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Modern studies of societal phenomena rely on the availability of large datasets capturing a�ributes and

activities of synthetic, city-level, populations. For instance, in epidemiology, synthetic population datasets are

necessary to study disease propagation and intervention measures before implementation. In social science,

synthetic population datasets are needed to understand how policy decisions might a�ect preferences and

behaviors of individuals. In public health, synthetic population datasets are necessary to capture diagnostic

and procedural characteristics of patient records without violating con�dentialities of individuals. To generate

such datasets over a large set of categorical variables, we propose the use of the maximum entropy principle

to formalize a generative model such that in a statistically well-founded way we can optimally utilize given

prior information about the data, and are unbiased otherwise. An e�cient inference algorithm is designed

to estimate the maximum entropy model, and we demonstrate how our approach is adept at estimating

underlying data distributions. We evaluate this approach against both simulated data and US census datasets,

and demonstrate its feasibility using an epidemic simulation application.

CCS Concepts: •Computing methodologies →Maximum entropy modeling; •Information systems
→Data mining;

Additional Key Words and Phrases: Multivariate Categorical Data, Synthetic Population, Maximum Entropy

Models, Probabilistic Modeling.

ACM Reference format:
Hao Wu, Yue Ning, Prithwish Chakraborty, Jilles Vreeken, Nikolaj Ta�i, and Naren Ramakrishnan. 2010.

Generating Realistic Synthetic Population Datasets. ACM Trans. Knowl. Discov. Data. 9, 4, Article 39

(March 2010), 22 pages.

DOI: 0000001.0000001

1 INTRODUCTION
Many research areas, e.g., epidemiology, public health, social science, study the behavior of large

populations of individuals under natural scenarios as well as under human interventions. A key
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need across these domains is the ready availability of realistic synthetic datasets that can capture

key a�ributes and activities of large populations.

For instance, in epidemiology, synthetic populations are necessary to study disease propagation

and intervention measures before implementation. Information from the US census is typically used

to model such synthetic datasets. In social science, synthetic populations are necessary to under-

stand how policy decisions might a�ect preferences and behaviors of individuals. Finally, in public

health, synthetic populations are necessary to capture diagnostic and procedural characteristics of

patient records without violating con�dentialities of individuals.

Typically, the constraints underlying synthetic population generation are assumptions on the

supporting marginal or conditional distributions. Although there exist prior studies in estimating

probability distributions subject to constraints (e.g., Monte Carlo methods), they are primarily

focused on continuous-valued data. Many domains on the other hand, such as those studied here,

feature the need for multi-dimensional categorical datasets.

As a case in point, in epidemiology, one important task is to simulate disease spread and potential

outbreaks on the city- or nation-level, and provide useful information to public health o�cials to

support policy and decision making. To make such simulations as accurate as possible, synthetic

populations that have the same structural and behavioral properties as the real population are

needed. In domains like health care, privacy is an additional issue motivating the design of synthetic

populations. In these applications, the necessary datasets to be generated can be represented as

tuples with categorical data a�ributes.

Motivated by these emerging needs, we focus our a�ention on constructing a generative model

that captures given characteristics of categorical population a�ributes, and best estimates the

underlying data generation distribution. However, modeling multi-dimensional categorical data

and estimating distributions can be quite challenging due to the exponential possibilities of data

spaces in terms of the number of dimensions of categorical data tuples. Although many dimension

reduction techniques [29] and pa�ern recognition algorithms [12, 28] have been proposed and

studied in many other machine learning and data mining research areas, it is di�cult to simply

apply them here in our problem se�ing. To address these challenges and di�culties, we take the

�rst step here to study this problem. To model categorical data with statistical constraints, we apply

the classical and statistically well-founded maximum entropy model. We construct a generative

maximum entropy model, which takes the data schema (the set of all categorical a�ributes that

appear in the data) and a set of constraint categorical pa�erns (a subset of categorical a�ributes with

corresponding probabilities of appearance in the data), as shown in Fig. 1, wherein the probabilities

of certain categorical pa�erns are required to satisfy given constraints. In this way, the maximum

entropy model maintains the selected characteristics of the underlying categorical data distribution.

By sampling the categorical tuples from the maximum entropy model, synthetic population datasets

can be generated as illustrated by Fig. 1.

Generally, solving maximum entropy models can be infeasible in practice. In this paper, we

show that by leveraging the structure of the categorical data space in our se�ing, the maximum

entropy model could be inferred quite e�ciently. We also propose a heuristic together with the

Bayesian information criterion (BIC) to select a simple as well as informative model. To summarize

our approach in a nutshell, our contributions are:

(1) We formalize the problem of generating synthetic population datasets via a generative

maximum entropy model for categorical data, which captures the statistical features of the

underlying categorical data distributions.
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categorical patterns 

data schema Maximum Entropy Model 

synthetic data 

Fig. 1. Process of generating realistic synthetic data with our proposed approach.

(2) By exploring the structure of the categorical data space, we propose a partition scheme to

make the maximum entropy model inference more e�cient than the general case. We also

present an e�cient graph-based model inference algorithm.

(3) We propose a BIC-based heuristic to perform model selection wherein the simple and

informative maximum entropy model will be chosen.

(4) Using results on both synthetic datasets and real US census data, we demonstrate that the

proposed maximum entropy model is capable of recovering the underlying categorical data

distribution and generating relevant synthetic populations.

2 PRELIMINARIES
Let A = {A1,A2, . . . ,Aq} denote a set of categorical random variables (or a�ributes), and R(Ai ) =
{a(i)

1
,a(i)

2
, . . . ,a(i)ki } represent the set of ki possible values for random variable Ai . Here, | · |, e.g.

|R(Ai )|, is used to represent the cardinality of a set.

By a random categorical tuple, we mean a vector of categorical random variables, e.g. T =
(A1,A2, . . . ,Aq), which is generated by some unknown probability distribution. �e notation

of T (Ai ) is used to represent the value of a�ribute Ai in tuple T . �e space of all the possible

categorical tuples is denoted by S = >q
i=1
R(Ai ), where

> · represents a series of Cartesian

product over the given sets. Given a categorical pa�ern, which is de�ned as an ordered set

X = (Ai | Ai ∈ C,C ⊆ A) over a subset of random variables C ⊆ A, let SX =
>

Ai ∈C R(Ai )
represent the space that contains all the possible values of pa�ern X . An instantiation of pa�ern X

is de�ned as x =
(
a(i)j | a

(i)
j ∈ R(Ai ),Ai ∈ C,C ⊆ A

)
, and X (Ai ) is used to represent the value of

a�ribute Ai in the pa�ern X .

For any pa�ern value x associated with pa�ern X , we use the notation of T = x if the corre-

sponding random variables in T equal to the values in x and p(T = x) to denote the probability of

T = x . Given a categorical dataset D, p̃(T = x | D) is used to denote the empirical probability of

T = x in the dataset D. An indicator function IX (T = x) : S → {0, 1} of pa�ern X , which maps a

categorical tuple to a binary value, is de�ned as:

IX (T = x) =
{

1, if T = x ,
0, otherwise.
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Table 1. Summary of frequently used notation.

Ai categorical random variable A a set of categorical random variable

a(i) value for random variable Ai R(Ai ) set of possible values for Ai
| · | set cardinality T random categorical tuple

T (Ai ) value of random variable Ai in T X categorical pa�ern

X (Ai ) value of Ai in pa�ern X x value instantiation of pa�ern X
S entire categorical tuple space SX categorical tuple space spanned by pa�ern X
p probability distribution p̃ empirical probability distribution

D categorical dataset H (p) entropy of probability distribution p
IX (·) indicator function of pa�ern X u,v maximum entropy model parameters

Given a probability distribution p over the categorical tuple space S, the entropy H (p) with

respect to p is de�ned as:

H (p) = −
∑
T ∈S

p(T ) logp(T ) .

�e maximum entropy principle states that among a set of probability distributions P that comply

with the given prior information about the data, the maximum entropy distribution

p∗ = argmax

p∈P
H (p)

will optimally use the current prior information and best summarize the data. Otherwise, it is fully

unbiased. Table 1 summarizes the frequently used notations in this paper.

Problem Statement. Given a set of categorical pa�erns X with associated empirical probabilities

as the prior information of a dataset, �nd a probabilistic model p that best utilizes the given prior

information and helps regenerate categorical datasets that conform to the given prior information.

3 CATEGORICAL MAXIMUM ENTROPY MODEL
3.1 Model Specification
Suppose we have a set of categorical pa�erns X = {Xi | i = 1, 2, . . . ,n} and an associated set of

empirical probabilities P̃ = {p̃(T = x i, j | D) | x i, j ∈ SXi , i = 1, 2, . . . ,n} as prior information about

dataset D. Here, x i, j denotes the jth value of the pa�ern Xi . Notice that it is not necessary that

every possible value of pa�ern Xi in SXi is provided as part of the prior information here. Such

prior information identi�es a group of probability distributions P over S which agree with the

empirical probabilities of the given categorical pa�erns. �at is:

P =
{
p | p(T = x i, j ) = p̃(T = x i, j | D),∀Xi ∈ X, p̃(T = x i, j | D) ∈ P̃

}
. (1)

Following the maximum entropy principle [5], for all p ∈ P, we are particularly interested in the

maximum entropy distribution which optimally represents the given prior information. �e famous

theorem proved by Csiszár [5] (�eorem 3.1) shows that the maximum entropy distribution has an

exponential form. In our categorical scenario, the maximum entropy distribution could be wri�en

as

p∗(T ) = u0

∏
Xi ∈X

∏
x i, j ∈SXi

(
ui, j

) IXi (T=x i, j ) , (2)

where ui, j ∈ R are the model parameters associated with each model constraint speci�ed in

Equation (1), and u0 is the normalizing constant.
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ALGORITHM 1: Sampling random categorical tuples

input :Maximum Entropy model p∗.
output :A random categorical tuple T .

1 T ← ∅;

2 foreach Ai ∈ A do
3 foreach a

(i)
j ∈ R(Ai ) do

4 compute the conditional probability p∗(a(i)j | T );
5 T (Ai ) ← Sample(R(Ai ), {p∗(a(i)j | T )});

6 return T ;

3.2 Incorporating Individual A�ribute Frequencies
�e frequencies of individual a�ributes play an important role in the pa�ern analysis and discovery.

Such frequencies characterize the a�ribute marginal distributions which convey basic information

about the data currently under investigation, and yet are relatively easy to calculate from the data.

Incorporating such individual a�ribute frequencies will enrich the categorical maximum entropy

model, and make it more informative.

Although such individual a�ribute frequencies can be treated as part of the categorical pa�ern set

X, considering the computation e�ciency which will be explained in detail in the next section, the

categorical maximum entropy model treats them separately. Let vi, j denote the model parameters

corresponding to the individual a�ribute constraints, then, the maximum entropy distribution can

be factorized as:

p∗(T ) = u0

∏
Xi ∈X

∏
x i, j ∈SXi

(
ui, j

) IXi (T=x i, j ) × ∏
Ai ∈A

∏
aj ∈R(Ai )

(
vi, j

) IAi (T=aj ) . (3)

Notice that the second component involved with vi, j also follows the exponential form described

in Equation (2). By introducing a normalizing constant v0, an independent maximum entropy

distribution pA(T ) that only involves individual a�ribute constraints could be de�ned as:

pA(T ) = v0

∏
Ai ∈A

∏
aj ∈R(Ai )

(
vi, j

) IAi (T=aj ) . (4)

Combining Equation (3) and (4), the maximum entropy distribution that incorporates individual

a�ribute frequencies would be speci�ed as:

p∗(T ) = pA(T )
u0

v0

∏
Xi ∈X

∏
x i, j ∈SXi

(
ui, j

) IXi (T=x i, j ) . (5)

3.3 Sampling Categorical Tuples from the Model
�e ideal way to sample categorical tuples from the model would be �rst computing the probabilities

for each tuple T ∈ S under the maximum entropy distribution p∗, and then sampling the tuples

from the complete tuple space S based on their probabilities. However, such straightforward

approach is not feasible in practice when S is large enough.

Instead, we propose an a�ribute-wise sampling approach. Algorithm 1 summarizes the procedure

that generates random categorical tuples from the maximum entropy model p∗. To sample random

tuples, we take the following steps. Starting with a empty categorical tuple T (line 1), for each

categorical a�ribute Ai ∈ A, we compute the probability of each possible value a(i)j ∈ R(Ai )
conditioned on those a�ribute values we have already sampled in tuple T (line 3 – 4). Based on
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ALGORITHM 2: Iterative Scaling for Categorical Maximum Entropy Model

input :A set of categorical pa�erns X, and associated empirical probabilities P̃ .

output :�e maximum entropy model p∗.

1 Initialize p(T ) = 1

|S | ,∀T ∈ S;

2 while p is not converged do
3 foreach Xi ∈ X do
4 foreach x i, j ∈ SXi s.t. p̃(T = x i, j ) ∈ P̃ do
5 Compute p(T = x i, j );
6 ui, j ← ui, j ·

p̃(T=x i, j |D)
p(T=x i, j ) ·

1−p(T=x i, j )
1−p̃(T=x i, j |D) ;

7 u0 ← u0 ·
1−p̃(T=x i, j |D)

1−p(T=x i, j ) ;

8 return p;

the conditional probability distribution just calculated for a�ribute Ai , the value of Ai in tuple T is

randomly sampled from its range R(Ai ) (line 5). Notice that the order of selecting a�ributes could

be random, and from statistical point of view, this should not a�ect the sampling result.

4 MODEL INFERENCE
In this section, we develop an e�cient algorithm to infer the categorical maximum entropy model.

To infer the categorical maximum entropy model, we need to �nd the values of model parameters

u0 and ui, j (also v0 and vi, j if individual a�ribute constraints are involved). Our algorithm is built

on the well-known Iterative Scaling [6] framework, which is described in Algorithm 2. �e general

idea of the algorithm is that starting from the uniform distribution, it iteratively updates each model

parameter to make the distribution satisfy the corresponding constraint until it converges to the

maximum entropy distribution. �e proof of convergence for the Iterative Scaling algorithm is out

of the scope for this paper. Readers who are interested in the proof of convergence can refer to the

paper by Darroch and Ratcli� [6] for details. A crucial step in the Iterative Scaling algorithm is to

compute the probability of every categorical pa�ern Xi = x i, j ∈ X under the current estimation of

maximum entropy distribution p, which could be simply calculated as p(T = x i, j ) =
∑
p(T ) where

IXi (T = x i, j ) = 1. However, such straightforward strategy is infeasible in our problem se�ing since

it will result a computational complexity of

∏
Ai ∈A |R(Ai )| for a single model parameter update.

In fact, querying maximum entropy models has been shown to be PP-hard [30]. To overcome such

challenge, we present our proposed e�cient model inference algorithm in the rest of this section.

4.1 E�icient Model Inference
In order to e�ciently query the maximum entropy model during the iterative updates of the model

parameters, we need to explore the particular structure of the tuple space S determined by the

given pa�ern set X. We will start with the simpler case where individual a�ribute constraints

are not involved. A�er examining the exponential form of the maximum entropy distribution in

Equation (2), we observe that for any two categorical tuplesT1 andT2 in S, if they contain the same

subset of categorical pa�erns inX, they will have the same probability under the maximum entropy

distribution inferred based on X. In other words, ∀T1,T2 ∈ S, if IXi (T1 = x i, j ) = IXi (T2 = x i, j )
holds true for all Xi ∈ X and p̃(T = x i, j | D) ∈ P̃ , then p∗(T1) = p∗(T2). Based on such observation,

we have the following de�nition of tuple block.

De�nition 4.1. A tuple block B is a set categorical tuples such that ∀T1,T2 ∈ B, IXi (T1 = x i, j ) =
IXi (T2 = x i, j ) holds true for all Xi ∈ X, x i, j ∈ SXi ,and p̃(T = x i, j | D) ∈ P̃ .
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ALGORITHM 3: Constructing the tuple block graph

input :A set of categorical pa�erns X, and associated empirical probabilities P̃ .

output : tuple block graph G.

1 Let G ← {∅};
2 foreach Xi ∈ X,x i, j ∈ SXi s .t . p̃(T = x i, j ) ∈ P̃ do
3 foreach Bk ∈ G do
4 Bnew ← createBlock(Bk ,Xi);

5 if Bnew , Null then
6 findPosition(∅, Null, Bnew);

7 return G;

With the de�nition of tuple block, we could partition the entire categorical tuple space into

several tuple blocks. When |X| � |A|, the partition scheme introduced here could greatly reduce

the dimensionality of the space we are working on. Here, we use BX to denote the tuple block space

generated based on pa�ern set X. Also, the de�nition of tuple block let us extend the indicator

function de�ned over tuple space to the domain of tuple block, which is de�ned as:

IXi (B | x i, j ) = IXi (T = x i, j ), ∀Xi ∈ X,T ∈ B.
By introducing tuple blocks, we transfer the problem of computing categorical pa�ern probability

p(T = x i, j ) on tuple space to the block space, which makes it possible to calculate p(T = x i, j ) in a

reasonable time. In the context of tuple blocks, the pa�ern probability p(T = x i, j ) would be

p(T = x i, j ) =
∑

B∈BX,
IXi (B |x i, j )=1

p(B) ,

where p(B) is the probability for tuple block B. Since the probabilities for the categorical tuples

within the same block are all the same, the probability for the tuple block B is de�ned as:

p(B) =
∑
T ∈B

p(T ) = |B | × u0

∏
Xi ∈X

∏
x i, j ∈SXi

(ui, j )IXi (B |x i, j ) .

Now, our problem comes down to how to organize the tuple block space BX and e�ciently

compute the number of categorical tuples in each block, or in other words, the size |B | of each tuple

block B. In order to achieve that, we introduce a partial order on BX . Let

a�r(B) =
⋃

Xi ∈X,
IXi (B |x i, j )=1

Xi ,

which represents the set of a�ributes involved by the categorical pa�erns that tuple block B contain.

�en, we have the de�nition about the partial order over BX as described below.

De�nition 4.2. Given any tuple blocks B1,B2 ∈ BX , B1 ⊆ B2 if and only if the following conditions

hold true:

(1) a�r(B1) ⊆ a�r(B2);
(2) B1(Ak ) = B2(Ak ), ∀Ak ∈ a�r(B1) ∩ a�r(B2).

Here, B(Ak ) denotes the value of a�ribute Ak in the tuple block B. It is easy to verify that De�ni-

tion 4.2 satis�es the property of re�exivity, antisymmetry and transitivity.

With the partial order ⊆ de�ned on BX here, it is natural to organize the tuple blocks into a

hierarchical graph structure. �at is, if tuple block Bk ⊆ Bl , block Bl is organized as the child

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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ALGORITHM 4: �ndPosition procedure

input :Current block Bcurr , last visited block Blast , new block Bnew .

output :Success or Fail.

1 if Bnew and Bcurr are the same then
2 return Success;
3 else if Bnew ⊆ Bcurr then
4 child(Blast ) ← child(Blast ) \ {Bcurr };
5 child(Bnew) ← child(Bnew) ∪ {Bcurr };
6 child(Blast ) ← child(Blast ) ∪ {Bnew};
7 return Success;
8 else if Bcurr ⊆ Bnew then
9 if child(Bcurr ) = ∅ then

10 child(Bcurr ) ← child(Bcurr ) ∪ {Bnew};
11 return Success;
12 else
13 failBlock ← InsertDescendant(Bnew , Bcurr);

14 checkDescendant(failBlock, Bnew);

15 return Success;
16 return Fail;

17 Procedure InsertDescendant(Bnew , Bcurr):
18 failBlock ← ∅, accu← Fail;

19 foreach Bk ∈ child(Bcurr ) do
20 r ← findPosition(Bk , Bcurr , Bnew);

21 if r = Success then
22 accu← Success;

23 else
24 failBlock ← failBlock ∪ {Bk };
25 if accu = Fail then
26 child(Bcurr ) ← child(Bcurr ) ∪ {Bnew};
27 return failBlock;

of block Bk . Algorithm 3 illustrates how such block graph is constructed and maintained. �e

algorithm starts with the graph that has only one block represented by ∅ indicating that none

of the categorical pa�erns is involved in this block (line 1). We will refer this block as root block

in the rest of this section. �en, for each of the categorical pa�ern Xi ∈ X and its possible value

x i, j , we a�empt to create a new tuple block by merging it with every existing block Bk from

root level to leaf level (without child blocks) in the current block graph G if they are compatible

(line 4). A categorical pa�ern Xi is not compatible with tuple block Bk if a�r(Bk ) ∩ Xi , ∅, and

∃Ai ∈ a�r(Bk ) ∩ Xi such that Bk (Ai ) , Xi (Ai ). If a new tuple block Bnew is created, it is obvious

that for all Xl ∈ X, IXl (Bk | x l, j ) = 1, we have IXl (Bnew | x l, j ) = 1 and also IXi (Bnew | x i, j ) = 1.

Finally, the new tuple block Bnew will be added into the current block graph G based on the partial

order described in De�nition 4.2 (line 6).

To be more speci�c, Algorithm 4 illustrates how the procedure �ndPosition inserts a new tuple

block into the block graph G in a recursive manner. Depending on the relationship between the

current block Bcurr we are visiting and the new block Bnew , the insertion operation could be classi�ed

into four scenarios.
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𝑎1𝑏0XXXX|𝑋1 

Attributes: {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} 
Number of values: 2, 3, 2, 2, 3, 4 

Pattern sets & their values: 
   𝑋1 = 𝐴, 𝐵 = { 𝑎1, 𝑏0 , (𝑎0, 𝑏1)} 
   𝑋2 = 𝐵, 𝐶 = 𝑏0, 𝑐0 , 𝑏1, 𝑐1  
   𝑋3 = 𝐶,𝐷 = {(𝑐1, 𝑑0)} 

XXXXXX|∅ Empty model: 

Adding 𝑿𝟏: XXXXXX|∅ 𝑎0𝑏1XXXX|𝑋1 merge with 

𝑎1𝑏0XXXX|𝑋1 𝑎0𝑏1XXXX|𝑋1 

XXXXXX|∅ 

𝑎1𝑏0XXXX|𝑋1 𝑎0𝑏1XXXX|𝑋1 

Adding 𝑿𝟐: 

X𝑏1𝑐1XXX|𝑋2 

X𝑏0𝑐0XXX|𝑋2 merge with 

X𝑏1𝑐1XXX|𝑋2 X𝑏0𝑐0XXX|𝑋2 

𝑎0𝑏1𝑐1XXX|𝑋1𝑋2 𝑎1𝑏0𝑐0XXX|𝑋1𝑋2 

Adding 𝑿𝟑: XXXXXX|∅ 

𝑎1𝑏0XXXX|𝑋1 𝑎0𝑏1XXXX|𝑋1 X𝑏1𝑐1XXX|𝑋2 X𝑏0𝑐0XXX|𝑋2 

𝑎0𝑏1𝑐1XXX|𝑋1𝑋2 𝑎1𝑏0𝑐0XXX|𝑋1𝑋2 

XX𝑐1𝑑0XX|𝑋3 
merge with 

XX𝑐1𝑑0XX|𝑋3 

𝑎0𝑏1𝑐1𝑑0XX|X1𝑋3 

𝑎0𝑏1𝑐1𝑑0XX|𝑋1𝑋2𝑋3 

𝑎1𝑏0𝑐1𝑑0XX|X1𝑋3 X𝑏1𝑐1𝑑0XX|X2𝑋3 

Fig. 2. Example of constructing the tuple block graph on a toy dataset with 6 a�ributes and 3 categorical
pa�erns. The blocks marked with red denote the new tuple blocks created in each iteration by adding new
categorical pa�erns.

Case 1: Bnew and Bcurr are the same tuple block. Two tuple block Bk and Bl are considered to be the

same if they cover the same set of categorical pa�erns, e.g. ∀Xi ∈ X,x i, j ∈ SXi s .t . p̃(T = x i, j ) ∈ P̃ ,

we have IXi (Bk | x i, j ) = IXi (Bl | x i, j ). Since block Bnew and Bcurr are the same and Bcurr is already

part of the block graph, inserting Bnew into block graph is not necessary any more. �us, we simply

return Success in this scenario (line 1 – 2).

Case 2: Bnew ⊆ Bcurr . In this case, the new tuple block Bnew should be inserted between block Blast
and Bcurr , where Blast is the last visited tuple block. To achieve this, block Bcurr is �rst removed

from the child block set of Blast , and added as a child block of Bnew . Finally, the new block Bnew is

inserted as a child block of Blast , and Success is returned (line 3 – 7).

Case 3: Bcurr ⊆ Bnew . In this scenario, the new tuple block Bnew should be inserted as a descendant

of the current block Bcurr . Depending on whether the block Bcurr has any child blocks, the insertion

operation can be further divided into two sub-cases:

• Case 3.1: block Bcurr has no child block. In this scenario, the new block Bnew is directly

inserted as a new child of Bcurr (line 9 – 11);

• Case 3.2: block Bcurr has child blocks. �en, for each child block of Bcurr , the �ndPosition
procedure is recursively performed to �nd the correct position to insert block Bnew (line 19

– 24). If none of these operations succeeds, block Bnew will be inserted as a new child block

of Bcurr (line 25 – 26). At last, the descendants of the child blocks of Bcurr on which the

�ndPosition procedure failed to insert the block Bnew are further examined to see whether

any of them could satisfy the partial order with block Bnew and be added as a child block of

Bnew (line 14, checkDescendant procedure).

Case 4: Bnew does not have any particular relationship with Bcurr . In this case, nothing needs to

done with the tuple blocks Bcurr and Bnew , and Fail is simply returned to indicate that the a�empt

to insert block Bnew is failed.

Figure 2 shows an example of constructing such hierarchical block graph on a small toy dataset

with 6 a�ributes and 3 categorical pa�erns. With the block graph G, the size of the tuple block

could be easily calculated using the set inclusion-exclusion principle. We �rst de�ne the cumulative

size of a tuple block B, which is given by

cum(B) =
∏

Ai ∈A\a�r(B)
|R(Ai )| .
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ALGORITHM 5: computeBlockSize procedure

input : tuple block graph G, current visited block Bcurr .
output :Block size for each B ∈ BX .

1 cum(Bcurr ) ←
∏

Ai ∈A\a�r(Bcurr )
|R(Ai )|;

2 if child(Bcurr ) = ∅ then
3 |Bcurr | ← cum(Bcurr );
4 return;

5 foreach Bk ∈ child(Bcurr ) do
6 computeBlockSize(G, Bk);

7 |Bcurr | ← cum(Bcurr ) −
∑

Bk ∈desc(Bcurr )
|Bk |;

8 return;

�en the actual block size for block B could be computed as

|B | = cum(B) −
∑

Bk ∈BX,B⊆Bk

|Bk | .

In the block graph G, the tuple blocks that satisfy Bk ∈ BX,B ⊆ Bk are simply those descendant

blocks of B. Algorithm 5 describes the procedure of computing block size for each tuple block in

BX with the block graphG , where desc(B) represents the set of descendant blocks of B in the graph

G.

When individual a�ribute constraints are taken into account, the problem becomes a li�le more

complicated. However, it is obviously not feasible to combine the individual a�ribute constraints

with the categorical pa�ern constraints together and construct the tuple block graph. �is will make

the tuple block space blow up. Instead, as we mentioned previously in Section 3, the individual

a�ribute constraints are modeled with a separate maximum entropy distribution pA , de�ned in

Equation (4), which only considers these constraints. �e block graph G is still constructed based

on the categorical pa�erns in X, which will exactly have the same structure as before. In this case,

following the same logic, the probability for tuple block B becomes

p(B) = pA(B) ·
u0

v0

·
∏
Xi ∈X

∏
x i, j ∈SXi

(ui, j )IXi (B |x i, j ) ,

where pA(B) =
∑
T ∈B pA(T ) denotes the probability of tuple block B under the separate maximum

entropy distribution pA . �us, the problem of computing the probability p(T = x i, j ) becomes

calculating probabilities of tuple blocks pA(B) for each B ∈ BX . Since pA only takes the individual

a�ribute constraints into account, every a�ribute is independent of each other under the maximum

entropy distribution pA . Similar to the cumulative size of a tuple block, we de�ne the cumulative

probability of a tuple block under pA as

p(c)A (B) =
∏

Ai ∈a�r(B)
pA

(
T = a(i)j

)
,

where a(i)j is the value of a�ribute Ai associated with tuple block B. With the exponential form

described in Equation (4), it is not di�cult to verify that the probability ofT = a(i)j under maximum

entropy distribution pA is:

pA
(
T = a(i)j

)
=

vi, j∑ki
l=1

vi,l
.
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Again, to compute pA(B) for all B ∈ BX with the set inclusion-exclusion principle, we could

directly apply the computeBlockSize procedure with |B | and cum(B) replaced by pA(B) and p(c)A (B)
respectively.

Notice that the model parameters vi, j also need to be updated in the Iterative Scaling framework.

However, the block graphG is constructed without considering individual a�ribute pa�erns, which

makes it di�cult to compute the probabilities of these individual a�ribute pa�erns under the

maximum entropy model directly from the block graph G. In order to get these probabilities, we

treat these individual a�ribute pa�erns as arbitrary categorical pa�erns and query their probabilities

from the maximum entropy model. �e detail of querying the maximum entropy model will be

described in the next section.

Finally, the model inference algorithm could be further optimized in the following way. Suppose

the categorical pa�erns in X could be divided into two disjoint groups, e.g. X1,X2 ⊂ X and

X1 ∪ X2 = X such that ∀X1 ∈ X1,∀X2 ∈ X2 we have X1 ∩ X2 = ∅. In this case, the maximum

entropy model p∗X over X could be factorized into two independent components p∗X1

and p∗X2

such

that p∗X = p∗X1

· p∗X2

. Furthermore, p∗X1

and p∗X2

only rely on pa�ern set X1 and X2, respectively.

Such decomposition greatly reduces the sizes of tuple block spaces BX1
and BX2

compared to the

original BX , and could also be extended to the scenario when there are multiple such disjoint

pa�ern groups. Due to the independence between these maximum entropy components, they can

also be inferred parallelly to further speed up the model inference process.

4.2 �erying the Model
Given an arbitrary categorical pa�ernX ′ < X with associated valuex ′, to query its probability under

the maximum entropy distribution p∗, we perform the following operations. LetX′ = X∪{X ′}, and

a temporary tuple block graphG ′ is constructed by applying the procedure described in Algorithm 3

over categorical pa�ern set X′. �en the size of each tuple block in graphG ′ is computed by calling

computeBlockSize procedure, and the probability of categorical pa�ern X ′ is given by

p∗(T = x ′) =
∑

B∈BX′
IX ′ (B |x ′)=1

p∗(B) .

4.3 Computational Complexity
Constructing the tuple block graph (Algorithm 3) requires |BX | insertion operations. Since the

block graph has a hierarchical structure, let’s de�ne the depth of the tuple block graph as the

maximum number of hops (parent-child relationship) from the root block ∅ to the leaf block. Notice

that the parent-child relationship between tuple blocks in the graph is based on the partial order

described in De�nition 4.2, which indicates that the maximum possible depth of the tuple block

graph would be |A|. �us, the complexity of constructing the tuple block graph in the worst case

would be O(|A| · |BX |). When inferring the maximum entropy model, the probability of each

tuple block needs to be calculated for each model parameter update (Algorithm 5), which results

a complexity of O(|BX |). If we let N denote the number of model parameters, the complexity

of inferring the maximum entropy model would be O(K · N · |BX |), where K is the number of

iterations required for the proposed inferring algorithm to converge.

5 MODEL SELECTION
In order to discover the most informative prior information from the pa�ern set X, we adopt the

Bayesian Information Criterion (BIC), de�ned as:

BICX = −2 logLX + N · log |D | ,
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where logLX denotes the log-likelihood of the maximum entropy model inferred over the pa�ern

set X, N represents the number of model parameters, and |D | is the number categorical tuples

in the dataset D. With the exponential form of the maximum entropy distribution speci�ed in

Equation (2), its log-likelihood given dataset D is equal to

logLX =
∑
T ∈D

logp∗(T ) = |D |
(

logu0 +
∑
Xi ∈X

∑
x i, j ∈SXi

p̃(T = x i, j | D) · logui, j

)
.

�e ideal approach to select the most informative categorical pa�erns from the pa�ern set X
would be �nding a subset of X that minimizes the BIC score of the model. However, notice that this

approach involves a number of model inference operations which is proportional to the number of

subsets of X. Considering the computation required for the model inference, this method may be

infeasible in practice. Hence, we resort to heuristics. Basically, what we desire are the pa�erns

whose empirical probabilities diverge most from their probabilities under current maximum entropy

model. In this case, they will contain the most new information compared to what the model

already knows. �us, we borrow the idea from Kullback-Leibler (KL) divergence, where we make

the probability of the categorical pa�ern X under consideration as one term and the rest of the

probability mass as the other term. To be more speci�c, the heuristic we use is de�ned as

h(α , β) = α log

α

β
+ (1 − α) log

1 − α
1 − β .

Instead of directly searching in the space of power set of X, we adopt an iterative search strategy.

Starting from the empty model without any prior information, in each iteration, we choose the

pa�ern X ∈ X that maximizes the heuristic h(p∗(T = x), p̃(T = x | D)) to update the current

maximum entropy model. Here, p∗(T = x) and p̃(T = x | D) denote the probability of pa�ern

X under current maximum entropy model and its empirical probability in the given dataset D,

respectively. As the model incorporates more and more pa�erns in X, it becomes more certain

about the data, and the negative log-likelihood decreases. However, the model becomes more

complicated at the same time, and the penalty term in BIC becomes large. �is procedure continues

until the BIC score does not decrease any more.

6 EXPERIMENTAL RESULTS
6.1 Synthetic Data Generation
To evaluate the proposed maximum entropy model against the true generating distribution of

categorical data, we generate synthetic datasets. Usually when the entire categorical data space

is large, it is infeasible to specify an exact generating distribution for categorical data. �us, we

generate the synthetic data D with the following approach.

A set of categorical a�ributes A is �rst generated, and the number of possible values for

each a�ribute Ai ∈ A is randomly sampled from a given range. Each categorical a�ribute Ai is

associated with a random generated probability distribution (marginal distribution) that speci�es

the probability of each possible value of Ai . In order to enforce dependencies between a�ributes, a

set of categorical pa�erns X is generated and each of these pa�erns is associated with a probability.

To generate a categorical tuple in the synthetic dataset, we sample from a Bernoulli distribution

parameterized by the pa�ern frequency of each X ∈ X to determine whether this tuple should

contain this pa�ern or not. If con�icts occur, the current pa�ern X will not be added into the

tuple. For the rest of the a�ributes that are not covered by any of these pa�erns in X, their values

in the generated categorical tuple are sampled independently from their corresponding marginal

distributions respectively. Such process is repeated to obtain the desired number of categorical
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Fig. 3. The gain of the log-likelihood of the full model and heuristic model compared to the base line model.
The blue line and orange line are so close that they overlap with each other in some iterations. Also notice
that orange line for heuristic model stops early due to the model selection with BIC.

tuples in the synthetic dataset. In our experiments, we set |A| = 100, |X| = 50, and |D | = 10, 000.

All the experiments were conducted on a 80-core Xeon 2.4 GHz machine with 1 TB memory, and

the results were averaged across 40 independent runs.

6.2 Results on Synthetic Data
We �rst verify that the heuristic function h(α , β) proposed in Section 5 could discover the most

informative pa�erns from X based on the current knowledge that the model already knows. We

refer the maximum entropy model inferred with entire pa�ern set X and all the individual a�ribute

frequencies as full model, and the maximum entropy model selected by the heuristic and BIC as

heuristic model. Notice that in the heuristic model, individual a�ribute frequencies are also taken

into account. In this experiment, we iteratively updated the model with the pa�erns in X, and

measured the log-likelihood in each iteration. However, using BIC to select the model may result

di�erent number of pa�erns incorporated over di�erent synthetic datasets. �us, we report the

results over a single synthetic dataset here. For the full model, the pa�ern in X that maximized the

log-likelihood in each iteration was selected and added to the model.

Figure 3 illustrates the gain of the log-likelihood as the model incorporates more and more

pa�erns in X. As expected, the gain of the log-likelihood of the full model is larger in some

iterations since it identi�es the optimal pa�ern in each iteration with respect to the likelihood. We

also observe that although not optimal, the log-likelihood of the heuristic model approximates

that of the full model quite well, which demonstrates that the proposed heuristic successfully

identi�es the relatively informative pa�erns in each iteration. In the last few iterations, the gain of

log-likelihood of the full model barely changes. �is indicates that the pa�erns selected in these

iterations are less informative or even redundant.

To assess the quality of the reconstruction, we aim to apply the KL divergence measure. However,

in practice, it is very di�cult to compute the KL divergence between the entire maximum entropy

distribution and data generating distribution for the categorical data due to the large categorical

tuple space. As a trade o�, we use the probabilities of pa�erns in pa�ern set Y to characterize the

probability distributions for categorical data in both scenarios, and de�ne the following approximate
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Table 2. Comparison of the approximate KL-divergence measure between full model, heuristic model and
baseline model. Standard errors are shown in the parentheses.

full model heuristic baseline

All

K̂L(p∗,p ′) 0.006013 0.009344 1.8126

(0.01983) (0.02516) (0.3534)

K̂L(p̃ ,p ′) 0.1767 0.1840 1.9823

(0.02404) (0.02805) (0.3600)

Multi-a�ribute

K̂L(p∗,p ′) 0.005871 0.009204 1.8126

(0.01974) (0.02501) (0.3534)

K̂L(p̃ ,p ′) 0.02837 0.03322 1.8330

(0.01685) (0.02339) (0.3579)

Table 3. Comparison of model preparation time (tpre), model inference time (tinfer ) and data sampling time
(tsample) between full model and heuristic model (in seconds). Standard Errors are shown in the parentheses.

tpre tinfer tsample

full model

2750.432 22.553 1.828

(1512.416) (14.341) (1.002)

heuristic model

15.103 11.150 0.488
(7.844) (6.549) (0.234)

KL-divergence measure:

K̂L(p∗,p ′) =
∑
X ∈Y

[
p∗(X ) log

p∗(X )
p ′(X ) + (1 − p

∗(X )) log

1 − p∗(X )
1 − p ′(X )

]
.

Here, p∗ and p ′ denote the maximum entropy distribution and data generating distribution respec-

tively, and pa�ern set Y could be only categorical pa�ern set X or X ∪ A if individual a�ribute

frequencies are considered. We also compute the K̂L(p̃,p ′) to compare the empirical probability

distribution, say p̃, in the samples generated by the categorical maximum entropy model with the

true data generating distribution. In this experiment, we computed K̂L(p∗,p ′) and K̂L(p̃,p ′) for both

full model and heuristic model. For comparison purpose, we used independent a�ribute model

pA where each categorical a�ribute is independent of each other as the baseline model. For each

of these models under consideration, 1000 categorical data samples were generated to compute

empirical probability distribution p̃.

Table 2 compares these approximate KL-divergence measures for the scenarios whereY = X∪A
(row All in Table 2) and Y = X (row Multi-a�ribute in Table 2). In Table 2, the small approximate

KL-divergence values for the full model and the heuristic model in the row All indicate that the

categorical maximum entropy distributions converge to the underlying data generation distribution,

and the samples generated by these two models successfully maintain the properties of the data

generation distribution. More important, the small approximate KL-divergence values in the row

Multi-a�ribute of Table 2 also indicate that the inferred categorical maximum entropy models

successfully capture the various multivariate dependencies among multiple categorical a�ributes.

All these results demonstrate that our model is capable of recovering the true categorical data
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Fig. 4. The gain of the negative log-likelihood of the model compared to the baseline model (model at iteration
0) over the Virginia ACS summary data. The data point marked with cross denotes the negative log-likelihood
of the full model where all the categorical pa�erns in Virginia ACS summary data are considered.

distribution and maintaining its dependency structures. When compared to the baseline model,

our model outperforms several magnitudes in term of estimation accuracy.

We also measure the time required to prepare the pa�ern set that serves as prior information of

the model tpre , the time to infer the maximum entropy model tinfer , and the time to sample a single

categorical tuple from the model tsample . Here, for the full model, tpre refers to the time required

to arrange the pa�ern set X into the same order used in the iterative model update procedure in

the �rst experiment where the categorical pa�ern that maximizes the log-likelihood is chosen in

each iteration. Table 3 compares the runtime performance between the full model and the heuristic

model. With the informative as well as simple model selected by the heuristic function h(α , β) and

BIC, the heuristic model requires much less time to infer the maximum entropy distribution and

sample categorical tuples from the model.

6.3 Results on Real Data
To evaluate the performance of the proposed categorical maximum entropy model on real data, we

study the problem of generating synthetic populations with US census data. Speci�cally, we use the

2012 American Community Survey (ACS) 1-year summary data [33], which contains aggregated

statistics about age, sex, race, income, and many other features. Some of these features, e.g. sex and

race, are perfect categorical a�ributes for the proposed maximum entropy model. Although some

other features, e.g. age and income, are numerical, they are binned into several ranges based on

their values, and treated here as categorical a�ributes.

In our experiments, we chose the state of Virginia as our study case. Among all the features

in the ACS summary data, we selected sex, age, race, income, occupation, marital status, means
of transportation to work, education level, and health insurance coverage as the set of categorical

a�ributes. We converted the corresponding aggregated statistics in the ACS summary data into

categorical pa�erns, and inferred the heuristic model over these pa�erns. Figure 4 describes the

gain of the log-likelihood of the heuristic model, and the approximate KL-divergence measure

between the inferred maximum entropy distribution and the empirical data distribution in the

Virginia ACS summary data is 0.0001975. Notice that in Figure 4, the last data point marked with

a cross indicates the gain of the log-likelihood of the full model where all the categorical pa�erns
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Table 4. Top categorical pa�erns selected by the heuristic model from the Virginia ACS summary data.

pa�erns number of possible values number of selected values

{means of transportation

to work, occupation} 49 34

{sex, income} 8 2

{sex, marital status} 10 2

{sex, age} 8 1

Fig. 5. Comparison of single a�ribute marginal distributions between the true statistics in Virginia ACS
summary data and samples generated by the categorical maximum entropy model for the a�ributes Sex and
Income.

Fig. 6. Comparison of single a�ribute marginal distributions between the true statistics in Virginia ACS
summary data and samples generated by the categorical maximum entropy model for the a�ributes Age,
Marital status, and Health insurance coverage status.

in the Virginia ACS summary data are taken into account. As we can see from the �gure, the gain

of the log-likelihood of the �nal heuristic model is quite close to that of the full model, which

indicates that the heuristic model discovers and incorporates the majority of the knowledge in the

Virginia ACS summary data. Combined with the small value of the approximate KL-divergence

measure, these results demonstrate that the proposed categorical maximum entropy model is able

to well estimate the categorical data distribution from real data. Table 4 shows the most informative

pa�erns selected by the proposed heuristic.
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Fig. 7. Comparison of single a�ribute marginal distributions between the true statistics in Virginia ACS
summary data and samples generated by the categorical maximum entropy model for the a�ributes Race,
Means of transportation to work, Occupation, and Education level. Y-axis is in log scale.

We also sampled 3, 000 synthetic individuals with the inferred heuristic model for Virginia, and

calculated the empirical marginal distributions for all of the individual a�ributes and all of the

multi-a�ribute categorical pa�erns that appear in the Virginia ACS summary data. Notice that

for a�ributes Marital status, Means of transportation to work, Occupation and Education level, the

population considered in the ACS summary data is not the entire population of Virginia state. �us,

we add an additional value for these a�ributes, e.g. the value Others under 15 years old for the

a�ribute Marital status, to denote the proportion of the entire population that is not taken into

account in the ACS summary data. Figure 5, 6, 7 and 8 show single-a�ribute and multi-a�ribute

marginal distributions and compare them with the true distributions in the Virginia ACS summary

data. We can see that the empirical distributions calculated from the synthetic individuals are very

close to those in the Virginia ACS summary data. Such results demonstrate that our categorical

maximum entropy model well maintains the statistical characteristics of real world datasets, and is

capable of generating synthetic data for real applications.

6.4 Application: Epidemic Simulation
In this section, we apply our proposed categorical maximum entropy model to generate synthetic

population for the city of Portland, OR in the United States, and use this model for an epidemiological

simulation. We �rst take a synthetic contact network dataset of Portland [20] that is publicly

available. �e Portland dataset contains both individual demographic and contact information of

residents in the city of Portland. �e demographic information in this dataset contains gender,

age and household income. We �rst group the values of age and household income into several

ranges and change them into categorical features, similar to our ACS dataset analysis in Section 6.3.

�en we compute the statistics, e.g. frequencies, of the single and pairwise demographic features,

convert them into categorical pa�erns, and infer the categorical maximum entropy model over these
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Fig. 8. Comparison of two-a�ribute marginal distributions between true statistics in the Virginia ACS
summary data and samples generated by the categorical maximum entropy model for the categorical pa�erns
{sex, age} (le�), {sex, income} (middle), and {sex, marital status} (right). For pa�ern {sex, marital status},
the pa�ern values whose marital status is Others under 15 years old is not displayed here since for those
individuals, their marital statuses are unavailable.

Fig. 9. The simulated weekly flu new infection counts compared to the estimated weekly new infection
counts from Google Flu Trends. The simulation results are averaged across 10 independent runs.

pa�erns. �e Portland dataset contains 1, 575, 861 connected individuals, where each individual

performs at least one activity with others. To generate our synthetic population, we draw 1, 575, 861

samples from the inferred categorical maximum entropy model.

To construct the contact network for the synthetic population, we �rst match the generated

synthetic individuals to the real ones involved in the contact activities described in the Portland

dataset based on their demographical feature values. �en the contact network can be naturally

created by connecting the synthetic individuals according to the contact activities they involve in.

In this application, we choose to study the �u season in the city of Portland during the period from

June 2013 to June 2014. We retrieve the estimated weekly counts of �u new infections for the city

of Portland from Google Flu Trends [9], and apply the Susceptible-Infectious (SI) epidemic model

over the contact network to �t the curve of weekly �u new infection counts. Figure 9 illustrates the

��ed curve using the SI epidemic model. As the �gure shows, the simulation results of the SI model

over the synthetic population capture the trend and the peak of the weekly �u new infections in

the city of Portland. �ese results demonstrate that the synthetic population generated by the
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Table 5. Comparison of our proposed approach (MaxEnt) with the existing synthetic population generation
methods.

IPF FBS PeGS SFG DMS BayeNet MaxEnt

Directly capture depen-

dencies beyond two at-

tributes

X X X X X

Directly estimate popu-

lation joint distribution X X X

Don’t require seeding

population

X X X

Support iterative model

inference

X

categorical maximum entropy model is a useful model of population-level activities in cities. Here,

we would like to mention that there are also many other issues, e.g. distance measuring [27, 36, 37],

that are relevant when studying disease transmission. However, these topics are beyond the scope

of this paper, thus, we will not discuss them in detail here.

7 RELATEDWORK
�e problem of generating synthetic data that maintain the structures and dependencies in actual

data has been studied by researchers from various realms. Iterative proportional ��ing (IPF) tech-

nique [2] and its variants [18, 38], which generally operate over contingency tables, have been

applied to generate synthetic population to study large social contact networks, land use and trans-

portation microsimulation. �e NDSSL at Virginia Tech released synthetic datasets of population

in the city of Portland [20] generated by a high-performance simulation system Simfrastructure
which adopts IPF techniques. Such IPF based approaches usually do not directly estimate the joint

probability distribution of the data, and sometimes, they require seeding populations as a part of the

input. Fitness-based synthesis (FBS) approaches [15] de�ne �tness measures based on control tables

to directly generate synthetic populations with seeding data. Sample-free generators (SFG) [3] were

proposed to generate synthetic populations using the joint data distribution de�ned with the data

at the most disaggregated level Namazi-Rad et al. [19] applied a dynamic micro-simulation model

(DMS) to project dynamics over the synthetic population generated by combinational optimization

approaches. Recently, a non-parametric perturbed Gibbs sampler (PeGS) [21] which requires esti-

mating all of the full conditional distributions to represent the joint data distribution was proposed

to generate large-scale privacy-safe synthetic health data. Sun and Erath [26] proposed a Bayesian

network (BayeNet) based approach to estimate the joint distribution of populations, which is then

used to generate synthetic populations. While, our proposed maximum entropy model additionally

supports iterative model inference, which makes it easy to update our proposed model with new

knowledge about the data. Compared to the proposed categorical maximum entropy model, these

existing approaches described above either do not directly capture the dependencies beyond two

a�ributes or do not directly estimate the full joint data distribution. Table 5 compares the proposed

maximum entropy approach (MaxEnt) with the related existing synthetic population generation

methods in detail.
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Maximum entropy models have drawn much a�ention recently in the pa�ern mining community,

especially in the realm of discovering subjectively interesting pa�erns. De Bie [7] formalized an

information theoretical framework for data mining by applying the maximum entropy principle.

In recent research works [8, 23, 32], maximum entropy models were developed to discover and

evaluate interesting pa�erns from binary datasets, and they were also adopted together with the

principle of Minimum Description Length to summarize and compress binary datasets [16, 31, 34].

Besides the binary data, maximum entropy modeling was also extended to the multi-relational

data and real-valued data [14, 24, 35]. However, all these previous works focus on discovering

informative pa�erns or assessing subjective interestingness of pa�erns from binary, real-valued, or

multi-relational data, and none of them involves categorical data.

In the database community, Gray et al. [10] surveyed several database generation techniques that

generate large scale synthetic datasets, and Bruno and Chaudhuri [4] proposed a Data Generation

Language (DGL) that allows individual a�ribute distributions to be speci�ed. A database generation

tool that could handle complex inter- and intra-table relationships was proposed by Houkjær

et al. [11]. Arasu et al. [1] proposed an e�cient, linear programming based algorithm to generate

synthetic relational databases that satisfy a given set of declarative constraints. Compared to

the proposed approach, these works focus on structured data in relational databases, while our

proposed method is generally applicable to categorical data including unstructured categorical

data. �e maximum entropy principle is also adopted in database query optimization. �e sizes

of database queries were estimated by modeling complicated database statistics using maximum

entropy probability distributions [13, 17]. Ré and Suciu [22] studied the problem of cardinality

estimation using the entropy maximization technique with peak approximation. An algorithm

called ISOMER was proposed by Srivastava et al. [25] to approximate the true data distribution

by applying the maximum entropy principle over database query feedbacks. �ese works aim to

utilize the maximum entropy principle to optimize database queries, while in our method, we are

focused on estimating a probabilistic generative model so that synthetic data could be generated.

8 CONCLUSION
In this paper, we have demonstrated a generative probabilistic model for categorical data by

employing the maximum entropy principle. By introducing categorical tuple blocks and the

corresponding partial order over them, we have presented an e�cient model inference algorithm

based on the well-known iterative scaling framework. Experiment results on both synthetic data

and real US census data show that the proposed model well estimates the underlying categorical

data distributions. �e application to the problem of epidemic simulation demonstrates that our

proposed model can be applied to support research in a variety of applicatin areas.
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