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High-throughput biological screens are yielding ever-growing streams of information about mul-

tiple aspects of cellular activity. As more and more categories of datasets come online, there is
a corresponding multitude of ways in which inferences can be chained across them, motivating

the need for compositional data mining algorithms. In this paper, we argue that such composi-

tional data mining can be effectively realized by functionally cascading redescription mining and
biclustering algorithms as primitives. Both these primitives mirror shifts of vocabulary that can

be composed in arbitrary ways to create rich chains of inferences. Given a relational database

and its schema, we show how the schema can be automatically compiled into a compositional
data mining program, and how different domains in the schema can be related through logical se-

quences of biclustering and redescription invocations. This feature allows us to rapidly prototype

new data mining applications, yielding greater understanding of scientific datasets. We describe
two applications of compositional data mining: (i) matching terms across categories of the Gene

Ontology and (ii) understanding the molecular mechanisms underlying stress response in human
cells.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data mining;
I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms

Additional Key Words and Phrases: Biclustering, bioinformatics, compositional data mining,

inductive logic programming, redescription mining

1. INTRODUCTION

Our ability to interrogate the cell and computationally assimilate its answers is improving
at a dramatic pace. For instance, the study of even a focused aspect of cellular activity, such
as gene action, now benefits from multiple high-throughput data acquisition technologies
such as microarrays [Ball et al. 2005], genome-wide deletion screens [Carpenter and Saba-
tini 2004], and RNAi assays [Gunsalus and Piano 2005; Matzke and Birchler 2005; Matzke
and Matzke 2004]. As more and more categories of biological data become online, there is
a corresponding multitude of ways in which inferences can be chained across them, making
it infeasible to prototype software for every conceivable analysis methodology. Different
biologists have different needs and perspectives, and it is difficult to anticipate all the ways
in which computational pipelines can be organized.

Consider the following two scenarios from bioinformatics applications. In the first, Sci-
entist A desires to identify a small set of C. elegans genes (perhaps encoding transcription
factors) to knock-down (via RNAi) in order to confer improved desiccation tolerance in
the nematode. Scientist A might begin by identifying those genes whose knock-down
produces phenotypes related to improved desiccation tolerance and then find one or more
transcription factors that combinatorially control the expression of these genes. In the
second scenario, Scientist B is interested in analyzing similarities across gene expression
programs underlying aging in C. elegans and D. melanogaster. Scientist B might use DNA

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY, Pages 1–32.



2 · Ying Jin et al.

microarrays to measure gene expression across a wide time span in aging worms and flies;
analyze these datasets individually to find clusters of genes that are co-expressed under
a subset of the time points; and determine if genes in a C. elegans cluster have a signif-
icant number of orthologs in a D. melanogaster cluster. To support such arbitrary lines
of reasoning, we need novel software tools that allow biologists to uniformly decompose
complex analytical functions in terms of primitives that reason about and relate entities
across biological domains.

We argue for compositional data mining (CDM) that, as the name indicates, is a way
to construct complex data mining functions from simpler data mining primitives. Key to
this idea is focusing on small set of primitives that are powerful algorithms in their own
right but which can be functionally cascaded in arbitrary ways. We present a software sys-
tem (Proteus) that embodies the CDM concept using two such primitives—redescriptions
and biclusters. These primitives serve complementary purposes and mirror shifts of vo-
cabulary that often accompany logical chains of reasoning (e.g., transcription factors →
regulated genes → knock-down phenotypes for the desiccation scenario; worm age →
C. elegans genes → D. melanogaster orthologs → fly age in the aging scenario.) In our
prior work [Murali and Kasif 2003; Parida and Ramakrishnan 2005; Pati et al. 2006; Ra-
makrishnan et al. 2004; Zaki and Ramakrishnan 2005], we have applied these primitives,
individually, to gain significant insight into massive datasets. Using CDM, we combine
their expressiveness to form chains of reasoning across domains.

The rest of this paper is organized as follows. Section 2 uses examples to introduce the
basic concepts underlying compositional data mining. Section 3 develops formalisms that
capture the various elements of CDM. Section 4 presents various algorithms that together
help mine compositional patterns. Experimental results are presented next, first showcas-
ing the effectiveness of our algorithms and optimizations in Section 5, followed by, in
Section 6, examples of knowledge discovered from two application case studies: matching
terms across categories of the gene ontology (GO) and understanding the molecular mech-
anisms underlying stress response in human cells. Related research and conclusions are
presented finally, in Sections 7 and 8.

2. COMPOSITIONAL DATA MINING

Compositional data mining is not intended to be a one-size-fits-all data mining technique;
rather, it is a way of problem decomposition based on the notions of biclusters and re-
descriptions. We begin by reviewing these primitives: whereas redescriptions relate object
sets within a domain, biclusters relate object sets across domains.

2.1 Redescription Mining

As the term indicates, to redescribe something is to describe anew or to express the same
concept in a different way. The input to redescription mining is a set of objects and a
collection of subsets defined over this set. It is easiest to illustrate redescription mining
using an everyday example. Consider the set of ten countries shown in Figure 1 and its
four subsets, each of which denotes a meaningful grouping of countries according to some
intensional definition. For instance, the colors (G) green, (R) red, (B) blue, and (Y) yellow
(from right, counterclockwise) refer to the sets ‘permanent members of the UN security
council,’ ‘countries with a history of communism,’ ‘countries with land area > 3, 000, 000
square miles,’ and ‘popular tourist destinations in the Americas (North and South).’ We
will refer to such sets as descriptors. A redescription is a shift of vocabulary and the goal of
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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Fig. 1. (top) Example input to redescription mining. (bottom) Sample redescription. The expression B − Y can
be redescribed into G ∩R.
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Fig. 2. (left) Example input to biclustering. (right) Layout of computed biclusters.

redescription mining is to identify subsets that can be defined in at least two ways using the
given descriptors. An example redescription for this dataset is ‘Countries with land area
> 3, 000, 000 square miles outside of the Americas’ are the same as ‘Permanent members
of the UN security council who have a history of communism.’ This redescription defines
the set {Russia, China}, first by a set intersection of political indicators (G ∩ R), and
second by a set difference involving geographical descriptors (B− Y ). Notice that neither
the set of objects to be redescribed nor the ways in which descriptor expressions should be
constructed is input to the algorithm. The underlying premise of redescription analysis is
that sets that can indeed be defined in (at least) two ways are likely to exhibit concerted
behavior and are, hence, interesting.
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Fig. 3. Finding transcription factors (TFs) whose knock-down induces improved desiccation tolerance
in C. elegans. (left) Two biclusters (shaded rectangles) joined at the gene interface using an (approximate)
redescription. (right) Compositional data mining schema, displaying the sequence of primitives. Here, arrows
indicate redescriptions, and dotted lines indicate biclusters.
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Fig. 4. Finding shared gene expression programs in adult aging in C. elegans and D. melanogaster.
(left) Three biclusters with redescription mining at the two gene interfaces. (right) Compositional data mining
schema, displaying the sequence of primitives. As before, arrows indicate redescriptions, and dotted lines indicate
biclusterings.

2.2 Biclustering

The input to bicluster mining [Madeira and Oliveira 2004] is a set of instances of a re-
lationship between two or more domains. Figure 2 describes relationships between dates
(rows) and weather conditions (columns) in Blacksburg, VA. A bicluster is a subset of
rows along with a subset of columns with the property that each row element is related to
each column element (later we will utilize stricter notions of biclusters, but this definition
will suffice for this example). Figure 2 (right) lays out the seven biclusters in the matrix
as contiguous sub-matrices by re-ordering the rows and columns of the matrix [Grothaus
et al. 2006], repeating rows and columns if necessary. For example, the bicluster spanning
rows three through six and columns two through four states that each of the four days from
July 1–4, 2004 experienced each of the weather conditions “> 60 F,” “Daylight > 10 h,”
and “Cloudy.”

2.3 Composing Biclusters and Redescriptions

Both redescriptions and biclusters have direct applications in bioinformatics. Redescrip-
tions are useful in relating gene sets from vocabularies based on cellular location (e.g.,
‘genes localized in the mitochondrion’), transcriptional activity (e.g., ‘genes up-regulated
two-fold or more in heat stress’), protein function (e.g., ‘genes encoding proteins that form
the Immunoglobin complex’), or biological pathway involvement (e.g., ‘genes involved
in glucose biosynthesis’). Similarly, biclusters are useful when we want to identify, e.g.,
sets of genes together with sets of experiments or sets of phenotypes that exhibit concerted
co-occurrences. However, they have complementary advantages and limitations.

Redescriptions not only identify concerted sets but can also give meaningful character-
izations of them in terms of data descriptors. This capability is akin to conceptual clus-
tering [Fisher 1987; Michalski 1980], where clusters are required to satisfy describability
constraints. On the other hand, biclusters extensionally enumerate elements of subsets
from both domains; we must do a post-analysis of the contents of these sets to describe
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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them. Conversely, redescription mining requires that all descriptors be stated over a com-
mon universal set, so that data spanning multiple relations must be collapsed into one of
the underlying domains. For instance, a relationship between genes and transcription fac-
tors might be used to define descriptors over genes. On the other hand, biclustering retains
the relational nature of information and models patterns in relations. It is hence natural to
combine their complementary capabilities.

To illustrate CDM, let us revisit the two scenarios from the introduction. The first sce-
nario can be modeled by mining biclusters between genes and the transcription factors that
regulate them, mining biclusters between genes and the phenotypes that result when they
are knocked down, and connecting one side of the first bicluster to one side of the sec-
ond bicluster using a redescription (see Figure 3). The second scenario can be modeled
by mining three biclusters—for the relationship between worm genes and worm age, for
the relationship between fly genes and fly age, and for the orthology relationship between
fly genes and worm genes (see Figure 4). To cascade these three biclusters together, we
can use two redescriptions as intermediaries, one redescribing worm genes, and the other
redescribing fly genes. We can think of such cascading as either the biclustering algorithm
supplying descriptors to the redescription algorithm, or the redescription algorithm speci-
fying the objects that must participate in the biclustering. The results of such compositions
can be read sequentially from one end to the other, not unlike a story. For instance, for
the first scenario above, we might find that ‘genes regulated by superoxide dismutase and
catalase transcription factors, when knocked down, will result in cells with a phenotype of
hypersensitivity to oxidative stress.’ In general, such compositions can induce a graph of
arbitrary topology in the underlying data model, as we will see later.

Unlike the example in Figure 1, observe that both the CDM scenarios from Figs. 3
and 4 do not involve any constructive induction of descriptors in the redescriptions. There
are situations where this feature is important, e.g., we may desire to find patterns such
as “genes regulated by superoxide dismutase and catalase transcription factors but not by
transcription factors that control the cell cycle, when knocked down, will result in cells
with a phenotype of hypersensitivity to oxidative stress as well as abnormal cell size.”
To mine such patterns, each redescription must potentially relate two or more biclusters
on either side. In this first paper on CDM, we define descriptors as the “projections” of
biclusters onto the relevant domains and focus on redescriptions with only one bicluster on
each side, rather than on connecting set-theoretic combination of bicluster projections.

The Proteus vision of a CDM system is that a biologist can merely specify the domains
that must participate in the composition (e.g., “TFs” and “phenotypes”) and the system
automatically identifies a suitable composition of mining algorithms to relate the given
domains. Observe that it can be infeasible to realize CDM by propositionalization, i.e.,
by first ‘multiplying’ out the original multi-relational dataset into a single-relation dataset,
mining patterns in the integrated set, and then unpacking the pattern to relate the given
domains. Although propositionalization has proved to be viable in traditional inductive
logic programming [Lavrac and Flach 2001], such algorithms only need to relate individ-
ual objects across domains, whereas we must relate sets across domains, which are much
larger in number and not defined a priori. In essence, CDM is relational knowledge discov-
ery [Dzeroski and Lavrac (editors) 2001] over sets, instead of objects. It is also wasteful
to organize independent redescription and biclustering results across the different domains
and relationships, since many of the patterns mined would not participate in any connec-
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tions.
Another approach to CDM might be to start by computing biclusters in one relationship

and use them to constrain the mining [Bayardo 2002] of biclusters in a neighboring rela-
tionship. However, such constraint-based mining is ill-equipped to deal with the arbitrary
expansion and contraction of descriptor sizes that CDM must support. Nevertheless, there
are several significant structural properties of CDM patterns that we will exploit to design
efficient mining algorithms.

The key contributions of this paper are as follows:

(1) We formulate the notion of compositional data mining as an approach to better con-
ceptualize structured data mining problems. Rather than developing special purpose
algorithms for every new type of dataset or analysis goal, CDM helps to organize
knowledge discovery tasks in a modular manner.

(2) Since CDM patterns connect sets of entities through alternating biclusters and re-
descriptions, we present a new “compose then compute” algorithm that combines two
biclustering and one redescription mining invocations in a single step. This primitive
significantly speeds up the composition process and also avoids wasteful data mining.

(3) Using the pattern mined by this integrated algorithm as a primitive, we show how
mining compositional patterns reduces to systematic searches for joins over a suitably
defined “CDM schema”. We can derive the CDM schema automatically from the
original schema. Entities in the CDM schema represent sets of objects in the original
schema. Recall that these sets are not defined a priori. They are mined by the compose
then compute algorithm.

(4) We leverage classical levelwise principles, in the spirit of Apriori [Agrawal and Srikant
1994] and WARMR [Dehaspe and Toivonen 1999], and extend them to find CDM
patterns. This extension greatly broadens the applicability of the optimizations in
these algorithms, just as the query flocks paradigm [Tsur et al. 1998] generalized the
Apriori “trick” to general conjunctive queries.

3. FORMALISMS

In this section, we introduce a sequence of formalisms beginning with database schemas,
followed by data descriptors, redescriptions, and biclusters, culminating in CDM queries
that will be of interest in this work. We use two running examples to illustrate these ideas.
The first example relates four aspects of a gene’s function and regulation: the pathways it is
a member of, the (unique) cytogenetic band it is contained in, the transcription factor (TF)
binding sites present in its promoter, and stresses that up-regulate the gene. The second
example relates small molecules to diseases they may treat and to genes they up-regulate,
and pathways to diseases they are implicated in and genes that are their members. We will
refer to these examples as “Gene properties” and “Small molecules”, respectively.

3.1 Database Schemas

An entity set is a set of objects from a particular domain, e.g., genes, proteins, TF binding
sites, or pathways. Objects in an entity set E can have values for a set of properties,
denoted PE . Given two entity sets E and F , a (binary) relationship R(E,F ) between
E and F is a subset of E × F ; we say that R is connected to E and F . It is useful
to view R both as a binary matrix and as a bipartite graph. For example, relationships
may connect proteins to each other via physical interactions, genes to TF binding sites
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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Fig. 5. Database schemas for two examples.

in their promotors, or genes to pathways they belong to. In this paper, we consider only
binary relationships although relationships of higher cardinality can be re-stated in terms
of (multiple) binary relationships.

Given a set E of entity sets and a set R of relationships between entity sets in E , a
database schema S(E ,R) is a connected bipartite graph whose node set is given by E ∪R
(i.e., includes both entity sets and relationships) and whose edge set comprises edges each
of which connects a relationship inR to an entity set in E . Observe that all nodes inR are
constrained to have degree two in S whereas there are no degree constraints on the nodes
in E . Figure 5 displays the schema for our two examples.

Although typical database schema specification languages such as SQL DDLs capture
more information, we use the term database schemas in this paper to primarily refer to the
graph structure of entities and relationships.

3.2 Descriptors and Redescriptions

A descriptor over an entity set E identifies a subset of entities from E. The typical way
to define a descriptor is as a boolean expression over a subset of properties Q ⊆ PE .
For instance, the set of entities with a particular value for an attribute, e.g., ‘the set of
proteins with molecular weight equal to 100 kDa,’ is a descriptor. Relationships can also
yield descriptors. For instance, using the relationship connecting genes to pathways they
participate in, ‘genes in the Kit receptor pathway’ constitutes a descriptor over genes. To
accommodate such descriptors, it is useful to think of the set of properties PE as being
augmented from attribute-value definitions to relational definitions. Henceforth, we will
use PE to denote properties defined using both means. Given a descriptor d, we will
denote the set of entities for which d is true by E(d).

Two descriptors d1 and d2 over an entity set E are said to be redescriptions of each
other, denoted d1 ⇔ d2, if they are distinct and approximately induce the same subset of
entities from E. The distinctness condition rules out tautologies, e.g., an equivalence such
as P1 ∩ P2 ⇔ P1 − (P1 − P2) is not interesting because it holds in all datasets. The
second condition can be evaluated by measures such as the support and Jaccard’s coeffi-
cient. The support of a redescription d ⇔ d′ is given by the cardinality of the intersection
of both descriptors, i.e., |E(d) ∩ E(d′)|. The Jaccard’s coefficient of d ⇔ d′ is given
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by |E(d) ∩ E(d′)|
|E(d) ∪ E(d′)| . It is zero if the descriptors are disjoint and one if they are the same.

We will typically use the support constraint as a parameter to redescription mining and
the Jaccard’s coefficient (and other measures) to evaluate a mined redescription. We do so
because biologists find it more natural to input the number of, say, common genes, rather
than the Jaccard’s coefficient.

We define the predicate ρ(d, d′) that is true if and only if the redescription d ⇔ d′

holds (at some support or Jaccard’s coefficient level, which will be implicit in the context).
Note that redescriptions are symmetric, i.e., ρ(d, d′) ≡ ρ(d′, d). We will sometimes abuse
notation and use the expression ρ(d, d′) to refer to the redescription itself.

3.3 Biclusters

Let R(E,F ) be a relationship between entity sets E and F . A bicluster (E′, F ′) on R is a
set E′ ⊆ E and a set F ′ ⊆ F such that E′×F ′ ⊆ R, i.e., every pair of entities in E′×F ′
belongs to R. Further, the bicluster (E′, F ′) is closed if

(i) for every entity e ∈ E − E′, there is some entity f ∈ F ′ such that (e, f) 6∈ R, and
(ii) for every entity f ∈ F − F ′, there is some entity e ∈ E′ such that (e, f) 6∈ R.

That is, adding an entity in E − E′ or F − F ′ to the bicluster will violate the condition
defining the bicluster. We say that E′ and F ′ are projections of the bicluster onto E and F ,
respectively. Observe that projections are a natural way to define descriptors over E and
over F .

Similar to the redescription predicate ρ, we define a predicate β(d, d′) that is true if and
only if descriptors d and d′ constitute the projections of a closed bicluster. Observe that
there is no requirement that d and d′ be defined over the same entity set. Moreover, unlike
redescriptions, except in special cases, β(d, d′) does not imply β(d′, d). To avoid confu-
sion, we will present the arguments for β in the same order as the relationship from which
it was derived. We will also use the expression β(d, d′) to refer to the closed bicluster
(d, d′).

We will find it convenient to expand a bicluster into a closed one. Given a bicluster
(E′, F ′), its closure is any closed bicluster (E′′, F ′′) such that E′ ⊆ E′′ and F ′ ⊆ F ′′.
Note that unlike the notion of closures used in association rule mining [Zaki and Hsiao
2002], this definition allows multiple biclusters to be closures of a given bicluster. This as-
pect will become relevant when we present our algorithms for compositional data mining.

We note that if R is a one-to-one relationship from E to F , then every bicluster on R
contains exactly one element from E and one element from F and the number of such
biclusters is |R|. Furthermore, if R is many-to-one from E to F , then each bicluster on
R contains exactly one element from F and the number of these biclusters is at most
|F |. For many-many relationships, biclusters correspond to bicliques in the bipartite graph
representing R.

In general, relationships can themselves have properties. For instance, gene expression
data is a relationship between genes and samples, where each (gene, sample) pair is as-
sociated with an expression value. For such relationships, we will assume the existence
of appropriate algorithms [Madeira and Oliveira 2004; Tanay et al. 2005] for biclustering
numerical data (see Section 6.2 for an example).

As in the case of redescriptions, we will typically mine biclusters by imposing a min-
imum support constraint (which can be specified over either or both domains involved in
the relationship).
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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3.4 CDM Schemas

Given a database schema S(E ,R), its CDM schema S∧(E∧,R∧) is another database
schema whose entity sets and relationships have a one-to-one correspondence with the
entity sets and relationships of S with the following properties:

(i) Every entity set E in E is mapped to another entity set E∧ in E∧; each element of
E∧ is a subset of E.

(ii) Every relationship R(E,F ) in R is mapped to a relationship R∧(E∧, F∧) in R∧
between the entity sets E∧ and F∧.

(iii) If (E′, F ′) ∈ R∧(E∧, F∧), then β(E′, F ′) is true in R, E′ is an entity in E∧, and
F ′ is an entity in F∧.

Thus, an entity in S∧ maps to a set of entities in S. Figure 6 displays the CDM schema
for the example in Figure 5(a): the entity set “Genes” is mapped to “Gene sets”, the entity
set “Stresses” is mapped to “Sets of stresses”, and so on. Similarly, the members of a pair
belonging to the “Co-member” relationship in S∧ are the projections, onto the “Pathways”
and “Genes” entity sets, of a closed bicluster on the “Member of” relationship. Since the
relationship “Contained in” is many-one from “Genes” to “Cytogenetic bands”, the entity
set “Cytogenetic bands” in the CDM schema represents single bands and not sets of them.
Observe that redescriptions do not play a role in the CDM schema. (We will use them
below in answering CDM queries.) Finally, the third condition in the formulation of the
CDM schema implicitly enforces referential integrity constraints over the sets participating
in all instances of relationships in S∧.

LEMMA 3.1. If R(E,F ) is a relationship in E , then R∧(E∧, F∧) is a one-to-one re-
lationship.

PROOF. Suppose that R∧(E∧, F∧) is not a one-to-one relationship and that two pairs
(E′, F ′) and (E′, F ′′) belong to R∧(E∧, F∧), where E′ ∈ E and F ′, F ′′ ∈ F and F ′ 6=
F ′′. By definition of the CDM schema, both β(E′, F ′) and β(E′, F ′′) are true in R. Then
β(E′, F ′∪F ′′) is also true, i.e., the bicluster formed byE′ and F ′∪F ′′ is also closed. Since
F ′ 6= F ′′, both F ′ and F ′′ are contained in F ′∪F ′′, which violates the assumption that the
original biclusters are closed. Therefore, R∧(E∧, F∧) is a one-to-one relationship.

Observe that Lemma 3.1 holds irrespective of the nature of the relationship in R.
There may not be a natural notion of a closed bicluster for relationships that have nu-

meric attributes. In such cases, we will construct biclusters that ensure that Lemma 3.1
still holds.

With the construction of the CDM schema, observe that we are able to connect sets
of entities to each other via biclusters and redescriptions. The advantage of the above
formulation is that a compositional mining query over the original schema S now reduces
to a simple database join over the CDM schema S∧. In particular, optimizations such as
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Fig. 7. Two example CDM queries posed over database schemas.

query flocks [Tsur et al. 1998] can be readily applied to yield patterns that are actually
comprised of sets of objects.

3.5 CDM Queries and Compositions

We now define the primary component of CDM queries and their results. A CDM query
is a k-tuple Q(E1, E2, . . . , Ek), where k ≥ 2 is an integer, Ei ∈ E , 1 ≤ i ≤ k, and the
Ei’s are distinct. Figure 7 illustrates two CDM queries, one for each of our examples. The
first query specifies three entity sets: “Pathways,” “Stresses,” and TF Binding Sites. The
second query specifies the entity sets “Pathways” and “Small molecules.”

Informally, the semantics of the query is that the user is interested in compositions of
biclusters and redescriptions involving the given entity sets, i.e., all the specified k entity
sets must participate in the composition. Note that the user specifies the CDM query in the
context of the original schema S(E ,R) and that this formulation only specifies the entity
sets she desires to participate in the result. The user need not specify which relationships
must participate in the query, or which other intermediate entity sets must be involved in
the composition, since she may not know beforehand the intermediaries that will most
usefully connect the entity sets of interest.

Observe that the user can obtain a trivial answer to such a CDM query by joining appro-
priate tables of the original schema. However, such answer will only yield compositions
involving individual entities. As stated earlier, the crux of CDM is to compute composi-
tions involving sets of entities.

The precise interpretation of the CDM query can refer to computing all compositions,
testing for the existence of (at least) a composition, or counting the number of composi-
tions. In this paper, we develop the CDM methodology in the context of computing all
compositions. (Algorithms other than those proposed here might be more suited when we
are trying to answer existence or counting queries.) We will also show how to impose
constraints similar to the minimum support constraint popular in association rule mining.

First, we define a transformation of the database schema S that we will use to translate
CDM queries into composition plans. The relationship graph Γ(S) of a database schema
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Fig. 8. Relationship graphs for the two illustrative CDM scenarios.
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Fig. 9. Subgraphs matching CDM queries.

S is a graph such that

(1) nodes in Γ(S) have a one-to-one correspondence with the relationships of S,
(2) two nodes in Γ(S) are connected by an edge if the corresponding relationships share

a common entity set in S. The edge is labeled by this common entity set.

Note that this concept is similar to the “relationship summary network” in [Long et al.
2006] but captures the schema, instead of the instances. Informally, nodes in the relation-
ship graph correspond to biclusters and edges correspond to redescriptions over the entity
sets labeling the edges. Figure 8 illustrates the relationship graphs for our two examples.

Given a CDM queryQ(E1, E2, . . . , Ek) on the schema S(E ,R), we say that a subgraph
T of S matches Q if T is connected and Ei is a node of T , for every 1 ≤ i ≤ k. Such
a subgraph “fleshes” out the query by adding relationships and other entity sets in order
to connect all the entity sets in the query. At this stage, we do not impose any constraints
on the minimality of the subgraph that a query matches. Figure 9 displays the subgraphs
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Fig. 11. Composition plans for the CDM query in the “Small molecules” example.

matching the queries from Figure 7. Note that two subgraphs match the query for the
“Small molecules” example. Moreover, the given schema for each of these examples is
trivially a matching subgraph, which we do not display.

Now we define how to transform such a subgraph T into a subgraph of Γ(S). Given a
subgraph T of S that matches a queryQ, the relationship graph Γ(T ) of T is the subgraph
of Γ(S) induced by the nodes that correspond to the relationships in T . We also say that
Γ(T ) matches the query Q. We observe without proof that Γ(T ) is unique and connected.

Next, we map relationship graphs matching a given CDM query to specific composition
plans. Before we present the details of composition plans, it is helpful to have some ad-
ditional definitions. We say that a closed bicluster β(E′, F ′) and a redescription ρ(X,Y )
compose if F ′ = X . We denote the composition by βρ(E′, F ′, Y ). Another way in which
closed bicluster β(E′, F ′) and redescription ρ(X,Y ) may compose is if E′ = Y , denoted
by ρβ(X,E′, F ′). Similarly, we can achieve a composition involving two biclusters by in-
troducing a suitable redescription in between: the composition βρβ(E′, F ′, G′, H ′) holds
if β(E′, F ′), β(G′, H ′), and ρ(F ′, G′) together hold. Observe that the two biclusters in
βρβ(E′, F ′, G′, H ′) could potentially be derived from different relationships although the
types of F ′ and G′ must be the same (for the redescription to hold). We use the βρβ
predicates as building blocks for CDM.
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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Although not studied here in detail, we can also allow two redescriptions to compose
directly. This capability and its extensions to more than two redescriptions has been previ-
ously studied [Kumar et al. 2006].

With the above formalisms, given a CDM query Q(E1, E2, . . . , Ek) on S and a sub-
graph Γ(T ) of Γ(S) matching it, Φ(Q, T ) is a set of bicluster predicates β = {β1, β2, . . . , βm}
and a set of redescription predicates ρ = {ρ1, ρ2, . . . , ρn} such that

(i) there is a one-to-one correspondence between the bicluster predicates in β and the
nodes in Γ(T ).

(ii) for every redescription in ρ there is exactly one edge corresponding to it in Γ(T ).
(iii) If a bicluster predicate βi corresponds to a node in Γ(T ) and a redescription predicate

ρj corresponds to an edge incident on that node, then βi and ρj compose.
(iv) the subgraph of Γ(T ) induced by nodes corresponding to bicluster predicates in β

and edges corresponding to redescription predicates in ρ is connected.

Note that an edge in this subgraph of Γ(T ) and the two nodes incident on it correspond to
a βρβ pattern, reinforcing our decision to use these patterns as the building blocks of CDM.
Just as there can be multiple subgraphs matching a CDM query, there can be multiple
composition plans corresponding to a (Q,Γ(T )) pair. We can graphically depict any plan
by highlighting the subgraph of Γ(T ) corresponding to plan (defined in condition (iv)
above). For instance, Figure 10 displays four composition plans for the single subgraph
that matches the CDM query for the “Gene properties” example and Figure 11 displays
one composition plan each for the two subgraphs that match the CDM query for the “Small
molecules” example.

4. ALGORITHMS FOR CDM

To answer a CDM query, there are three key problems to be solved:

(1) Identify all possible subgraphs of the given database schema that match the query.
(2) For each subgraph, derive all specific composition plans.
(3) For each composition plan, compute all relevant βρβ patterns.

We present efficient algorithms for each of these stages. For ease of understanding we
present them in the reverse order, so that each algorithm feeds into the input of the next.
Note that given an instance of a CDM schema and a composition plan Φ(Q, T ), finding
satisfying assignments for β and ρ in Φ(Q, T ) reduces to an database join over βρβ pred-
icates.

4.1 Computing βρβ Patterns

At this stage, we are given two relationshipsR1(D,E) andR2(E,F ) that share a common
entity set E and a support threshold k > 0. Our goal is to compute satisfying assignments
for the β1ρβ2 pattern, where β1 (respectively, β2) is the bicluster predicate corresponding
toR1 (respectively, R2) and ρ is a redescription predicate between descriptors over E such
that the two descriptors participating in ρ contain at least k elements in common.

4.1.1 Compute then Compose. In this section, we present a simple algorithm to com-
pute the desired βρβ patterns. This approach works by computing all biclusters in R1

and in R2 and computing redescriptions between all pairs of projections of these biclusters
onto E.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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Fig. 12. An illustration of straddling biclusters. The two rectangles with thin borders represent the relationships
R1(D,E) andR2(F,E). The shaded rectangle with a solid thick border is the straddling bicluster (G,H). The
rectangle with a dashed thick border is a closure (G′, H′) of (G ∩ D,H). The dotted rectangle represents the
element g ∈ D.

(1) Compute the set of all biclusters in R1 and in R2 and their projections onto
E.

(2) Insert these projections into a suitable index. Query the index with each
projection to compute all its redescriptions.

(3) For each redescription ρ(X,Y ) computed in the previous step, let B1 (re-
spectively, B2) be the bicluster whose projection onto E is X (respectively,
Y ). Store the βρβ pattern corresponding to this triple.

(4) Return all computed βρβ patterns.

For the purpose of this section, it is enough to assume that the indexing structure simply
stores all projections. When given a query projection P , it exhaustively computes all stored
projections that contain at least k elements in common with P .

4.1.2 Compose then Compute. A concern with the approach just described is that
many computed biclusters will not participate in any redescription. In this section, we
describe a technique that dramatically reduces the number of such orphan biclusters by
mutually biclustering R1 and R2.

Let D,E, and F be three entity sets in E and let R1(D,E) and R2(F,E) be two rela-
tionships, both connected to the entity set E. Consider the relationship R3(D ∪ F,E) =
R1(D,E)∪RT

2 (F,E) formed by taking the union of the pairs in the relationshipsR1(D,E)
and RT

2 (F,E), where the pair (x, y) is a member of RT
2 (F,E) if and only if (y, x) is a

member of R2(E,F ). We say that a bicluster (G,H) on R3(D ∪ F,E) straddles D and
F if G contains at least one element from D and at least one element from F . We define
the component BA(G,H) of B(G,H) in A to be the bicluster induced by G ∩ A and H
on R(A,B). We define the component BC(G,H) similarly on R(C,B). Note that the
components themselves may not be closed. Figure 12 illustrates this situation.

LEMMA 4.1. Let (G,H) be a closed bicluster on R3(D ∪ F,E) that straddles D and
F . Then the closure of the bicluster (G ∩D,H) on R1 is unique.

PROOF. Let (G′, H ′) be a closure of (G∩D,H). By definition of the closure, we have
that G′ ⊇ G ∩ D and H ′ ⊇ H . We will first prove that G′ = G ∩ D. We will then
use this constraint to construct a unique H ′. Assume to the contrary that there exists an
element g ∈ D that belongs toG′−G∩D. Since (G′, H ′) is a bicluster, for every h ∈ H ′,
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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the pair (g, h) is a member of the relationship R1(D,E). Since H ′ ⊇ H , we see that
(G ∪ {g}, H) is a bicluster on R3(D ∪ F,E), which contradicts the fact that the original
bicluster (G,H) is closed. Therefore, G′ = G ∩ D. Now consider an element e ∈ E
such that for all g ∈ G ∩D, the pair (g, e) is a member of the relationship R1(D,E). By
the definition of the closure, H ′ is the set of all such elements e; H ′ contains H and is
unique.

This lemma suggests that instead of computing biclusters separately in R1 and R2 and
subsequently searching for redescriptions between their projections ontoE, we can directly
compute biclusters with at least k in R3 and use the closures of its “components” in R1

and R2 as seeds for redescription computations. Our modified algorithm to compute βρβ
patterns has the following steps:

(1) (a) Construct the relationship R3(D ∪ F,E).
(b) Compute all straddling biclusters in R3 with at least k elements from

E.
(c) For every bicluster (G,H) computed in Step 1b, compute the closures

of the bicluster (G ∩D,H) on R1 and of the bicluster (G ∩ F,H) on
R2.

(d) Let P1 (respectively, P2) denote the set of projections onto E of the
closures computed in Step 1c in relationship R1 (respectively, R2).
Compute all closed biclusters in R1 (respectively, R2) with the prop-
erty that the projection onto E of each such bicluster contains at least
one of the projections in P1 (respectively, P2).

(2) Identical to Step 2 of the compute then compose algorithm, but applied only
to the biclusters computed in Step 1d.

(3)–(4) Identical to Steps 3 and 4 of the compute then compose algorithm.

We now prove that the modified algorithm computes every redescription that the first algo-
rithm does.

LEMMA 4.2. Let (W,X) be a closed bicluster on R1 and (Y, Z) be a closed bicluster
on RT

2 such that W ∩ Y contains at least k elements. Then the algorithm presented above
computes the redescription ρ(X,Y ).

PROOF. It is enough to show that the algorithm will compute the two biclusters either
in Step 1c or in Step 1d. We will prove that the algorithm will compute (W,X). The proof
for (Y,Z) is analogous. Let U = X ∩ Z.

Assume that there exists a closed bicluster (S, T ) on R3 such that U ⊆ T ⊆ X . Since
T has at least k elements, the algorithm computes (S, T ) in Step 1b. By Lemma 4.1, the
closure of (S ∩D,T ) is unique. Let this closure be (S ∩D,T ′). We claim that T ′ ⊆ X .
Observe that S ∩ D must contain W . Therefore, if T ′ contains an element e 6∈ X , since
e shares a relation with every element of S ∩ D, e must share a relationship with every
element of W , contradicting the fact that (W,X) is closed. Since the algorithm computes
(S, T ) in Step 1b, it must compute (S ∩D,T ′) in Step 1c. In other words T ′ is an element
of the set of projections P1. Since T ′ ⊆ X , we now see the algorithm computes (W,X)
in Step 1d.

It remains to show that there exists a closed bicluster (S, T ) on R3 such that U ⊆
T ⊆ X . Consider the (possibly non-closed) bicluster (W,U) on R1. Consider the closure
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(W ′, U ′) of (W,U) such that |U ′ − U | is the smallest over all such closures. Clearly,
U ′ ⊆ X . Similarly, consider the bicluster (Y, U) on R2 and its closure (Y ′, U ′′) on
R2 such that |U ′′ − U | is the smallest over all such closures. Now, U ′′ ⊆ Z. Setting
S = W ′ ∪ Y ′ and T = U ′ ∩ U ′′ yields us the required bicluster.

As we will show in Section 5, the improved algorithm significantly reduces the number of
orphan biclusters while ensuring that we compute exactly the same number of redescrip-
tions.

A final observation is that even for the two given relationshipsR1(D,E) andR2(E,F ),
there may be multiple βρβ patterns possible. If D and E are identical and R1 is not
symmetric, then there are two βρβ patterns possible, depending on which “side” of R1 is
used in the redescription with R2. An example is when R1 represents genetic interactions
where the knock-out of one gene results in a phenotype that enhances or suppresses the
phenotype obtained by knocking out the other gene. For such relationships, we define
two β predicates for each bicluster, one being the transpose of the other. (Observe that,
in addition, if E and F are identical and R2 is asymmetric, there are four possible βρβ
patterns.)

4.2 Levelwise Search for Compositional Patterns

We view the ‘compose then compute’ algorithm as an approach to find satisfying assign-
ments for βρβ predicates. Then the search for a compositional pattern reduces to relational
data mining over the βρβ relation. In the following, we will assume that at least two re-
lationships are involved in a compositional pattern (mining one relationship is the task of
traditional bicluster mining so that an expressive primitive such as βρβ is not required).

In traditional relational mining algorithms such as WARMR [Dehaspe and Toivonen
1999], which support general Datalog queries, the search space of possible patterns is
huge, so declarative language biases are imposed. Proteus, too, requires biases to curtail
the complexity of search. Before we describe these, it is instructive to examine the structure
of a sample composition plan.

Consider the three βρβ predicates—β1ρ1β2, β2ρ1β3, and β1ρ1β3—derived from four
entity sets, three of whom have binary relationships to the fourth (which supplies the re-
description interface ρ1). Given a CDM query that requires participation of all four entity
sets, there are four composition plans possible (the ‘,’ denotes conjunction):

—β1ρ1β2(X,Y, Z,W ), β1ρ1β3(X,Y, L,M).
—β1ρ1β2(X,Y, Z,W ), β2ρ1β3(W,Z,L,M).
—β1ρ1β3(X,Y, L,M), β2ρ1β3(W,Z,L,M).
—β1ρ1β2(X,Y, Z,W ), β2ρ1β3(W,Z,L,M), β1ρ1β3(X,Y, L,M).

(We use capital letters denote arguments; recall that they denote sets of objects from the
respective domains). Observe the implicit reuse of arguments across predicates, so that the
following composition is not legal:

—β1ρ1β2(X,Y, Z,W ), β1ρ1β3(R,S, L,M).

The typical way in which illegal compositions are avoided is to adopt a canonical ordering
for predicates in conjunctive plans and to use mode declarations that impose restrictions on
how variables are introduced by the predicates. Thus, a mode of ‘-’ means that the variable
can be bound by the predicate itself, ‘+’ means that it must be bound before the predicate
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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is invoked, and ‘±’ means that it can either be bound before or by the predicate. To prevent
the above illegal composition, we can specify the mode declarations for the β1ρ1β2 and
β1ρ1β3 predicates as

—β1ρ1β2(−,−,−,−)
—β1ρ1β3(+,+,−,−)

which ensures that the first two arguments of β1ρ1β3 are bound earlier (in this case, by
β1ρ1β2). Rather than specify one global set of mode declarations for all compositional
patterns, we exploit the fact that the bicluster predicates βi in the βρβs are typed and that
every βρβ predicate can be used at most once in a composition plan (recall the definition
in Section 3.5). With these constraints, it is easy to see that the modes should be ‘-’ for all
arguments of the first predicate, and for every predicate following it, use ‘+’ for the mode
if the bicluster corresponding to those arguments already participates in a previous βρβ,
and ‘-’ otherwise.

Typical levelwise algorithms used in data mining use the notion of support to prune
searches. However, defining a notion of support for CDM patterns is problematic. Due to
the multiple shifts of vocabulary that happen in biclusters in a composition, there may be
no single domain over which we can define support. It may be possible to define support in
database schemas where there is a single domain participating in every relationship. In such
a case, since every CDM pattern will involve that domain, we can measure support as the
number of entities from that domain that participate in every bicluster in the composition.

A more general approach, used in algorithms such as WARMR [Dehaspe and Toivonen
1999], is to designate a subset of variables as the key. The frequency of a pattern is then de-
fined as the number of satisfying assignments to the key for which the pattern is true. This
is a natural notion in WARMR whose predicate arguments are individual-based whereas
the predicate arguments in Proteus are set-based. A literal mapping of this definition to our
relational setting would apply, for instance, if we are seeking ‘biclusters that participate in
at least k compositions.’ However, the more natural interpretation for biologists is to find
‘compositions of biclusters and redescriptions that involve at least k (key) objects.’ (In our
applications, the key is typically a central biological object of interest such as genes, or
proteins.) In other words, although we have elevated the representation language from ob-
jects to sets, data mining constraints are more naturally specified at the object level. Hence,
this is the definition we adopt which also affords a levelwise algorithm. In particular, to
find compositions of length m that involve at least k objects, we search bottom-up, from
level 1 to level m− 1 for βρβs and βρβ compositions that involve at least k objects. Due
to the anti-monotonicity principle, if a sub-composition does not have support, we need
not explore the lattice of βρβ patterns that are a superset of the sub-composition. Observe
that this allows to ‘push’ the support constraint into the algorithm for computing βρβs, as
discussed in the previous section.

Two other considerations are those of logical redundancy of βρβ compositions and the
specialization relation used to traverse the βρβ lattice. Since our compositions are non-
recursive, no redundant compositions should be introduced as long as we adopt a canonical
ordering of βρβ predicates, such as Rymon’s enumeration strategy [Rymon 1992]. How-
ever, a more subtle notion of redundancy arises if the original relationship run from an
entity set to itself. Consider for instance β1 derived from a genes-to-genes relationship
based on whether their protein products interact, and β2 derived from a genes-to-genes re-
lationship based on whether the protein product of one transcriptionally regulates the other.
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In this case, there are two ways in which the biclusters can be related by a redescription,
depending on whether the protein interaction relationship extends the transcription regu-
lators or the regulated genes. As mentioned in the previous section, this redundancy is
handled at the level of computing βρβs itself, so that the notion of strong typing contin-
ues to hold when we compose the βρβs. The specialization relation is necessary in order
to generate candidates. For instance, β1ρ1β2(X,Y, Z,W ) can be specialized to either
β1ρ1β2(X,Y, Z,W ), β1ρ1β3(X,Y, L,M) or to β1ρ1β2(X,X,Z,W ) (the latter makes
sense only for symmetric relationships). Again, since βρβs are computed by the ‘com-
pose then compute’ algorithm, we do not have to explicitly search for such assignments.
These considerations lead to a straightforward implementation of a levelwise miner along
the lines of Apriori [Agrawal and Srikant 1994] and WARMR [Dehaspe and Toivonen
1999], which we do not describe in detail in this paper.

4.3 Identifying Matching Subgraphs

Finally, given a CDM query, we address the problem of identifying the relationships and
intermediate entity sets that must participate in the composition, which in turn influences
the choice of βρβs that can be used. The necessary condition here is that the subgraph
induced over the database schema should be connected. This is necessary for the βρβs to
be composable. (It is not sufficient, however, without proper mode declarations, as we saw
in the previous section.) If we desire to minimize the number of new entity sets and rela-
tionships that are introduced, one possible formulation of this problem is as a computation
of a Steiner tree over the database schema. However, cyclicity is not an undesirable fea-
ture in a CDM composition and we sometimes might prefer longer compositions, for ease
of interpretation. In our current implementation, we exhaustively enumerate all possible
subgraphs of the database schema, subject them to membership checks for the domains
constrained by the CDM query and, from those that satisfy, identify all the βρβs that con-
stitute the subgraph.

5. EFFECTIVENESS OF CDM

Standalone algorithms for redescription mining and biclustering are already heavily tuned.
Therefore, the effectiveness of CDM lies in its ability to avoid wasteful computations of
biclusters and redescriptions that will not participate in any composition and, for the βρβ
patterns that remain, being able to efficiently compose them in the levelwise miner. We
have already shown how βρβ patterns serve as an important primitive for composition.
Hence, in this section we address two questions of algorithmic effectiveness:

(i) What are the savings to computing βρβ patterns over separate biclustering and re-
description invocations?

(ii) How does the levelwise search for compositions scale with the length of the compo-
sition?

We address the first question by assessing, for various pairs of relationships that share a
common domain, the number of biclusters that are “orphaned” on either side as a function
of the support constraint of the βρβ pattern. Figure 13 depicts these plots for various βρβ
predicates, using relations from a database schema that is described later in Section 6.2.
(The exact details of these relations are not as important as the overall trends.) Each plot
depicts four curves, two for each bicluster predicate; one curve tracks the number of non-
orphan biclusters and the other the number of orphan biclusters, both as functions of the
ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Month 20YY.
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Fig. 13. Assessing the number of “orphan” biclusters avoided as well as the actual biclusters computed (non-
orphans) by the “compose then compute” algorithm. Each of the six plots involves a different βρβ predicate.

support threshold. Observe that, in general, differences between the number of orphans
and the non-orphans can be as great as one to three orders of magnitude. For the plots on
the left of Figure 13, for low support thresholds, the number of orphans is smaller than
the number of computed biclusters but as the support threshold is increased (number of
genes in common, in this case), we see greater numbers of biclusters getting orphaned. For
the plots on the right of Figure 13, the number of orphans far exceeds the number of non-
orphans, even for low support thresholds. These plots confirm that wasted computation of
orphan biclusters is indeed a critical issue in CDM, and highlight the important role played
by the compose then compute algorithm developed here.
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Fig. 14. (left) Number of compositions mined as a function of the length of the composition. (right) Time taken
to mine all compositions.

We study the second question as a function of length of composition, i.e., the number
of relationships participating in it. Thus, the simplest composition, involving two βρβ
predicates, has length 3. Again, we use the case study described in Section 6.2 but this
time consider the set of all βρβ patterns as a whole. We mine βρβ patterns at a lenient
support constraint of 1. However, even though there is one entity set participating in almost
all relationships, we do not impose any support constraints in the levelwise miner. As
a result, we may obtain compositions where one set of entities can gradually “morph”
into another set of entities without any overlap. Thus, not imposing support constraints
allows us to push the levelwise miner to its limits since it may be forced to evaluate a very
large number of candidate compositions. Fig. 14 (left) displays the number of patterns
mined as a function of composition length. Observe that there is initially an increase in
number of patterns with length of composition but this number drops off steeply for higher
values (there are no patterns mined of composition length 7 or more). It is significant that,
for a schema with 9 relationships, we find compositions of length 6 (although not quite
evident in Figure 14 (left), there are 45 of them). This statistic demonstrates that there are
significant opportunities for CDM in real multi-relational datasets. The output-sensitive
nature of the levelwise algorithm is evident in Fig. 14 (right) which tracks the time taken to
mine compositions as a function of composition length. (Recall that due to the lax support
constraint, the algorithm would be evaluating an exorbitant number of candidates.)

6. CASE STUDIES

Our first case study (GO3) mines overlaps in functional annotations across all three cat-
egories of the Gene Ontology (GO) using human (H. sapiens) genes as the underlying
universal set. The results of this study help understand implicit dependencies between
terms from different GO categories and potentially to use these dependencies to predict
new gene-term associations (an aspect beyond the scope of the present paper). The sec-
ond case study (‘Stress Response in Human Cells’) focuses on understanding the molecular
mechanisms of responses of human cells when they are subjected to different types of envi-
ronmental stresses. Besides human genes and their membership in GO taxonomies, for this
study, we also incorporate data about gene expression measured by microarrays, transcrip-
tional motifs in upstream regions of genes, locations of genes in cytogenetic bands, protein-
protein interactions, and pathway membership. Figures 15 and 20 display the schemas for
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Fig. 15. The schema for the first case study involving GO functional annotations for human genes.

these case studies. In both figures, dashed lines connect pairs of relationships between
whose biclusters we compute redescriptions. Table I gives important statistics for both
case studies. We provide one table since the data for the second case study subsumes the
first.

6.1 GO3

The Gene Ontology [Ashburner et al. 2000] is a controlled vocabulary to describe genes
and their products across a range of organisms. The three categories of GO—biological
process, molecular function, and cellular component—address diverse aspects of gene ac-
tivity. Briefly, they address the “when,” “‘what,” and “where” of a gene’s activity in cells.
Each category is organized as a directed acyclic graph (DAG) defined by parent-child rela-
tions between terms.

The dependencies we seek to mine are pairs of GO terms, each belonging to a different
category, that are annotated by a surprisingly large number of common genes. In this
study, each GO term yields exactly one bicluster consisting of that GO term and all the
genes annotated with it. Some dependencies are obvious. For instance, we anticipate that
the GO biological process ‘protein ubiquination’, the GO molecular function ‘ubiquitin
ligase activity,’ and the GO cellular component ‘ubiquitin ligase complex’ should annotate
nearly the same set of genes. Other such associations might be less obvious, however, and
our goal is to mine them.

Since terms in GO are specified at multiple levels of detail, it is not sufficient to eval-
uate dependencies simply based on the number of genes simultaneously annotating two
functions. We use the following strategy, modified from Grossman et al. [Grossmann et al.
2006]. Given a term s, let ns be the number of genes annotating the term. Given two terms
s and t, let ns,t be the number of genes annotating both terms and n+

s,t be the number of
genes annotating at least one parent of either s or t. We want to assess the surprise in
observing that s and t annotate ns,t genes in common, conditioned on the fact that their
parents annotate n+

s,t genes in total. We ask the following question: if we were to pick
nt genes uniformly at random without replacement from a pool of n+

s,t genes, what is the
probability that we will select ns,t or more genes from a set of ns marked genes? We take
recourse to the familiar hypergeometric distribution to assess this probability, denoted ps,t:

ps,t =

∑min(n+
s,t,ns)

k=ns,t

(
ns

k

)(n+
s,t−ns

nt−k

)
(
n+

s,t
nt

) .

Since we test the significance of multiple pairs of functions, we adjust the p-values using
the false discovery rate [Benjamini and Hochberg 1995]. Figure 16 depicts the steep drop
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Fig. 16. GO3 case study: distribution of the number of redescriptions. (left) Number of redescriptions that satisfy
different Jaccard’s coefficient thresholds. (right) Number of redescriptions that meet different p-value cutoffs.
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Fig. 17. GO3 case study: distribution of the number of connected components (left), the relative size of the largest
connected component (center), and the number of triangles (right) as a function of Jaccard’s coefficient.

in the number of redescriptions that meet increasingly stringent thresholds on either the
Jaccard’s coefficient or the p-value. We plot separate curves for each pair of GO cate-
gories. Observe that the number of redescriptions between GO molecular functions and
GO biological processes dominate the number of redescriptions between the other two
pairs of categories. This trend reflects the fact that the number of cellular component terms
is much smaller than the number of terms in the other two categories (see Table I).

We constructed a graph where each term is a node and two nodes are connected if their
redescription is significant at the 0.01 level. By construction, this graph is tripartite. We
considered two types of patterns in this graph: triangles and non-triangles. A triangle
connects three terms, one from each GO category, such that each pair has significantly
overlapping sets of annotated genes. After removing all triangles from this graph, we study
the remaining edges that comprise non-triangles. Figure 17 displays global statistics of the
structure of this graph as we vary the Jaccard’s coefficient. Very few redescriptions satisfy
a large Jaccard’s coefficient threshold. Therefore, the number of connected components in
the graph is small, as is the relative size of the largest component in it and the number of
triangles. As we decrease the threshold, more disconnected components start appearing.
At a threshold of 0.3, a giant component emerges. As the threshold decreases further,
connected components start coalescing. Therefore, the number of connected components
decreases. The other two curves are monotonic increasing with decreasing threshold, but
show a sharp uptick at 0.3, the point where the giant component forms.
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(a) (b)

Fig. 18. Examples of triangles in the GO3 study.

The triangle and non-triangle patterns yielded numerous interesting insights, of which
we highlight a few here. In the images we display, each node represents a term in GO (blue
nodes are cellular components, green nodes are biological processes, and magenta nodes
are molecular functions).

6.1.0.1 Triangles. Many triangles represented biological processes fundamental to the
function of a cell such as mitosis and important structural components such as the cell
membrane. Processes such as mitosis have been studied at depth by biologists. Hence, it
is not surprising that the cellular localization of the gene products driving these processes
and the molecular functions have been worked out. We hypothesize that a number of anno-
tations for human genes in such triangles are actually electronically transferred from lower
organisms such as S. cerevisiae. Figure 18(a) displays a subgraph of connected triangles
that relate to the process of spindle localization, a key component of cell division. The
kinetochore is a protein complex located in the pericentric region of DNA . It provides a
point where the microtubules of the spindles can attach. The aster is an array of micro-
tubules that emanate from a spindle pole but do not attach to kinetochores. This subgraph
suggests that asters and kinetochores together coordinate the localization of the spindle
during cell division. Figure 18(b) displays a network of connected triangles “rooted” at
the molecular function “GPI anchor transamidase activity”. GPI anchors attach membrane
proteins to the cell’s lipid bilayer. This subgraph highlights other relevant processes and
components involved in this function, e.g., the synthesis of phosphoinositides and the GPI
anchor transamidase complex.

6.1.0.2 Non-triangles. We observed that almost all pairs of terms connected by non-
triangle edges related to components, functions, and processes were unique to multi-cellular
and higher order organisms. This observation suggests that such concepts have not been
experimentally well-studied in all three categories of GO. Laminins are glycoproteins that
are major constituents of the basement membrane of cells. Figure 19(a) demonstrates that
the function of binding with laminins is intimately linked to a very large and diverse set
of processes: the development of the prostate and salivary glands, regulation of proteoly-
sis, and cell fate specification (the process involved in the specification of the identity of
a cell), to name just a few. Figure 19(b) relates the cell soma, which is the portion of the
cell bearing surface projections, to yet another large and diverse set of processes. These
processes include stem cell division, regulation of heart contraction, the maturation of hair
follicles, and biosynthesis of dopamine.
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(a) (b)

Fig. 19. Examples of non-triangles in the GO3 study.
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Fig. 20. The schema for the second case study involving human PPIs, stress gene expression data, and MSigDB
and GO functional annotations.

6.2 Stress Response in Human Cells

Our goal in this case study is to use CDM to understand the cellular contexts in which
genes regulated by external stresses operate. We gathered a diverse set of data types to
address this question. First, we obtained gene expression data characterizing responses
of HeLa cells and primary human lung fibroblasts to heat shock, endoplasmic reticulum
stress, oxidative stress, and crowding [Murray et al. 2004]. The dataset we analysed in-
cludes transcriptional measurements obtained by Whitfield et al. [2002] for studying cell
cycle arrest by using a double thymidine block or with a thymidine-nocodazole block.
Overall, the gene expression data involves 13 distinct stresses over the two cell types.
Next, we obtained a network of 31108 molecular interactions between 9243 human gene
products by integrating the interactions in the IDSERVE database [Ramani et al. 2005], the
results of large scale yeast two-hybrid experiments [Rual et al. 2005; Stelzl et al. 2005], and
20 immune and cancer signalling pathways in the Netpath database (http://www.netpath.
org). The IDSERVE database includes human curated interactions from BIND [Bader
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Table I. Statistics for the two case studies. We only display statistics for relationships involving genes. The first
column states the name of the relationship. The second column lists the number of distinct genes participating
in the relationship. The third column lists the number of participants from that relationship, whose type is given
in the fourth column. The fifth and sixth columns state the number of pairs and density of the relationship. The
database contains gene expression measurements for 13 different stresses, each comprising multiple time-points.

Name #Genes #Participants Domain type #Relationships Density
PPIs 9318 9318 Genes 45277 0.0005
Gene expression 13877 188 Timepoints 2420842 0.9279
Member of 15498 3307 GO Biological processes 301671 0.0059
Localized to 15498 657 GO Cellular components 171226 0.0168
Performs 15498 2618 GO Molecular functions 152246 0.0038
Member of 13197 1686 MSigDB pathways 106367 0.0048
Contains 9859 837 MSigDB Motifs 101523 0.0123
Belong to 29856 383 MSigDB Cytogenetic bands 60013 0.0052

et al. 2003], HPRD [Peri et al. 2003], and Reactome [Joshi-Tope et al. 2005], interac-
tions predicted based on co-citations in article abstracts, and interactions that transferred
from lower eukaryotes based on sequence similarity [Lehner and Fraser 2004]. Finally, we
derived information about cytogenetic bands, transcriptional motifs, and pathway mem-
bership from MSigDB [Subramanian et al. 2005] and functional annotations for the genes
in our network from the Gene Ontology (GO) [Ashburner et al. 2000]. Figure 20 displays
the database schema underlying this data and Table I summarizes important statistics about
this data.

Due to the multitude of data types available, we used a variety of algorithms for com-
puting biclusters. We adapted a home-grown closed itemset mining algorithm to compute
straddling biclusters. We used SAMBA [Tanay et al. 2002] to discover biclusters in gene
expression data. Since the human PPI network is quite sparse, we found that biclusters
in the “PPIs” relationship to be very small in size. Therefore, we simulated the process
of redescribing genes in SAMBA biclusters into genes in PPI biclusters by implementing
an expansion operator: for each SAMBA bicluster, we constructed a PPI sub-network that
included all genes in that bicluster with known PPIs. We connected pairs of these genes
either directly (if they were interacting) or indirectly (if they had a common neighbor).
Note that such PPI sub-networks may not be connected. The results we have presented
in Section 5 use these biclustering algorithms and expansion operations to showcase the
scalability of our CDM implementation for this case study.

A number of compositions we compute illustrate known themes about the cell’s response
to stress. For instance, it is well known that when targeted by a stress, the cell shuts
down the cell cycle in order to cope with the stress. Consistent with this observation,
we find that compositions containing SAMBA biclusters with down-regulated genes also
involve MSigDB pathways and GO biological processes related to various stages of the
cell cycle. In addition SAMBA biclusters with up-regulated genes often compose with
MSigDB pathways containing cell cycle regulators.

We highlight a CDM pattern that spans the “Gene Expression”, “PPIs”, “Member of”
(MSigDB pathways), and “Belongs to” (Stresses) relationships, thus connecting four entity
sets. The two MSigDB pathways in this pattern are “CMV HCMV TIMECOURSE ALL -
UP” and “GALINDO ACT UP”; we discuss them in more detail below. This composition
involves the response of fibroblasts to treatment with 2.5 mM dithiothreitol (DTT), which
is known to induce endoplasmic reticulum stress. The SAMBA bicluster contains six time
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Fig. 21. Stress response in human cells: a CDM pattern that sheds light on fibroblast response to endoplasmic
reticulum stress. This pattern involves four relationships: “Gene Expression” (left), “PPIs” (right), “Member of”
MSigDB pathways (not shown), and “Belongs to” stresses (not shown). See text for more details.

points (other than the “zero” point), all measuring the response to this stress. All genes
in the bicluster are up-regulated, as displayed in Figure 21. The figure also displays the
PPI sub-network corresponding to this bicluster. Here, a light green rectangle is a gene
present both in the SAMBA bicluster and the PPI network; a light green ellipse is a gene
present in addition in the MSigDB pathways that form this pattern; a white node is one that
is introduced by the expansion operator. The “CMV HCMV TIMECOURSE ALL UP”
pathway is a set of 470 genes up-regulated in fibroblasts following infection with human
cytomegalovirus [Browne et al. 2001]. The presence of this pathway in this pattern sug-
gests that the endoplasmic reticulum may be targeted by the virus during infection. We find
evidence in the literature supporting this CDM pattern. Ogawa-Goto et al. [2002] found
that p180, an integral endoplasmic reticulum membrane protein, interacts with a viral pro-
tein and that this interaction may play a role in the intracellular transport of the virus.
“GALINDO ACT UP” is a set of 88 genes significantly up-regulated by the toxin Act
in macrophages [Galindo et al. 2003]. This CDM pattern suggests that the inflammatory
response induced by this toxin may include stress to the endoplasmic reticulum.

Another pattern spans the same relationships and entity sets. It highlights the response
of HeLa cells to oxidative stress induced by administering hydrogen peroxide. As dis-
played in Figure 22, the genes in the SAMBA bicluster in this composition are heavily
down-regulated in response to this treatment. The expanded PPI sub-network contains
a number of proteins involved in apoptosis (programmed cell death). Not surprisingly,
one of the MSigDB pathways participating in this chain is the “CASPASEPATHWAY,”
which contain proteases active in apoptosis. Another MSigDB pathway that is involved
is “HIVNEFPATHWAY,” which is the pathway triggered by the HIV-1 protein Nef when
it induces the death of T cells. The intriguing aspect of this CDM composition comes
from the third MSigDB pathway: “ALZHEIMERS DISEASE UP”. Microarray analysis
defined this set of genes that are up-regulated in incipient Alzheimer’s disease [Blalock
et al. 2004]. Thus, the activity of these genes in the disease is exactly the opposite of their
regulation in response to oxidative stress. This CDM pattern may suggest a potential link
between Alzheimer’s disease and oxidative stress.

Can CDM patterns be obtained simply by computing functional enrichment? A natural
question that arises is whether patterns of the same expressiveness as those in Figures 21
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Fig. 22. Stress response in human cells: a CDM pattern that sheds light on Hela cell response to oxidative stress
and incipient Alzheimer’s disease. This pattern involves four relationships: “Gene Expression” (left), “PPIs”
(right), “Member of” MSigDB pathways (not shown), and “Belongs to” stresses (not shown). See text for more
details.

and 22 can be obtained simply by computing the enrichment of the other descriptors in the
SAMBA bicluster. We verified that this is not the case in each of the patterns above. Specif-
ically, the p-value of the redescription between the SAMBA bicluster and the MSigDB
pathway bicluster is poor (0.01 in the case of the pattern in Figure 21 and 0.9 in the case
of the pattern in Figure 22). Therefore, even though the gene interface is shared between
the SAMBA and the MSigDB pathway biclusters, we need the intermediate PPI bicluster
to form the CDM pattern.

7. RELATED RESEARCH

As proposed here, compositional data mining is a new analysis paradigm that subsumes
many data mining formulations such as association rule analysis [Agrawal and Srikant
1994], subspace clustering [Agrawal et al. 2005], inductive logic programming [Dzeroski
and Lavrac (editors) 2001; Muggleton 1999], and schema matching [Dhamankar et al.
2004; Rahm and Bernstein 2001]. It generalizes association rule mining in that it finds
two-way connections between sets of objects, rather than the one-sided implications mod-
eled by associations. It generalizes subspace clustering by identifying concerted subspaces
across multiple domains by navigating a general database schema. It generalizes induc-
tive logic programming by finding relational connections not between objects, but between
sets of objects. Finally, CDM generalizes schema matching by uncovering semantic map-
pings across domains, wherein the ‘schemas’ are generalized sets, not just attribute-based
partitionings.

The compositions computed by Proteus have similarities to the ‘chains of relations’ stud-
ied in Afrati et al. [2005]. Here the authors focus on compositions involving two relations
and study the problem of finding objects in one relation that, when projected onto the sec-
ond relation, satisfy a desired property. For properties of the induced graph that satisfy
anti-monotonicity constraints, they propose Apriori-like algorithms; for other properties,
they propose combinatorial optimization algorithms based on integer programming. Our
compositions, on the other hand, are based on enumerative generation by following a tem-
plate rather than finding the ‘best composition’ according to some optimization criteria.
It is an aspect of future work to push such constraints into the CDM pipeline, especially
to determine suitable abstractions like βρβs that can directly yield optimized chains. Fur-
thermore, we consider longer chains and allow greater laxity in how descriptors (called
“selectors” in [Afrati et al. 2005]) are defined.
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CDM shares many similarities to the ‘algebra of data mining’ recently proposed by
Calders et al. [2006]. Their intensional and extensional definitions of ‘regions’ mirror
the notion of descriptors, and their “bridges” from a data world to a region world are
similar to our mappings between the given database schema and the CDM schema. Using
a small set of mining operators, Calders et al. are able to cast many complex data mining
scenarios as compositions of their operators. Our work has similar motivations in the
compositional approach to data mining and the emphasis on sets of objects. However, the
two mining primitives used here are oriented toward supporting arbitrary relational set-
based compositions instead of the broad range of mining algorithms studied in [Calders
et al. 2006]. We also provide efficient algorithmic implementations of CDM whereas the
emphasis in [Calders et al. 2006] is on studying the complexity of answering different
classes of data mining queries.

The use of redescriptions to mediate compositions is similar to “soft joins” as used in the
WHIRL system [Cohen 2000] and set-based similarity joins as studied by Sarawagi and
Kirpal [2004]. CDM patterns are also similar to the work of Long et al. [2006] who cast
it as a problem of finding hidden structures in a multi-partite relation graph. However, the
work of Long et al. develops a specialized multi-clustering algorithm whereas we compo-
sitionally build upon algorithms that work with the individual domains and relationships.

8. DISCUSSION

This paper has presented a compositional approach to mining multi-relational patterns in-
volving sets and demonstrated its usefulness in two bioinformatics applications. We an-
ticipate that the approach presented here is a start to better conceptualization of biological
data mining problems and will spur further development of expressive primitives. Rather
than developing special purpose algorithms for every new type of dataset or analysis goal,
CDM encourages us to abstract out specifics of different biological contexts and think
modularly about analysis objectives. The work proposed here is also a precursor to design-
ing complex data mining applications over large community-maintained resources, such as
SGD [Christie et al. 2004], Wormbase [Chen et al. 2005], FlyBase [Drysdale and Crosby
2005], and TAIR [Huala et al. 2001]. Since many of these resources are typically orga-
nized using relational database technology. they constitute a fertile ground for information
integration and multi-relational knowledge discovery using Proteus.

CDM patterns can be viewed as answered to structured “fill-in-the-blanks” questions.
For instance, a biologist desiring to connect genes involved in response to oxidative stress
to Alzheimer’s disease can use the pattern from Figure 22 to identify the PPIs that might be
involved in this connection. Furthermore, among all the possible relationships that could
have been used to form this pattern, the fact that the PPI relationship is used suggests
that this connection is at the level of protein interactions. Instead, if the intermediate
bicluster were formed by MSigDB motifs, that would suggest a relationship at the level of
transcriptional regulation. Ongoing work addresses the use of CDM patterns to formulate
new hypotheses for specific biological problems.

In future work, we plan to expand the scope of CDM queries to involve arbitrary set
constructions as supported by a full-fledged redescription miner such as CARTwheels [Ra-
makrishnan et al. 2004] or BLOSOM [Zhao et al. 2006]. These, in turn, will require
more expressive biclustering algorithms that can accommodate richer constraints and work
concertedly with the redescription miner. Finally, although our ‘compose then compute’
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approach already avoids wasteful computation of biclusters, for other classes of queries
(e.g., one that requests chains involving only a given ‘seed’ set of genes), greater levels
of pruning in computed biclusters and redescriptions can be attained. Finally, we aim to
support a broader class of queries (e.g., counting and existence checks for compositional
patterns) that will support important multi-relational knowledge discovery tasks. This will
help make compositional data mining as seamless and natural as (compositional) database
querying.
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