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ABSTRACT
We introduce a new data mining problem: mining truth
tables in binary datasets. Given a matrix of objects and
the properties they satisfy, a truth table identifies a subset
of properties that exhibit maximal variability (and hence,
complete independence) in occurrence patterns over the un-
derlying objects. This problem is relevant in many domains,
e.g., in bioinformatics where we seek to identify and model
independent components of combinatorial regulatory path-
ways, and in social/economic demographics where we desire
to determine independent behavioral attributes of popula-
tions. We outline a family of levelwise approaches adapted
to mining truth tables, algorithmic optimizations, and ap-
plications to bioinformatics and political datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining; I.2.6
[Artificial Intelligence]: Learning

General Terms: Algorithms.

Keywords: truth tables, levelwise algorithms, indepen-
dence models.

1. INTRODUCTION
Consider the dataset shown in Fig. 1(a), which outlines

nine hypothetical senators and their votes (1 for yes, 0 for
no) on four bills. Given binary matrices such as these, our
goal in this paper is to identify a truth table embedded in-
side them. Our first observation is that, given nine rows,
we can find truth tables having at most blog2(9)c = 3 bills.
However, the reader can verify that no such truth table ex-
ists. In fact, the only truth table present is a two-column
one, spanning the bills ‘War’ and ‘Tax Cuts,’ as shown in
Figure 1(b). This truth table suggests that these two bills
constitute independent dimensions along which politicians
distinguish themselves. Observe that the senators partition
into four (22) disjoint subsets with each subset having at
least two senators. We separate these subsets using dashed
lines in Figure 1(b).
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This problem of finding truth tables can be considered or-
thogonal to mining association rules [18], correlations [7], or
redescriptions [16] which capture various forms of attribute
dependencies and overlaps. From the perspective of these
works, truth tables constitute an ‘anti-pattern,’ i.e., the vari-
ables participating in it defy similarity judgements, and are
hence interesting. (Later we mention how truth tables can
be harnessed to find patterns of similarity as well.)

Several application domains have characteristics that are
amenable to truth table mining. In bioinformatics, we are
given a matrix of genes (rows) versus transcription factors
(columns), where a 1 indicates that the transcription fac-
tor binds upstream of the given gene and regulates it (0
otherwise). A truth table in such a matrix indicates a set
of transcription factors that can be recruited in arbitrary
combinations to regulate genes. This truth table further
suggests that they are likely to form independent compo-
nents of regulatory pathways. Similar relationships underlie
signaling pathway analysis [14] and exploration of therapies
for drug discovery [8].

Alternatively, consider the domain of recommender sys-
tems where the rows denote people, the columns denote
movies, and a 1/0 indicates approval/dislike (assume for now
that everybody has seen and rated every movie). When a
new person joins the system, a typical problem faced in rec-
ommenders is to identify a (small) set of movies that this
new person should be requested to rate, in order to be con-
nected to the underlying social network of users. By iden-
tifying a truth table in the original matrix, we can learn
a set of movies that serve to maximally distinguish a user
from others, and hence situate the user in a suitable neigh-
borhood. Thus, the ratings for these movies are the most
informative questions to ask a new user. This application di-
rectly maps to recommender system designs like Jester [12]
which request all users to rate the same set of artifacts.
Truth table mining identifies what these artifacts should be.

A truth table can be viewed as a partition of rows where
each block in the partition is a ‘constant-row’ bicluster [19].
The most familiar type of constant-row patterns are those
where all cells are 1, and such biclusters correspond to item-
sets as studied in association mining. Hence algorithms
for mining truth tables must explicitly and necessarily keep
track of an exponentially greater number of occurrence pat-
terns than algorithms for mining associations. At the same
time, truth tables expose several structural constraints that
can be harnessed to create effective algorithms. In particu-
lar, although the definition of the underlying pattern is more
complicated than for itemsets, we show how the search for



War Electoral Tax Environmental

Reforms Cuts Reform

Adam 1 0 0 0
Bill 1 0 1 1
Clinton 0 0 1 1
Dwight 0 0 1 1
Edwards 0 1 0 1
Frank 0 1 0 1
Ganguly 0 0 0 1
Hildebrand 0 1 1 1
Ironside 0 0 0 1

(a) The voting records of nine senators on four bills.

Electoral War Tax Environmental

Reforms Cuts Reforms

Edwards 1 0 0 1
Ganguly 0 0 0 1
Ironside 0 0 0 1
Clinton 0 0 1 1
Dwight 0 0 1 1
Adam 0 1 0 0
Frank 0 1 0 1
Bill 0 1 1 1
Hildebrand 0 1 1 1

(b) Rearranged matrix from (a) revealing a truth table
formed by voting patterns on ‘War’ and ‘Tax cuts’.

Figure 1: Example dataset for truth table mining.

truth tables can be structured levelwise, thus drawing upon
established notions in data mining.

“Truthiness” [22] is a term coined by television comedian
Stephen Colbert to describe things that a person claims to
know intuitively, instinctively, or “from the gut.” The truth
tables we compute have high truthiness, which we capture
using two parameters: (i) we insist that each pattern of oc-
currences occur in as many rows as demanded by a balance
criterion; (ii) however, we allow a small number of patterns
to appear in fewer rows, controlled using the support param-
eter. More information on these parameters is provided in
Section 2.

Our main contributions in this paper are the following:

1. We formulate truth table mining as a new data min-
ing task, with associated algorithms and applications.
We define the notions of balance and support to char-
acterize the quality of a truth table. These notions
smoothly decrease with an increase in the number of
columns in a truth table.

2. We present experimental results on both synthetic and
real-world datasets, helping demonstrate the scalabil-
ity of our implementation and also shedding domain-
specific insight. The synthetic studies demonstrate
that our algorithms are highly scalable.

3. We show that truth tables constitute a new class of
patterns with rich theoretical ties to a variety of pre-
viously studied data mining patterns.

Section 2 formally defines the truth table mining problem
and Section 3 outlines how our definitions of balance and
support lend themselves to levelwise search algorithms. Sec-
tion 4 describes the levelwise algorithm in detail, along with
some associated optimizations for improving efficiency. Sec-
tion 5 gives experimental results on both synthetic and real-
world datasets. Sections 6 and 7 provide comparisons to
related work and offer a discussion, respectively.

2. PROBLEM FORMULATION
Let O denote a set of n objects, P a set of m properties,

and R ⊆ O × P a relation that connects objects to proper-
ties they contain. We are interested in identifying complete
independence in the occurrence of subsets of P among the
objects in O. Let Q ⊆ P denote a subset of properties.
Given any object o ∈ O, let oQ denote the binary vector

with |Q| elements given by the values that the properties

in Q have in o. Since there are 2|Q| possible distinct val-
ues of this binary vector, Q partitions the objects in O into
at most 2|Q| equivalence classes. Let EQ denote this parti-
tion. Each element of EQ is a set of objects and each object
appears in precisely one element of EQ. A truth table is a
pair (Q,EQ), where Q ⊆ P , EQ is a partition of O, and

|EQ| = 2|Q|.
Note that if no two properties in P are identical (i.e., no

two properties appear in precisely the same set of objects),
a truth table (Q,EQ) is naturally closed: by definition, the
truth table includes all objects and any property in P − Q
will induce a refinement of EQ if added to Q. Henceforth,
we will abuse notation and use Q to refer both to a subset
of properties and the induced truth table.

Truth tables have natural notions of balance and support,
which we define next. Ideally, in a truth table (Q,EQ),

each subset of objects in EQ will have size at least bn/2|Q|c.
To accommodate deviations from this ideal, we define the
balance β(Q) of (Q,EQ) to be the quantity

β(Q) =
minS∈EQ |S|

n
.

Thus, every element of EQ contains at least β(Q)n objects.

Values of balance range between 0 and 1/2|Q|. Given a bal-
ance threshold 0 ≤ b ≤ 1, we say that a truth table Q is
balanced if β(Q) ≥ b. As we will show in the next two sec-
tions, our definition of balance is anti-monotone, a property
we exploit in our truth table mining algorithms.

We also desire to mine ‘almost truth tables,’ where most,
but not all, of the presence/absence combinations of proper-
ties satisfy the balance constraint. Given a balance thresh-
old b, we define the support σ(Q, b) of a truth table (Q,EQ)
with balance at least b to be the fraction of possible object
sets whose size is at least bn, i.e.,

σ(Q, b) =
|{S ∈ EQ, |S| ≥ bn}|

2|Q|
,

where 2|Q| is the maximum possible number of object sets
in EQ. Given a support threshold 0 ≤ s ≤ 1, we say that a
balanced truth table Q is supported if σ(Q, b) ≥ s.

We illustrate the notions of balance and support using the
data in Figure 1. For example, the balance of the truth ta-
ble formed by the bills ‘War’ and ‘Tax Cuts’ in Figure 1(b)
is 2/9 and its support is 1. A two-bill truth table in this
dataset (with nine senators) cannot have balance greater



than 2/9: such a truth table partitions the senators into
four groups, one of which must contain at most two sen-
ators. If we were to form a truth table involving the bills
on ‘War,’ ‘Tax Cuts,’ and ‘Environmental Reforms’, we note
that of the eight expected groups of senators, only five occur
in this dataset. One of these groups has size three (senators
Edwards, Ganguly, and Ironside), two groups have size two
(Clinton-Dwight and Bill-Hildebrand), and the other two
groups have one senator each. Thus, with a balance thresh-
old of 1/9, this truth table has a support of 5/8. If we
increase the balance threshold to 2/9, then the support of
the truth table drops to 3/8.

Thus, the pair of values (b, s) together characterise the
“truthiness” [22] of desirable truth tables. An ideal truth
table (say, one with k properties) has balance b1/2kc and
support equal to 1. However, any truth table with high
balance and high support also “feels like a real truth table
in the gut,” a phenomenon that is the hallmark of truthiness.

Given a set O objects, a set P of properties, a relation
R ⊆ O×P that connects objects to properties they contain,
a balance threshold 0 ≤ b ≤ 1, and a support threshold
0 ≤ s ≤ 1, the truth table mining problem is the task of
computing all truth tables Q in R with σ(Q, b) ≤ s.

The notions of balance and support are closely related to,
but different from, how contingency table entries are evalu-
ated in a χ2 test for independence. The χ2 test uses all con-
tingency table entries whereas our miner allows using only
some of them in identifying a truth table. Furthermore, the
χ2 test compares occurrence counts to an ideal distribution,
whereas truth tables impose a minimum occurrence thresh-
old similar to Apriori, which enable levelwise algorithms.
The former is more expressive since the ideal distribution
is calculated from the product of marginals and can yield
different ideal counts for different cells, whereas truth tables
impose a minimum count uniformly across at least as many
cells as required by the support threshold. Future work is
aimed at making formal the relationship between truth table
balance/support and statistical independence.

3. PROPERTIES OF TRUTH TABLES
We now introduce a series of lemmas that establish the

anti-monotone properties of balance and support. We also
list some properties of balanced and supported truth tables
that lead to algorithmic optimizations in the computation
of truth tables. First, we define some useful notation. In
a truth table Q, let UQ ⊂ EQ be the set of object sets
with size less than bn, i.e., those that do not satisfy the
balance constraint. Consider two truth tables Q′ and Q
such that Q′ ⊂ Q and Q contains one more property than
Q′. Consider any object set S in EQ′ . In Q, this object
set partitions into two object sets, depending on whether
the new property is present or not in the objects in S. Call
them S1 and S2. We refer to S as a parent of S1 and S2.
Note that S1 and/or S2 may be empty. Figure 2 illustrates
this notion.

Our first lemma (proofs for this and subsequent results are
available in the full technical report [2]), simply states that
as we include more properties in a truth table, the support
cannot increase.

Lemma 3.1. If Q and Q′ are two truth tables with Q ⊂
Q′, then σ(Q, b) ≥ σ(Q′, b).

The next lemma establishes the anti-monotonicity of bal-

ance and support.

Lemma 3.2. If a truth table Q has balance b and sup-
port s, then every truth table Q′ ⊆ Q such that |Q′| = |Q|−1
has balance b and support s.

QQ′

UQ′

EQ′

UQ

EQ

B

C

D

A1

A2

B1

B2

C1

C2

D1

p

D2

A

Figure 2: An example of a truth table Q′ with k −
1 properties and a truth table Q that contains an
additional property p.

Figure 2 illustrates the ideas used in the proof. In this
figure, vertical lines denote the extent of EQ′ , EQ, UQ′ ,
and UQ. Shaded rectangles denote object sets. The figure
indicates that the object set

1. A ∈ EQ′ − UQ′ is the parent of A1, A2 ∈ EQ − UQ,

2. B ∈ EQ′ − UQ′ is the parent of B1 ∈ EQ − UQ and
B2 ∈ UQ,

3. C ∈ EQ′ − UQ′ is the parent of C1, C2 ∈ UQ, and

4. D ∈ UQ′ is the parent of D1, D2 ∈ UQ.

We can prove this lemma by tracking for each object set
whether it is in UQ′ or not and how many of its children are
in UQ.

Lemma 3.3. Let Q be a truth table with k properties, bal-
ance b and support 1. If there is at least one object set in
EQ with size less than 2bn, then every truth table Q′ ⊃ Q
with balance b has support strictly less than 1.

When the support is 1, the previous lemma implies a
stronger form of the anti-monotone property guaranteed by
Lemma 3.2.

Corollary 3.4. If Q is a truth table with k properties,
balance b and support 1, then every sub-truth table of Q with
k − 1 properties has balance 2b and support 1.

We can generalize Lemma 3.3 to all values of support.

Lemma 3.5. Let Q be a truth table with balance b and
support s. Suppose that there are lQ object sets in EQ with
size at least bn and less than 2bn and that there are vQ

object sets in EQ with size at least 2bn. If lQ + vQ < s2k+1,
then every truth table Q′ ⊃ Q that has balance b has support
strictly less than s.

4. MINING TRUTH TABLES
Since our balance and support constraints apply anti-

monotonically (see Lemma 3.2), we can harness much of the
machinery and optimizations developed for level-wise algo-
rithms such as Apriori. In addition, we can exploit prop-
erties specific to truth tables to further improve the effi-
ciency of our algorithms. Due to space considerations, we



present one possible algorithmic implementation here and
leave more complex optimizations to the reader’s consider-
ations based on prior data mining research. For each k ≥ 1,
given all truth tables with k properties, we construct candi-
date truth tables with k+1 properties. We use the heuristic
of generating candidate truth tables at level k by merging
two balanced and supported truth tables at level k− 1 such
that they share k− 2 properties in common [18] (we encap-
sulate this step in the Generate-Candidates subroutine,
which is identical to the one in the Apriori algorithm [18]).
For each candidate truth table T , we check if every sub-
truth table of T with k properties satisfies the balance and
support constraints. Finally, we perform one pass over the
relation to compute the balance and support of each can-
didate truth table. We output only those candidates that
satisfy these constraints.

A truth tableQ with k properties that satisfies σ(Q, b) ≥ s
must contain at least s2k non-empty row subsets in EQ.
Since a trivial bound on the size of EQ is n, the number of
objects in O, we see that no truth table can contain more
than dlog(n/s)e properties.

Algorithm 1 FindTruthTables(O, P , R, b, s):

Input: A relation R relating objects inO to properties in P ,
a balance threshold 0 ≤ b ≤ 1 and a support threshold
0 ≤ s ≤ 1.

Output: All truth tables T such σ(T, b) ≥ s.
1: T ← {p ∈ P | σ({p}, b) ≥ s}
2: while T is not empty do
3: for every truth table T ∈ T do
4: for every truth table T ′ ⊆ T, |T ′| = |T | − 1 do
5: if σ(T ′, b) < s then
6: Discard T
7: end if
8: end for
9: Compute σ(T, b)

10: if σ(T, b) ≥ s then
11: Output T
12: Insert T into T
13: end if
14: end for
15: T ← Generate-Candidates(T )
16: end while

Specific optimizations for truth tables: In each outer
loop, we efficiently compute σ(T, b) for every truth table
T in the current set of candidates T as follows. Suppose
we are currently processing candidates with k properties.
Recall that for an object o ∈ O, oT denotes the binary vector
with |T | elements given by the values of the properties in T
in o. We consider oT to be a number in binary notation.
For each truth table T ∈ T , we maintain 2k + 2 quantities:

(i) cT,i, 0 ≤ i < 2k counts the number of objects o ∈ O
such that oT = i,

(ii) lT = |{cT,i, 0 ≤ i < 2k | cT,i ≥ bn}| is the number of
object sets in ET with size at least bn, and

(iii) vT = |{cT,i, 0 ≤ i < 2k | cT,i ≥ 2bn}| is the number of
object sets in ET with size at least 2bn.

As we read the properties contained in each object o from R,
we compute oT and update the corresponding values. As-
sume oT = i. After incrementing cT,i, we increment lT if
cT,i equals bn or we increment vT is cT,i equals 2bn. After
we finish processing R, we can compute σ(T, b) as lT /n.

Computing vT allows us to exploit Lemma 3.5 to prune
our search further. If lT + vT < s2k+1, then we know that
for any truth table T ′ that contains the properties in T ,
σ(T ′, b) < s. We can remove T from the list T used to
generate candidates for the next level.

5. APPLICATIONS
We present our results in three parts. First, we perform

a comprehensive analysis of the ability of our algorithm to
recover a truth table planted in a random binary matrix.
Then, we discuss how our method unravels complex features
of the network regulating gene expression in a cell. Finally,
we mine voting patterns of U.S. senators to detect patterns
of independence among them. Due to space constraints,
we chose to highlight different aspects of our algorithm in
these case studies: (i) synthetic data: the scalability and the
effect of dataset characteristics on algorithm running time;
(ii) gene expression regulation: the effect of balance and
support thresholds on running time as well as truthy nuggets
of discovered knowledge. (iii) senatorial voting patterns: the
statistical independence of properties in a truth table and
domain-specific insights.

5.1 Synthetic Data
To systematically study the ability of our algorithm to

find truth tables, we planted them in random binary ma-
trices and tested the ability of our algorithm to discover
the planted truth tables. We first describe our protocol in
detail. We constructed random matrices based on three pa-
rameters k, r, and p. Note that these values are parameters
for the simulation and not for the truth table mining al-
gorithm. For each such triple, we performed the following
steps:

1. Generate a binary matrix M with k columns and 2k

rows.
2. Select a random integer r, where 2 ≤ r ≤ k, and plant

a truth table with r columns in M . The truth table
has balance 1/2r and support 1. The r columns are
interspersed randomly among the columns on M .

3. Set every element of M not belonging to the truth ta-
ble to be a 1 with probability p and a 0 with probability
1− p.

4. Execute the truth table finding algorithm on M with
b = 1/2r and s = 1.

We executed these steps 10,000 times for the following pa-
rameters: k ∈ {5, 10, 15, 20}, five random values of r, and
11 values of p between 0 and 1 in increments of 0.1. Observe
that the size of the database is exponential in k, so that the
largest matrix we investigated (k = 20) has over a million
rows. For every (k, r, p) triple, we computed the average
running time of our algorithm.

Our algorithm recovered the planted truth table success-
fully in every case. Therefore, in this section, we focus on
presenting various slices of the three-dimensional function
defined by the k, r, p, and t (denoting time) values. A key
feature of these results is the symmetric dependence of the
running time on p. Unlike itemset and association rule min-
ing algorithms, whose running time increases with p, the
performance of our truth table mining algorithm is worst
for p = 0.5 and symmetrically reduces around this value.



(a) Running time t vs. balance threshold b for fixed
values of the support threshold s.

(b) Running time t vs. support threshold s for fixed
values of the balance threshold b.

Figure 3: Performance of the truth table mining algorithm on the S. cerevisiae TF dataset.

Dependence on p. Figure 5 displays how the running time
of our algorithm depends on the probability p. Each plot in
the figure corresponds to a fixed value of k. Each curve in a
plot represents a fixed value of r. Due to lack of space, we
only plot values for k = 5 and k = 10. As expected, these
plots are symmetric around the line p = 0.5. For all values
of k, the plot for r = k is a nearly horizontal line, which is
to be expected since the truth table spans the entire matrix.

Figure 4: Observed running time t as we vary col-
umn width r and fix probability p.

Observe that in Figure 5(a) (where k = 5), the curve for
any given value of r dominates the curves for all smaller
values of r. However, the behaviour is subtly different for
k = 10 (Figure 5(b)). Whereas the curves for the range
r = 2 to r = 7 follow this trend, none of the curves for
r = 7, 8, 9, and 10 dominate each other. In particular, focus
on r = 7 and r = 8. The curve for r = 7 dominates the curve
for r = 8 for values of p approximately between 0.4 and 0.6.
We further examine this apparent discrepancy below.

Dependence on r. Next, we examined how the running
time varied with the number of columns r in the truth ta-
ble, for fixed values of p. We fixed k = 10, since this case

exemplifies higher values of k as well. Each curve in Fig-
ure 4 corresponds to a fixed value of p. We show the plots
only for p ≤ 0.5, because of symmetry. Consider Figure 4,
where p = 0. The larger the value of the size of the planted
truth table (r), the greater the running time of the algo-
rithm. Now consider the other extreme p = 0.5 (Figure 4).
The running time has an inflection point at r = 7.

The running time of our algorithm on these synthetic
datasets is primarily composed of two factors: (a) time spent
discovering the planted truth table and (b) time spent pro-
cessing properties that do not belong to the planted truth
table. The first component monotonically increases with r.
In contrast, the second component is influenced both by k−r
and by p; in particular, this component is not monotonic in
r. In this case, the contribution of the second component to
the running time starts decreasing dramatically for r ≥ 7.
The exact relationship between these components is worth
further study.

Scalability. Finally, we examined the scalability of our al-
gorithm as dataset size increases. Recall that as k increases
linearly from 5 to 20, the number of rows in the matrix in-
creases exponentially in k. We focus on smaller values of r
(in particular two and three) so as to make the dependence
of running time on dataset size more explicit. Figure 6 shows
the running time for r = 2 and r = 3 and values of p = 0.1
and p = 0.5. The y-axis in this figure is on a logarith-
mic scale. Observe that when r = 2, p has negligible effect
and that the running time mirrors the exponential growth
in dataset size. Although we observe the same trends when
r = 2, note that for r = 3 and p = 0.5, the algorithm runs
an order of magnitude slower. This observation reinforces
the breakdown of running time into two components, in par-
ticular the role played by sparsity.

5.2 Combinatorial Regulatory Networks
Gene expression in eukaryotic cells is controlled by the

combinatorial interaction of transcription factors (TFs) and
their binding motifs in DNA [13]. TFs often operate hi-
erarchically: master regulators govern gene expression in
multiple conditions, and act combinatorially with tissue- or



(a) k = 5 (b) k = 10

Figure 5: Observe running time t as we vary probability p and fix column width r and k (2k rows).

condition-specific TFs to modulate gene expression. Truth
tables representing TFs and the genes they regulate promise
to capture the complexity of combinatorial regulation in eu-
karyotic cells.

To investigate this possibility, we analyzed a dataset of
transcriptional regulation found in S. cerevisiae [21] (baker’s
yeast). The dataset is a binary matrix whose columns rep-
resent 112 transcription factors and whose rows represent
4603 genes in S. cerevisiae; the matrix contains 12804 non-
zero entries. A matrix entry contains a one if a ChIP-on-
chip experiment indicates that the transcription factor binds
to the promoter of the gene with a p-value at most 0.001.
Although ChIP-on-chip data is noisy and significant effort
may be needed to clean it up, the analysis we present next
demonstrates that truth tables in such datasets can provide
useful biological insights.

Figure 6: Observed running time t as we vary k (2k

rows) and fix probability p and column width r.

We ran our algorithm on this dataset for balance values of
0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 and support values
of 1, 0.99, 0.95, 0.9, 0.85, 0.8, and 0.75. Figure 3(a) displays
on a log-log plot how the running time of the algorithm
depends on the balance threshold we use. Each curve is this
plot corresponds to a fixed value of support. We see that

the logarithm of the running time is inversely proportional to
the logarithm of the balance, for any given value of support.
The plots also indicate that the case s = 1 requires less
effort from the algorithm than values of support less than 1.
Figure 3(a) displays on a log-log plot how the running time
of the algorithm depends on the support threshold we use.
As long as the support is less than 1, changing it does not
have an adverse affect on the running time of the algorithm.

We mined truth tables by executing our algorithm on this
data with b = 0.001 and s = 0.75. Our algorithm computed
6105 two-TF, 60570 three-TF, 6298 four-TF, and nine five-
TF truth tables. We further examined the five-TF truth ta-
bles. One truth table includes the TFs CIN5, PHD1, RAP1,
SKN7, and SWI4. The other eight truth tables involved
various combinations of seven TFs: ACE2, FKH2, MBP1,
NDD1, SKN7, SWI4, and SWI6. Note that the two sets
share the TFs SKN7 and SWI4.

First, we discuss the truth table involving RAP1, PHD1,
CIN5, SWI4, and SKN7 in detail. PHD1 and SKN7 are TFs
that regulate different aspects of cell growth. SWI4 is a key
TF regulating the G1/S transition of the mitotic cell cycle.
RAP1 is involved in chromatin silencing. SKN7 responds to
different types of osmotic and oxidative stress while CIN5
is responsible for inducing the cell’s response to drugs. The
presence of all five TFs in a truth table suggests an intricate
process of regulation that governs how the cell responds to
external agents of stress potentially by shutting down the
cell cycle and controlling its growth.

The truth tables including ACE2, FKH2, MBP1, NDD1,
SKN7, SWI4, and SWI6 shed light on other aspects of cellu-
lar growth and cell cycle control. FKH2 and NDD1 regulate
G2/M-specific transcription in the mitotic cell cycle whereas
ACE2 controls G1-specific transcription. MBP1 regulates
progression through the cell cycle and is involved in DNA
replication. The shared membership of SKN7 and SWI4 in
both groups of truth tables leaves open the possibility that
as we discover more relationships between TFs and target
genes, we may detect truth tables involving all ten TFs, thus
coming closer to a more complete picture of transcriptional
regulation in conditions of external stress.

5.3 Voting Dimensions of U.S. Senators
We also applied our truth table finding algorithm to voting



patterns of the U.S. Senate. In particular, we obtained the
roll call votes for first session of the 102nd Congress in 1991
from the Thomas database at the Library of Congress. This
data contains the votes of 101 senators on 280 bills. A roll
call vote guarantees that every senator’s vote is recorded.
We considered a “yes” vote to be a 1 and “no” vote or an
abstension to be a 0.

When we used b = 0.01, and s = 1, all truth tables we
mined had five or fewer bills. We used the χ2 test to assess
the independence of the bills in a truth table. Of the 60481
five-bill truth tables we found, 17976 were significant at the
0.01 level. We selected one of these significant truth tables
at random to qualitatively assess the independence of the
bills in it. The truth table we chose contained the bills
1 Nunn Resolution Re: Persian Gulf - S.J. Res. 1; A joint

resolution regarding United States policy to reverse
Iraq’s occupation of Kuwait.

16 Dodd Amdt. No. 11; To amend the Export-Import
Bank Act of 1945

39 Motion To Table S. Amdt. 59; To eliminate or reduce
certain appropriations.

133 Byrd amdt.; To provide for an equalization in certain
rates of pay, to apply the honoria ban and the provi-
sions of title V of the Ethics in Government Act of 1978
to Senators and officers and employees of the Senate,
and for other purposes

267 Motion To Table D’Amato Amendment No. 1405; To
amend the Harmonized Tariff Schedule of the United
States to clarify the classification of certain motor ve-
hicles

These bills span diverse aspects of the political landscape:
war, banking, pork, ethics, and trade.

We also counted the frequency of occurrence of each bill
in significant truth tables. Interestingly, the five most fre-
quent bills—39, 66, 97, 267, and 279—form a truth table
themselves! Notice that we have already encountered bills
39 and 267. The subjects of the other three bills are the
following:
66 Moynihan Amdt. No. 249; To amend the Ethics in

Government Act of 1978 to apply the limitations on
outside earned income to unearned income.

97 Motion To Table Amdt. No. 358; To eliminate lan-
guage which lowers the Federal share payable for cer-
tain projects

279 Conference Report; Comprehensive Deposit Insurance
Reform and Taxpayer Protection Act of 1991

In addition to war (bill 39) and trade (bill 267), these bills
pertain to ethics, pork, and insurance reform. Such patterns
shed direct light on the weighty deliberations that occupied
the members of the 102nd Congress.

6. RELATED WORK
Truth tables have rich connections to a number of well-

studied notions in data mining. We elaborate on these ties
in this section.

Truth tables vs correlated and independent item-
sets: Because truth tables help identify columns that func-
tion independently of each other, it is useful to contrast them
with works that seek correlated sets of attributes. Brin et
al. [3] were one of the first groups to find correlated sets
of (binary) attributes using the χ2 significance test. They

show how correlation using this metric is upward closed (as
opposed to support, which is downward-closed) and why
this property would not support a levelwise algorithm from
bottom to top (in the direction from small itemsets toward
large itemsets). However, proceeding from top to bottom
is not quite feasible due to the small number of rows that
typically remain after projecting over a large number of
columns. The TAPER algorithm [7] uses Pearson’s corre-
lation metric instead; this work employs a upper bound on
the correlation coefficient (for binary variables) to expose
monotonicity constraints [7] that are useful for conducting
all-pairs correlations queries. Viewing truth tables as con-
tingency tables, the metrics we have defined here—balance
and support—naturally translate into the minimum num-
ber of entries across all non-empty cells of the table and
number of non-empty cells, respectively. Except in special
cases (see also discussion related to dense itemsets below),
the relation between these metrics and measures such as χ2

and Pearson’s correlation is complex and non-linear. Never-
theless, truth tables offer elegant algorithmic optimizations
to identify nearly independent sets of attributes. Truth ta-
bles are inherently also related to approaches that seek to
quantify independence in binary datasets, e.g., Pavlov et
al. [5] (whose end goal is to approximate answers to com-
plex queries) and those that assess the dimensionality of
the underlying dataset, e.g., Tatti et al. [17] by counting
the number of independent columns. In fact, our work
can be generalized into yielding graphical models for binary
data [11]. One of the critical issues in building such models
is identifying subsets of variables that induce conditional in-
dependence constraints. To support such analyses, we can
generalize our definition of truth tables to conditional truth
tables i.e., a truth table that surfaces only in a subset of the
given data.

Truth tables vs dense itemsets: Truth tables with k
properties, balance b1/2kc, and support 1 can be viewed as
a special case of dense itemsets (defined in [9]) where the
density is 50%. Observe, however, that, the density is of
a particular nature and is more restrictive than the defi-
nition given by Seppanen and Mannila [9]. In particular,
the form of density captured by a truth table obeys anti-
monotonicity constraints without defining it as a statistic
over densities of all its constituent sub-truth tables (as is
done with the definition of weak density [9]). In general,
the sparsity constraints of truth tables can be viewed as a
sophisticated intersection statistic [10] over all (conjunctive)
boolean expressions over the truth table’s columns.

Truth tables vs combinatorial rectangles: The parti-
tion of the rows of a truth table into distinct blocks with
sufficient balance each is reminiscent of the work by Gio-
nis et al. [1] that aims to identify subsets of rows and columns
with a certain level of sparsity. Viewed in light of this work,
a truth table is a patchwork of combinatorial rectangles each
with a characteristic level of sparsity. However, as men-
tioned earlier, by exploiting properties that are satisfied by
truth tables (but not combinatorial tiles in general), we are
able to design effective algorithms.

Truth tables vs non-derivable itemsets: Non-derivable
itemsets [20] (NDIs) are an elegant idea that use relation-
ships between the support levels of different subsets of a



generalized itemset (i.e., one that contains both positive and
negative attributes) to establish lower and upper bounds on
the support of a given itemset. When the lower and up-
per bounds coincide, this idea can be used to circumvent
the evaluation (counting) of support for some itemsets and,
thus, more efficiently explore the lattice of itemsets. An
NDI is one whose support cannot be defined based on the
support of its subsets, and thus must be explicitly counted.
When viewed as an itemset, a truth table at level k is in
fact an NDI when support is 1 and balance is 1/2k. This is
because every possible bit combination is present and hence
such an itemset would need to be explicitly counted. This
observation, in alignment with our synthetic studies, rein-
forces that the most difficult cases for mining truth tables
are those datasets where each entry has equal probability of
having a ‘1’ or a ‘0’.

Truth tables vs redescriptions: Truth tables also have
close relationships to redescriptions, a recently introduced
class of similarity patterns [15]. It can be shown that if a set
of columns induces a truth table with a support of 1 (i.e.,
all bitwise combinations are present), then these columns
cannot participate in any redescription between themselves.
This observation suggests that the algorithm presented in
this paper can be combined with a redescription mining al-
gorithm to fruitfully complement each other, similar to a
Pincer search [4] approach. In particular, both the truth
table miner and redescription miner can begin levelwise. As
soon as any one of them ‘succeeds,’ it can signal the other
to abandon that portion of the search space, thus system-
atically carving up the lattice of columns into regions that
have either redescriptions or truth tables.

7. DISCUSSION
We have formulated the novel data mining problem of

finding truth tables in a binary matrix. In the continuum
of informative patterns, truth tables reside at the end op-
posite that where itemsets and association rules lie, since
truth tables represent properties that have no depenency
patterns between them. The levelwise nature of the pro-
posed mining algorithm means that we can employ many
optimizations originally defined for Apriori-like algorithms,
such as bounding the number of possible candidate patterns
at a certain level based on the number of frequent patterns
at the level below it [6]. The notion of truth tables display-
ing 50% sparsity in a characteristic manner deserves further
study. For instance, the theoretical question of feasibility of
identifying truth tables can be posed under given distribu-
tional assumptions (e.g., a Zipf distribution of the 0-1 data).

Our C++ implementation of the algorithm is available
under the GNU GPL and can be found at https://bioin
formatics.cs.vt.edu/~murali/software. This work was sup-
ported in part by the Institute for Critical Technology and
Applied Science (ICTAS), Virginia Tech.
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