2, which is Euclidean distance.
Aggarwal et al. [2] showed that Manhattan distances are preferable
to Euclidean distances for high-dimensional data, as Euclidean dis-
tance (and p-norms of p > 1 in general) tends to compress the space
as more dimensions are added, resulting in high-dimensional distances
that are less distinguishable. In determining the appropriate distance
function, it is also worth considering that some distance functions are
computationally more difficult when optimizing a stress function.

Large datasets present performance difficulties with some dimen-
sion reduction algorithms. For example, MDS requires a distance to
be computed between each pair of observations, resulting in ∼ n2/2
distances computed for n observations. However, tools do exist to
visualize such large datasets. ASK-GraphView supports the interactive
visualization of graphs with up to 200,000 nodes and 16,000,000 edges
by using clustering algorithms to construct a hierarchical graph, thus
visualizing only internal subsections of the graph at any time [1]. A
related solution that combines these algorithm families is to initially
cluster the data and then apply a dimension reduction algorithm such
as MDS on the cluster centroids, followed by subsequent dimension
reduction executions on each individual cluster. This minimizes the
amount of memory required to store pairwise distances at the expense
of no longer having a single global distance measure.

2.2 Clustering Algorithms
Hundreds of clustering algorithms have been implemented, each with
inherent strengths and weaknesses. The broad collection of approaches
in this class of algorithms stems from the notion that a “cluster” is in-
herently a subjective structure, and as such cannot be precisely defined.
Therefore, new algorithms or improvements on existing algorithms are
often created to solve a single problem, though these new solutions
may be applied to future problems where appropriate. As a result, there
is no globally optimal clustering algorithm; the best clustering algo-
rithm is problem-specific and often determined experimentally [36].
Surveys of clustering algorithms exist in the literature, which include
clustering from the perspectives of machine learning, human-computer
interaction, visualization, and statistics [23, 92].

Clustering algorithms come in two primary forms: hierarchical and
partitioning. Hierarchical algorithms in turn can be divisive (top-down)
or agglomerative (bottom-up). The divisive strategy approaches the
identification of clusters through iterative partitioning, beginning with a



Table 2. Sample exploratory data analysis tasks, organized by stage in the data analysis process (rows) and algorithm family (columns).

Dimension Reduction Both Clustering
See the Result See distribution of observations See relative positions of observations Identify clusters of observations

Understand the Result Measure distances between observations Identify attribute values of observations
Label clusters
Determine cluster structure

Affect the Result Change distance metric
Select different dimensions

Reposition observations in the full space
Enhance an existing pattern in the projection

Change cluster membership of observations
Create/remove clusters

single group and breaking it down into smaller portions according to an
algorithm-specific differencing measure [4]. In contrast, agglomerative
algorithms approach clustering through iterating aggregation, beginning
with every item in its own group and joining groups together through
an algorithm-specific similarity measure [78].

Perhaps the most common clustering algorithm is k-means [64],
which partitions a dataset into k clusters according to a distance between
each observation and the nearest cluster centroid. Finding an optimal k-
means solution is an NP-Hard problem; therefore, heuristic algorithms
exist to converge quickly to a local solution. The k-means algorithm
has been extended to support a variety of tasks, including weighted
clustering [48], hierarchical clustering [75], textual data [26], and
constrained clustering [89]. A number of k-means variants are discussed
in detail by Cordeiro de Amorim and Mirkin [25]. A major limitation
of k-means is that it can only find clusters with convex shapes. The
algorithm also requires input parameter k for the number of clusters to
create, presenting an additional complication in generating the best set
of clusters with its heuristic approach. Several solutions to determine
the most appropriate k value are used, such as the elbow method [83].

Many of the distance functions that are applied to dimension reduc-
tion algorithms are also useful when considering cluster computations.
Cosine distance, for example, can be used to measure cohesion within
clusters [81]. The Jaccard similarity coefficient is used for measuring
diversity and dissimilarity between clusters or sets of observations [60].

In selecting a clustering algorithm, an additional consideration
should be whether an observation can be assigned to only one cluster
(“hard” clustering) or can belong to multiple clusters (“fuzzy” or “soft”
clustering). The Fuzzy C-means Clustering algorithm [9, 30] is a fuzzy
extension of the k-means algorithm, in which the centroid of a cluster
is now computed as the mean of all observations weighted by their
probability of belonging to the cluster. Fuzzy C-means has found use
in the fields of bioinformatics [87] and image analysis [3].

A common clustering tool used in statistics is the Dirichlet process
mixture model (DPMM) [10]. This is a probabilistic method, and rather
than return a hard clustering assignment, it gives each observation a
probability of belonging to any given cluster. Additionally, and unlike
k-means, DPMMs learn the number of clusters dynamically, creating
new clusters and closing old ones as the algorithm proceeds. It is not
without drawbacks, however. The DPMM requires specification of a
probability model for the observations in each cluster, which in turn
introduces its own difficulties. The algorithm also scales more poorly
than k-means with additional data, especially if the model parameters
are estimated with Markov chain Monte Carlo.

Much like with dimension reduction algorithms, large datasets can
present performance issues with clustering algorithms. Consider again
the k-means algorithm, for which the common Lloyd’s algorithm heuris-
tic implementation has a running time of O(nkdi) for a dataset with n
observations of d dimensions each, k clusters, and i iterations before
convergence [64]. The runtime of this algorithm is thus linear in terms
of both the number of observations and the number of dimensions;
however, performance can be greatly improved by reducing the number
of dimensions. Assuming that n and k are fixed, the execution time
of the k-means algorithm can hence be improved substantially with
dimension reduction, potentially dropping the value of d from hundreds
to two (which may simultaneously reduce i as well). Several clustering
algorithms are designed to use on large datasets. For one example,
the Bradley-Fayyad-Reina (B-F-R) clustering algorithm is a variant
of k-means that works by internally maintaining summaries of large
collections of observations [13].

3 TASKS

This section presents an overview of tasks commonly seen in visu-
alization systems that implement dimension reduction and clustering
algorithms for exploratory data analysis. We discuss the implications
of the order in which these algorithms are executed, along with related
design decisions and considerations.

3.1 Dimension Reduction and Clustering Tasks
Our discussion of tasks for dimension reduction and clustering algo-
rithms focuses on exploratory data analysis tasks. When exploring a
high-dimensional dataset with dimension-reduced projections, there
are an immense number of possible 2D- or 3D-projections that can be
generated from the dataset. An analyst should be afforded the ability to
explore these alternate projections, as well as the related clusterings in
those projections, in order to gain insight from the data.

One method for enabling this exploration is by applying weights to
the dimensions in the dataset. Biasing the algorithms towards combina-
tions of dimensions in the dataset enables the creation of projections
that are similarly biased towards those dimension combinations. Thus,
an analyst can explore clusters and patterns in a projection that is biased
towards dimensions X , Y , and Z, and contrast that result with clusters
and patterns in a projection biased towards only dimensions U and V ,
both from the same initial high-dimensional dataset.

When interactively exploring a dataset, dimension reduction tasks
(the left columns of Table 2) typically relate to position, while cluster-
ing tasks (the right columns of Table 2) typically relate to grouping. For
example, identifying a similarity relationship between two observations
based on their separation distance in a projection is a dimension reduc-
tion task, while positioning two similar observations close together is
a clustering task. However, there exists obvious ambiguity even with
such basic interactions. When positioning two objects close together to
form a cluster, the analyst is also communicating a distance relationship
between those observations. Thus, space is overloaded for both group-
ing and layout interactions, further suggesting a relationship between
the dimension reduction and clustering algorithm families. As seen in
the selected tasks breakdown in Table 2, tasks can often be addressed by
only using a dimension reduction algorithm or a clustering algorithm,
but there do exist many cases where the interplay between algorithms
affects both when a task is performed.

This relationship can be further seen in Brehmer et al. [15], in which
ten analysts from six application domains were interviewed with the
goal of understanding how analysts explore dimension-reduced data.
The end result of this study was a set of five task sequences. Although
the authors were focused on analyst interpretations of dimension-
reduced data, three of the five resulting task sequences were related
to clusters of items revealed in the low-dimensional data projection.
Indeed, the “Verify Clusters” task sequence was performed by all ten
of their analysts and the “Name Clusters” sequence was performed by
eight of the ten analysts. In contrast, the tasks sequences that were
not cluster-based were only performed by two (“Name Synthesized
Dimensions”) and four (“Map Synthesized to Original Dimensions”)
of the ten analysts. These findings suggest that analysts are discretizing
these clusters of observations in dimension-reduced projections. In
other words, the dimension reduction algorithm is creating a continuous
visual distribution that analysts interpret in discrete segments. More-
over, investigating these clusters within the projection are common
goals of user exploration and interaction with datasets.

In addition to investigating clusters in an existing projection, studies
have shown that analysts create their own clusters of observations. For



example, the “Space to Think” study by Andrews et al. [8] investigated
how analysts use large displays to navigate and lay out documents in
the sensemaking process [76], and that these clusters occasionally have
spatial relationships, both to develop a timeline and to keep similar clus-
ters of documents near to each other spatially. When interviewed about
their sensemaking process later, analysts spoke of their documents and
clusters both in terms of proximity and in terms of groups, implying
that these are similar cognitive processes. The ForceSPIRE [33] and
StarSPIRE [12] systems were designed in part from these findings.

Similar behavior was seen in the “Be the Data” system reported by
Chen et al. [20], which allows participants to explore a dataset by taking
on the role of the observations in a defined physical space. By moving
about the space, participants update a dimension-reduced projection.
The system is thereby able to learn which dimensions of the dataset are
most important to the current “projection” of people. Presented with
a collection of animals and their attributes, a group of seventh grade
students were posed the question “What makes some animals good to
eat?” The students began their exploration of the data by clustering
animals into discrete Edible and Inedible clusters. However, the student
who embodied the Rat observation did not consider herself a part of
either group, noting that rats are normally not edible but are consumed
in some cultures. She then positioned herself between the two clusters.
This caused the rest of the students to reconsider their distribution,
turning the discrete clusters into a continuous distribution of Edibility.

Cluster investigation tasks (the right columns of Table 2) come in a
number of forms, each of which have some meaning in a dimension-
reduced projection. For example, analysts may wish to understand the
overall layout of clusters in a projection, explore the proximity of one
cluster to another, investigate clusters of clusters and similar structures,
the shape of a cluster, and describe outlying clusters versus central clus-
ters. In addition, analysts may be interested in the relationship between
clusters and the individual observations in the projection, exploring to
which cluster(s) an observation belongs, understanding the properties
of observations that are outliers to all clusters, and investigating the
properties of a set of observations that form a cluster. There is a mix
of distribution and group questions that can be addressed through the
combination of both dimension reduction and clustering algorithms.

Adding clusters and clustering interactions to dimension-reduced
data can also improve scalability as datasets continue to grow in
size [32]. Having the ability to abstract collections of observations
into a single cluster that acts as an interaction target enables the abil-
ity to place more objects into virtual spaces, useful both for standard
monitors and for large display systems.

While the outputs of dimension reduction and clustering algorithms
are useful to locate patterns in a dataset, we also benefit from enabling
these algorithms to learn from user interactions [34, 46, 59]. By in-
terpreting the semantic meaning of user interactions, each of these
algorithms can better enable exploratory data analysis. For example,
an analyst may wish to know what model parameters are necessary to
create a cluster from observations A, B, and C. By manipulating the pro-
jection to form such a cluster and initiating a semi-supervised machine
learning routine, the dimension reduction and clustering algorithms
can be trained to learn such model parameters and to update the entire
projection in response to those new parameters. The new projection
may create a new cluster from observations D, E, and F in addition to
the analyst-created cluster, a new insight into the dataset. Therefore,
the dimension reduction and clustering algorithms can help both at
the beginning of the exploration process by providing a naı̈ve starting
point, as well as throughout the exploration process by responding to
the interactions of an analyst.

3.2 Coordinating the Algorithms
Another consideration in selecting dimension reduction and clustering
algorithms is determining what parameters should be learned and used
by each algorithm, as well as what information should be learned by the
analyst. Beginning with the analyst, we discussed in the previous sub-
section that dimension reduction algorithms and clustering algorithms
serve similar purposes. However, dimension reduction algorithms are
more suited to tasks for pairwise comparisons and similarities between

observations, while clustering algorithms are better suited for compar-
isons involving the recognition and description of groups.

For the algorithms, one obvious design decision is to determine
whether or not the dimension reduction algorithm and clustering algo-
rithm should be using the same distance function, or even if they should
be using the same set of weights on the dimensions. It is possible for
the dimension reduction algorithm and the clustering algorithm to store
separate sets of weights, or to use different distance functions entirely.

When considering the semantics of the order of dimension reduction
and clustering algorithms, using clustering in high-dimensional space as
the first operation makes uncovering clusters the primary semantic role
of the system, and hence results in a system designed to support locating
and understanding groups in the input data. In contrast, clustering as
the second operation in the low-dimensional space after executing a
dimensional reduction algorithm results in a clustering algorithm that
is merely a secondary aid to the dimension reduction algorithm.

An open question is determining whether analysts are cognitively
clustering in high-dimensional or low-dimensional space. Given that
analysts typically form clusters of text documents directly from the text
instead of first converting those documents into another form [8], it
appears that clustering is performed in the high-dimensional space, at
least for textual data. Understanding the clustering process of analysts
will lead to better semantic interactions in this dimension reduction and
clustering design space, leading to further system interactions such as
enabling humans to provide corrections to clustering assignments and
hence update dimension reduction algorithm weights and projections.

Naturally, it is not possible to coordinate all pairs of dimension
reduction and clustering algorithms. For example, some dimension
reduction algorithms such as PCA do not rely on distances between
observations. Therefore, using the same distance measure between
PCA and a clustering algorithm is not possible.

3.3 Dimension Reduction and Clustering Combinations
When developing a system that includes both dimension reduction and
clustering algorithms, it is important to consider the order in which
these algorithms are performed on the data, as the order of these al-
gorithms will generate projections with different semantic meanings.
Fig. 2 includes six different pipelines that display execution orders
and data flows between these algorithms. Each of these pipelines is
discussed in the following paragraphs. As the analyst progressively
explores the dataset, they may select a different pipeline for each round
of exploration, continuing to explore new projections (Fig. 3).

Independent Algorithms: As discussed previously, many visual-
ization systems incorporate both dimension reduction and clustering
algorithms, but these algorithms often execute independently and in
parallel so that the output of one algorithm has no effect on the other.
This pipeline is highlighted first in Fig. 2 and was discussed in the
iVisClustering [57] example in the Introduction. In this system, topics
are computed and assigned as clusters, and a force-directed compu-
tation performs the node layout in the spatialization. However, an
update to the layout has no effect on the clustering assignments. In
addition, computing both algorithms on the high-dimensional data
will be more computationally expensive than performing only a single
high-dimensional computation.

Dimension Reduction Preprocessing for Clustering: Another
possibility is to execute a dimension reduction algorithm on the high-
dimensional data, and then pass the low-dimensional projection to the
clustering algorithm to determine groups, clustering on the reduced
data rather than the source data. This decision may be advantageous
because the clustering algorithm can execute faster on a dataset with
fewer dimensions, but the outcome may be misleading because the
low-dimensional positions of each observation are an approximation of
the high-dimensional relationships. Rather than generating clusters of
the input data, we generate clusters using data with less information,
resulting in potentially misleading cluster assignments. This risk is dis-
cussed by Joia et al. [52], noting that distances in the low-dimensional
space may be misleading due to projection errors. As a result, what
appear to be distinct clusters must be confirmed, as there is no guaran-
tee that these clusters do contain unique content. An example of this



Fig. 2. Six different options for pipelines depicting combinations of dimension reduction algorithms and clustering algorithms. In each of these
pipelines examples, it is implied that each algorithm could use an independent distance function, resulting in more than just these six pipelines.
Further, these pipelines represent a single analysis iteration.

pipeline can be seen in Zha et al. [94], in which a technique similar
to PCA is performed first and followed by k-means on that output.
Likewise, Ng et al. [71] propose an algorithm in which the observations
are embedded in low-dimensional space such as the eigenspace of the
graph Laplacian, and then k-means is applied to that low-dimensional
projection. Be The Data also creates clusters dynamically based on the
current projection [20].

Clustering Preprocessing for Dimension Reduction: The reverse
of the previous behavior occurs when the clustering algorithm is the
first to execute, and then some information from the clustering output
(the cluster assignments, or the locations of the centroids) is used by the
dimension reduction algorithm for layout. Now, the clusters represent
relationships that exist in the initial data in high-dimensional space.
However, the clustering algorithm will take longer to execute due to
the additional number of dimensions processed. While less common,
some systems do operate in this way. For example, Ding and Li first
use k-means clustering to initially generate class labels, followed by
LDA dimension reduction for subspace selection [28]. Fuzzy clustering
introduces a new complexity to this pipeline, as cluster assignments
are now a probability distribution rather than a fixed bin assignment.
A pipeline of this form can also improve scalability, as the time and
space complexity of many dimension reduction algorithms make them
infeasible to execute on very large datasets. Clustering observations
and then performing a dimension reduction algorithm on those clusters
is one solution to this challenge.

One Algorithm Implicitly Includes the Other: Another alterna-
tive is to only execute one of the algorithms, either dimension reduction
or clustering, and then convert or interpret the output of the executed
algorithm as the output for the other algorithm as well. In these cases,
the results from one algorithm are structured to fit the objective of the
other algorithm, exploiting the mathematical equivalence between these
algorithm families discussed briefly in the Introduction. For example,
we can codify soft k-means clustering as assigning n observations to
k features with some associated weight or probability. Likewise, we
can formulate dimension reduction as reducing m features to p features

Fig. 3. Interactions from the analyst will drive additional executions
through the pipeline during the data exploration process. The analyst
does not need to select the same pipeline on every iteration of the
analysis.

with some associated weight or probability. Therefore, the outcome of
soft k-means clustering can be interpreted in terms of dimension reduc-
tion by making the k clustering features also represent the p dimension
reduction features. A similar argument exists to map the outcome
of a dimension reduction algorithm directly to a cluster encoding by
executing a dimension reduction algorithm like PCA and binning the
output along one of the axes. Perhaps a more straightforward example
of this pipeline is the self-organizing map [55], a dimension reduction
technique which can be directly interpreted as a set of clusters without
any feature transformation. Kriegal et al. [56] present a survey of clus-
tering techniques for high-dimensional data, and include a discussion
on subspace clustering algorithms. Such algorithms simultaneously
reduce both the number of observations and the number of dimensions
in a dataset, in contrast with having a dimension reduction algorithm
that reduces the number of dimensions computing separately from a
clustering algorithm that reduces the number of observations.

Global and Local Algorithm Combinations: Because dimension
reduction algorithms typically take a global view of the overall space
while clustering algorithms take a local view [26], another option is
to implement a pipeline in which the overall structure of the space
is informed by the dimension reduction algorithm while local struc-
tures are governed by the clustering algorithm. These algorithms can
communicate with each other to converge towards an optimal layout,
but each is responsible for its own aspect of the structure. To further
clarify the difference between this pipeline and some of those discussed
previously, consider organizing a large collection of documents in a
display. One possibility is to place related documents into folders, and
then organize the folders in the space. This example reflects the “Clus-
tering Preprocessing” pipeline, as we organize the clusters rather than
individual documents. In contrast, the analyst could organize groups of
documents in the space, and then select and move those groups with
respect to one another. This example affords some additional fuzzy
clustering capabilities, as a document that may belong to two or more
clusters can be placed between those clusters. Here, the overall layout
of the documents can be handled by dimension reduction, while some
local structures of similar documents are supported by clustering.

Iterative, Alternating Algorithms: The final pipeline represents a
structure where both dimension reduction and clustering are working
together in the same overarching algorithm. As k-means is an algo-
rithm that alternates between updating cluster assignments and centroid
positions, a third stage can be added for dimension reduction. Ideally,
this iterative alternating process will enable dimension reduction and
clustering to work in harmony to converge towards a best layout, trying
to find the right set of dimensions and a good set of clusters simultane-
ously while also communicating between the algorithms. This pipeline
differs from “One Algorithm Implicitly Includes the Other” in that both
algorithms process the data cooperatively, rather than only executing
one of the algorithms and using its outcome to present both a projection



Fig. 4. Three options for encoding group membership as studied by
Saket et al [79]. In (a), nodes are free-floating and colored based on
cluster membership. In (b), the cluster coloring remains, and links are
drawn as necessary between some of the nodes. In (c), the nodes are
replaced by colored space-filling regions to indicate cluster membership.

and a clustering. Since both the dimension reduction algorithm and
the clustering algorithm will begin on the high-dimensional data, this
pipeline will be among the slowest to converge. Niu et al. [72] provides
an example of this pipeline.

This collection of pipelines and examples demonstrates methods
for combining dimension reduction and clustering algorithms, but are
not without limitations. Even extending these pipelines with a looping
structure to iterate through the dimension reduction and clustering
stages is insufficient. To better model this and other similar cognitive
processes, we must extend this discussion of algorithms into the realm
of visualization and interaction; algorithms alone are insufficient for
complex cognition [35].

4 VISUAL REPRESENTATION

After the algorithms have been selected, the next step is determining
how to present the results of the computations to the analyst. In this
section, we first discuss common visual representations for dimension-
reduced data and clustered data. This is followed by a discussion of
potential visual outcomes of the pipelines introduced in Sect. 3.3.

4.1 Known Visualization Issues
As the sample interfaces in the bottom row of Fig. 6 show, most dimen-
sion reduction algorithm outputs are shown in scatterplots or node-link
diagrams. These scatterplots come with inherent issues in some cases,
such as difficulties in displaying and interpreting the dimensions that
result from an MDS projection. When dealing with large datasets,
the scatterplot or node-link representation of the dimension reduction
output runs a high risk of overplotting, especially if the spatialization
exhibits clear clustering in the layout. One solution for overplotting is
to abstract a cluster of observations into a single glyph to represent a
collection of observations, such as suggested by the Splatterplots im-
plementation [67]. An alternative is to filter the number of observations
visible in an overdrawn region, keeping a representative ratio of each
cluster in the overdrawn region [19].

While the natural representation of the dimension reduction output
uses a spatial projection like a scatterplot or node-link diagram, the
possibilities for representing cluster membership are much more diverse.
In addition to demonstrating clusters using a collection of nodes in close
spatial proximity, cluster membership can be encoded with colors or
glyphs. Even then, a number of design decisions can be made for how
best to express these memberships by color and shape.

Saket et al. [79] evaluate several encodings of cluster information
(see Fig. 4 for a visual representation of each of these encodings),
relating each to node-based tasks (for example, “Given node X, what
is its background color?”) and group-based tasks (“Given nodes X
and Y, determine if they belong to the same group”). They found that
the addition of group encodings does not negatively impact time and
accuracy on node-based tasks. As would be expected, group-based
tasks were best solved by node-link-group encodings. This outcome
suggests that the visual representation used to encode the clusters in
the projection depends on the tasks that the system addresses.

Fig. 5. Four options for displaying cluster membership as studied by
Jianu et al [51]. In addition to a node-link representation similar to that
included by Saket et al., this study included Linesets [5], GMap [41], and
BubbleSets [24].

Jianu et al. [51] perform a similar evaluation on four visual represen-
tations, including a node-link diagram similar to that studied by Saket
et al. as well as three other visual representations that are shown in
Fig. 5. Linesets [5] include link colors that match the node colors rep-
resenting cluster membership, highlighting connections between nodes
that are in the same cluster or group (top-right of Fig. 5). GMap [41]
is a space-filling representation that renders a geographic-like map for
clusters, containing all of the nodes in a colored region similar to the
node-link-graph representation studied by Saket et al. (bottom-left
of Fig. 5). Finally, BubbleSets [24] draws isocontours around clus-
ters, effectively balancing the Linesets and GMap representations by
using the isocontours to highlight links connecting members of the
same cluster but becoming space-filling in regions with high node den-
sity (bottom-right of Fig. 5). This study found that BubbleSets was
the superior representation for group-based tasks, but that encoding
group information onto node-link diagrams adds a 25% time penalty
onto network-based tasks, a conflict with the conclusion of Saket et al.
Clearly, more research is needed in this area to resolve such conflicts.

In addition to the above, another method for visualizing clusters
in a scatterplot or node-link diagram is to enclose nodes from indi-
vidual clusters in a convex hull [90]. Because k-means solves for
convex clusters based on a distance from an observation to the nearest
cluster centroid, a convex hull visualization may be the most natural
visualization representation for a k-means clustering output.

Moving away from scatterplot and node-link representations, an
alternative representation for clusters is to encode topics into a stream-
graph. For example, Liu et al. use streamgraphs to encode related text
keywords into topical collections, using the streamgraph to show how
the importance of those topics and keywords changes over time [63].

4.2 Algorithm Order Visualizations
Designers have an additional choice regarding which features are em-
phasized in the visual representation. For example, should the spatial
layout of the dimension reduction be emphasized over the cluster as-
signments? Alternatively, should the cluster assignments inform the
layout of the observations? Should we attempt to balance the two
outputs? How much of an impact should the algorithm order play in the
final layout? The order in which we execute the dimension reduction
and clustering algorithms should have some impact on the outcome
of the visualization, but the degree to which this execution order is



emphasized can vary by system goals. Here, we describe potential
visualization properties for each of the pipelines described in Sect. 3.3.

Independent Algorithms: Consider the first pipeline from Fig. 2,
in which both algorithms execute independently and in parallel. One
potential outcome of this pipeline is to represent clusters using convex
hulls. Here, the dimension reduction algorithm operates to find an ideal
layout, while the clustering algorithm separately finds an ideal cluster
set. When combining the outputs, a potential result is a cluttered visual-
ization that is somewhat ambiguous in the cluster assignments of some
observations due to intersections between the clusters. A potentially
better solution, used by iVisClustering [57], is to use nodes colored by
class in cases of cluster occlusion such as these. Another solution that
allows the convex hulls to remain is to implement layout constraints
(such as those in IPSep-CoLa [31]) so that objects that clearly belong
to different clusters are visibly separated in the spatialization. However,
this requires prior knowledge of key cluster-defining objects, or an
initial clustering computation that precedes the main clustering process.
This also defeats the goal of the pipeline by removing the separation
between dimension reduction and clustering algorithm execution.

Dimension Reduction Preprocessing for Clustering: In this
pipeline, the output of the dimension reduction algorithm is fed into
the clustering algorithm, enabling clustering on the low-dimensional
reduced data rather than on the initial high-dimensional data. Because
clusters are drawn based on the proximity of observations in the projec-
tion, it is unlikely that these clusters will intersect. As noted previously,
executing the clustering algorithm on the dimension-reduced data may
not produce an optimal clustering on the high-dimensional data, which
could affect the analyst’s comprehension of the projection.

Clustering Preprocessing for Dimension Reduction: In the re-
verse of this process, we now cluster in the initial high-dimensional
data, and use some of that information such as the cluster assignments
to inform the dimension reduction. Such a visualization will likely re-
sult in visibly separated clusters as in the previous case, though perhaps
even more separated because space can be artificially added between
the clusters. Again, because we execute the dimension reduction algo-
rithm on the cluster assignment information (or other cluster algorithm
output) rather than on the initial high-dimensional data, the dimension
reduction projection may not be optimal and could also affect the ana-
lyst’s comprehension of the projection. More clearly stated, two points
that the dimension reduction algorithm judges to be somewhat similar
(but not similar enough to belong to the same cluster) may have an
artificially large distance applied between them in this projection.

One Algorithm Implicitly Includes the Other: A pipeline in
which only one algorithm is executed to perform both the dimension
reduction and clustering functions has inherent limitations depending
on which algorithm is performed. For example, if the dimension reduc-
tion algorithm is executed and clustering is applied only on the result
of the dimension-reduced spatialization, the clustering will likely be
far from optimal but the dimension reduction will be ideal. This could
result in a visualization in which, for example, the clusters are simply
assigned based on x-position in the projection.

Global and Local Algorithm Combinations: The global and local
pipeline describes the dimension reduction algorithm as responsible for
the global layout, while the clustering algorithm is responsible for local
refinements and layout. These algorithms work together to create an
overall layout in which the dimension reduction algorithm effectively
lays out the clusters in a meaningful manner while the internal structure
of each cluster is maintained by the clustering algorithm. As such,
the fine details of the projection will not be as accurate spatially as
the dimension reduction outcomes in the Independent Algorithms and
Dimension Reduction Preprocessing for Clustering pipelines, and the
clustering is still executing in part on the low-dimensional projection.
However, the layout should be relatively clean and understandable, and
the overall structure of the projection (e.g., the relative positions of the
clusters) will be meaningful.

Iterative, Alternating Algorithms: The final pipeline in Fig. 2
includes both the dimension reduction algorithm and the clustering
algorithm working simultaneously and collaboratively to structure a
projection that is near-optimal for both representations. As such, this

Fig. 6. A selection of interfaces and tools that support Parametric In-
teraction or Observation-Level Interaction. The upper row shows PI
interfaces that include slider bars from Andromeda (PI view) [80], Star
Coordinates [53], and SpinBox widgets from STREAMIT [6]. The lower
row shows OLI interfaces from StarSPIRE [12], Paulovich et al. [73], and
Mamani et al. [66].

structure may produce the best visualizations with respect to the mean-
ing of the data, albeit at the cost of runtime.

A number of further design decisions can be incorporated into the
visualization. We have the option to emphasize the relative distance
between clusters more than the relative distance between pairs of ob-
servations. The visualization space is thus clusters of observations that
are obviously separated from each other in the space, possibly with
another iteration of the dimension reduction algorithm performed on
each individual cluster to generate a local layout. As yet another alter-
native, if the analyst is most interested in the clusters in the projection,
the emphasis could also be placed on the distance between each obser-
vation and the centroid of the cluster that it belongs to. Clusters could
also be artificially separated by a secondary execution of the dimension
reduction algorithm, but the superior layout determination is dependent
on the distance between each observation and a centroid.

We noted in Sect. 3.2 that it is not possible to combine all pairs
of dimension reduction and clustering algorithms. Likewise, it is not
possible to include all visual representations of dimension reduction
and clustering in the same visualization. For example, dendrograms are
often used to show hierarchical clustering; however, dendrograms are
not a useful visual encoding for dimension reduction algorithms.

5 INTERACTING WITH PROJECTIONS AND CLUSTERS

After displaying a visualization of dimension-reduced and clustered
data, the next step is to provide interactions to afford user exploration
through the dataset. Many studies have been performed and taxonomies
generated for interacting with high-dimensional data in a data analytics
context [7, 17, 88, 93].

In the context of exploring dimension-reduced data projections, two
primary methods exist for modifying an underlying distance function:
Parametric Interaction and Observation-Level Interaction. Surface-
level interactions are also often incorporated into visualization systems,
though these do not modify the underlying model. We begin this sec-
tion by discussing these interaction techniques and some representative
tools, as well as discussing interaction techniques that address cluster-
ing challenges. We follow this with a discussion of potential interaction
techniques that can support interaction with both dimension reduction
and clustering algorithms simultaneously.

5.1 Current Interaction Techniques
Parametric Interaction (PI) refers to manipulating parameters directly
in order to create a new projection and/or clustering assignment. This
presents a difficulty to novice or non-mathematically-inclined ana-
lysts, who may not understand how to update a set of weights to cre-
ate the dimension-reduced projection that they desire. In contrast,
Observation-Level Interaction (OLI) refers to direct manipulation of
the observations, which in turn triggers a backsolving routine to learn
new parameters [34, 46, 59]. In this way, OLI hides the manipulation



Table 3. Sample interactions, organized by type of interaction (rows) and by the type of algorithm affected by the interaction (columns).

Dimension Reduction Both Clustering

PI Rotate the projection
Modify the weight on a dimension
Select a different distance function

Modify the max/min radius of a cluster
Change the number of clusters sought

OLI Reposition an observation external to clusters
or within a single cluster

Reposition an observation into a
different cluster

Change cluster membership
Merge several clusters or split a cluster

Surface Measure a distance between observations Details-on-demand to obtain attribute values
Count the size of a cluster
Annotate a cluster

of the model from the analyst, allowing the analyst to perform more
natural direct manipulation interactions with the observations them-
selves. In Andromeda [80], PI allows analysts to modify weights on the
dimensions to modify the distance function directly by interacting with
sliders, while OLI uses an inverse MDS computation to interpret the
semantic meaning of the interaction in order to solve for those weights.

The upper row of Fig. 6 shows sample examples of PI from recent
visualization systems, complemented by some representative interac-
tions in the upper row of Table 3. Horizontal and vertical slider bars are
frequently utilized to enable analysts to interact with model parameters,
despite the fact that these model parameters have a variety of contexts.
Some of these sliders, such as those in Andromeda [80], include addi-
tional glyphs on the sliders to show the values of selected observations
on each dimension. In addition to slider bars, other techniques have
been utilized to support the manipulation of model parameters, such as
the SpinBox widgets of STREAMIT [6] and the transforming axes of
Star Coordinates [53]. PI techniques can also be extended to interact
with dimensions as well as observations, as shown by Turkay et al [86].

As seen in the lower row of Fig. 6 and discussed in Sect. 4, scatter
plots and node-link diagrams are the overwhelming favorite for display-
ing dimension-reduced projections, including those that support OLI.
Despite the ubiquity of these visual representations, individual OLI sys-
tems do display unique features and properties, such as supplementing
the scatterplot with additional views for context [16], supporting PI
in addition to OLI on the scatterplot [80], including local transforma-
tions [66], and focusing exclusively on textual data [12].

An additional consideration for OLI is the “With Respect to What”
problem detailed by Self et al. [80], which is the fundamental challenge
of using rigid algorithms to interpret the ambiguous meaning of an
interaction that involves dragging a node from one part of the display
to another. Andromeda solves this challenge by defining a radius at
both the starting and ending point of the interaction, implying that
the analyst is moving an observation away from all other observations
within x pixels of the source and towards all other observations within
x pixels of the destination of the interaction, though the analyst is
afforded the ability to deselect observations that do not apply to the
interaction [80]. Points contained within this radius are highlighted in
the visual representation, allowing analysts to clearly see the interaction
targets that they are expressing within the projection [47].

In addition to Parametric and Observation-Level Interactions, the
introduction of clusters affords a variety of cluster-based interactions
that can support sensemaking. To begin, OLI can be applied to clusters,
including such interactions as moving clusters together and further
apart to reflect similarities and differences between clusters, as well as
transferring that information either to the weights on the clusters or the
weights on the nodes. We can also apply parameter tuning to clusters
at a global level, changing the number of clusters or the radius of all
clusters, or we can tune the parameters of individual clusters, creating
a collection of clusters with a variety of radii. The Vizster system, for
example, includes a PI-style slider bar to change the number of clusters
displayed in the X-ray view [44].

Clusters also introduce new cluster-specific interactions, such as clus-
ter merging, splitting, and creation [22,45], cluster annotation [54], and
hierarchies of clusters [70]. Performing any of these interactions can
communicate semantic information back to the system, re-executing the
pipeline that may or may not also include re-executing the dimension
reduction algorithm as a result of this user interaction.

5.2 Combined Interaction Techniques

The pipelines discussed in Sect. 3.3 naturally support the Parametric,
Observation-Level, surface-level, and clustering interactions discussed
in the previous subsection. Interactions in general can be designed for
each of these pipelines individually, but it is also useful to consider
interactions that can have meaning to both the dimension reduction
algorithm and the clustering algorithm simultaneously. To do so means
facing similar ambiguity that is addressed by the “With Respect to
What” problem and the issue of overloaded space.

For example, consider an analyst who is interacting with the clus-
tering assignment in a projection. Regardless of whether the analyst is
interacting with high-dimensional or low-dimensional clusters, drag-
ging an observation from one cluster to another is a natural interaction
to correct a misclassification. However, the cause of that misclassifica-
tion may be unknown to the analyst. Perhaps the analyst is interacting
with a system that implements the dimension reduction preprocess-
ing pipeline. If that is the case, then the analyst may be correcting
a misclassification that results from the clustering operating on the
projected low-dimensional data. Thus, the goal of the system should
be to learn from that interaction, with the goal of getting closer to the
ideal high-dimensional clustering.

Alternatively, if the analyst is interacting with a system that imple-
ments clustering on the high-dimensional data, then performing the
same interaction is correcting for a case where the heuristic clustering
algorithm did not find the optimal solution. The system can still learn
from this interaction to correct future clusterings, but the different cause
of the misclassification should result in a different model update. These
two misclassification corrections may be semantically identical to the
analyst who seeks to correct an error, but the underlying mechanics that
caused and must correct the misclassification are different.

The same is true of an analyst interacting with observations in a
dimension-reduced projection. If an analyst drags an observation, it
may simply be that the analyst wishes to adjust the strength of the
relationship between two observations. However, adjusting the strength
of a relationship calculated on the high-dimensional data is inherently
different than adjusting the strength of a relationship calculated on clus-
ter algorithm output. And does the semantic meaning of the interaction
change if that drag interaction crosses a cluster boundary?

The introduction of explicitly-defined clusters allows for a formal
target against which to judge interactions. When explicit clusters are
defined, the analyst has four clearly defined “with respect to what”
operations: (1) moving an observation into a cluster, (2) moving an
observation out of a cluster, (3) moving an observation from one cluster
into another, and (4) moving an observation without changing cluster
membership [90]. Each of these interactions can be designed to have
an effect on both the dimension reduction algorithm and the clustering
algorithm. Keeping an observation within a cluster, or dragging it from
one cluster into another, provides information to the clustering algo-
rithm that the classification is either correct or incorrect. At the same
time, relocating an observation to a different position communicates
suggested distance information between the moved observation and
one or more additional observations in the projection. Each of these
algorithms can thus work to update the weight vector that then leads to
a projection and clustering update with this new information.

When mapping interactions to the pipelines summarized in Fig. 2,
choosing the primary target of the interaction is important even when
an interaction affects both algorithms. In the previous example, the



pipeline is implemented with the interaction primarily occurring on the
clusters, changing the cluster assignment of observations in order to up-
date the dimension reduction projection [90]. In contrast, “Be the Data”
also implements the same pipeline but with an interaction primarily
on the observation layout, using the dimension reduction algorithm to
update the clusters [20]. These two systems are both implementations
of the same pipeline, but place the interaction on different algorithms
to answer different questions about the high-dimensional data. Thus,
interactions can be considered independent of the pipelines.

A further open question to be addressed regards interactions on the
clusters themselves. If an analyst drags a cluster or interacts with it in
another manner, what adjustments should be made to the observations
and relationships within that cluster, as well as the relationships that
cross that cluster boundary?

6 DISCUSSION

Combining dimension reduction and clustering algorithms into the
same visualization system provides a number of opportunities for visu-
alization and interaction design. A system in which the two algorithm
classes cooperate for exploratory data analysis results in a relationship
in which the projection space (the outcome of the dimension reduction
algorithm) helps to explain the meaning of the clusters in the space,
while the clusters themselves help to explain the meaning of the space.

Including a machine learning aspect into a visualization system to
permit the dimension reduction and clustering algorithms to learn from
the actions of the analyst presents a number of additional challenges
for interaction design. In particular, the overloaded space metaphor
discussed in Sect. 3.1 causes challenges, as interactions within the
system must be mapped to at least one algorithm and may ambiguously
be mapped to both. For example, if an analyst drags and drops a
datapoint to reposition it in space, but the new coordinates did not
result in a cluster reassignment, should the clustering algorithm learn
nothing, or did the analyst provide some “fuzzy” clustering feedback
to the algorithm? A notion of iterative refinement, in which the analyst
gradually trains the algorithms and offers corrections to mistakes at
each iteration is necessary in these cases. Such an iterative refinement
process mimics Pirolli and Card’s Sensemaking Process [76].

Maintaining an analyst’s mental map during layout adjustments is a
well-studied problem [68], and is another factor that should be consid-
ered in visualization and interaction design for dimension reduction and
clustering systems. ForceSPIRE and Andromeda approach this mental
map challenge in different ways. ForceSPIRE, using a force-directed
layout, maintains the positions of nearly all observations during an
interaction, only altering the positions of observations near the interac-
tion [33]. In Andromeda, on the other hand, it is possible that all ob-
servations could move the entire distance across the space. The system
cognitively aids the analyst to understand such broad changes with an
animation slider, affording the analyst with the ability to incrementally
follow the post-interaction transition, as well as a layout stabilization
module to suppress the rotation invariant property of the Weighted
Multidimensional Scaling dimension reduction algorithm [80].

This work focuses on exploring the breadth of design options avail-
able to visualization researchers when combining dimension reduction
and clustering algorithms. Our goal with this work is to highlight
many of the decisions that exist in this design space, spurring further
exploration of this space with new tools. While we present a number of
design questions that must be addressed in creating such a visualiza-
tion system, we do not claim to answer any of these questions, as the
answers to many of them depend on the tasks and goals of the system.

7 CONCLUSION

The combination of dimension reduction and clustering algorithms rep-
resents an immense design space, including considerations of algorithm
selection and order, tasks, visualization, and interaction. In this paper,
we have provided a survey of each of these considerations, describing
existing research and discussing relevant design decisions applicable to
current and future systems (summarized in Table 4).

Returning to our discussion of the “Be the Data” interaction first
addressed in Sect 3, we saw a smooth transition from discrete to con-

Table 4. A summary of the design challenges and questions discussed
throughout the paper regarding the combination of dimension reduction
and clustering algorithms.

Section Design Decision

2.1 & 2.2

In general, clustering places an emphasis on re-
lationships within and between clusters. In con-
trast, dimension reduction emphasizes observation-
to-observation relationships. Which of these tasks is
the primary goal of the analyst?

3.2

What properties of the data is the visualization seek-
ing to highlight? Which properties of the data are
the system and analyst trying to discover? Should
the primary goal of the visualization system be em-
phasizing observation relationships, clusters of ob-
servations, or both? Should the dimension reduction
and clustering algorithms use the same distance func-
tion (if possible), or should each algorithm use an
independent method of measuring similarity?

3.3
Which order and interaction of dimension reduction
and clustering algorithms best models the task that
the visualization system is addressing?

4.1 How can we encode distances and cluster member-
ship information when both algorithms are present?

4.2

As the dimension reduction and clustering algo-
rithms are competing in the same visualization, what
features should be emphasized in the visualization
to best address the problem?

5.2
Should interactions be designed independently for
the dimension reduction and clustering algorithms,
or should a given interaction affect both algorithms?

tinuous thinking. The students initially formed the clusters of Edible
and Inedible animals and then positioned those clusters in space, ini-
tially mimicking the cluster preprocessing pipeline. The transition from
this projection into a spectrum of Edibility amounts to iterative and
interactive refinement of those initial clusters into a broader projection.
Without the interaction component, the pipelines could not successfully
model this student behavior.

A useful future direction for research would be a cognitive study,
further attempting to understand how analysts cognitively combine
the ideas of dimension reduction and clustering in both virtual and
non-virtual spaces. Such a study can further inform the pipelines,
visualizations, and interactions presented in this work.
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