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Event forecasting from social media data streams has many applications. Existing approaches focus on
forecasting temporal events (such as elections and sports) but as yet cannot forecast spatiotemporal events
such as civil unrest and influenza outbreaks, which are much more challenging. To achieve spatiotemporal
event forecasting, spatial features that evolve with time and their underlying correlations need to be con-
sidered and characterized. In this article, we propose novel batch and online approaches for spatiotemporal
event forecasting in social media such as Twitter. Our models characterize the underlying development
of future events by simultaneously modeling the structural contexts and their spatiotemporal burstiness
based on different strategies. Both batch and online-based inference algorithms are developed to optimize
the model parameters. Utilizing the trained model, the alignment likelihood of tweet sequences is calculated
by dynamic programming. Extensive experimental evaluations on two different domains demonstrate the
effectiveness of our proposed approach.
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1. INTRODUCTION

Microblogs like Twitter and Weibo are important platforms for ongoing discussions
of societal events [Kwak et al. 2010]. As of the end of 2014, 255 million active users
were collectively creating 500 million tweets every day, covering a whole variety
of content ranging from everyday feelings to comments about social gatherings
[Bennett 2014]. Compared to traditional media, Twitter has the following significant
characteristics: (i) Timeliness of messages: Unlike traditional media, which may take
hours or days to publish information, tweets can be posted instantly utilizing portable
mobile devices in users’ pockets; 2 = (ii) ubiquity of social sensors: tweets reflect the
public’s mood and trends, both of which are potential determinants of future social
events; and (iii) availability of geo-information: Twitter users provide rich location
information within their profiles, texts, and geotags. Recent research has revealed
the power of Twitter for event forecasting [Tumasjan et al. 2010; Wang et al. 2012b];
Twitter and other social media have been recognized as playing a key role in events
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Fig. 1. Twitter predicts a presidential election protest.

such as the “Arab Spring” and the protests surrounding the Mexican presidential
election [Ramakrishnan et al. 2014; Wang et al. 2012b]. Figure 1 depicts the activities
on Twitter that causally preceded the Mexico City protests. Both the content and
the spatiotemporal burstiness of these protest-related tweets reveal the escalation of
societal discontent pertaining to this controversial election, with users progressing
from complaining through planning and advertising to participating in the final
protest event. However, existing event forecasting models in Twitter generally focus
on temporal events whose geo-locations are not available or are not considered in the
prediction task (e.g., elections [Tumasjan et al. 2010] and sports [Pavlyshenko 2013]).
Comparatively little attention has been paid to forecasting spatiotemporal events.

Tweets posted within a certain geographical neighborhood could be able to reflect im-
portant spatiotemporal patterns of social event [Zhao et al. 2014]. Thus, the forecasting
of spatiotemporal events requires a consideration of spatial features and their correla-
tions in addition to the temporal dimension. This poses the following three challenges:
(i) Capturing spatiotemporal dependencies. A spatial event may be delineated by not
only a specific location and time, but also its geographical and temporal neighborhood.
The strength and pattern of the resulting tweets may also vary differently for different
development stages for different events. (ii) Modeling mixed type observations. When
an event occurs, this will involve the temporal evolution of spatially distributed tweets
describing the event and its semantics. The joint consideration of these heterogeneous
and multidimensional data points is thus crucial. And (iii), utilizing prior geographi-
cal knowledge. Spatiotemporal events in crucial domains usually have rich historical
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records. Different geo-locations may tend to feature their own inherent and distinct
event frequencies that can be integrated into a predictive model to improve the fore-
casting accuracy. For example, the historical crime rates in different areas of a city can
help forecast the probability of future crimes occurring in those areas.

This article proposes a new approach to developing spatiotemporal event forecast-
ing models that addresses the above-mentioned issues more effectively. The proposed
methodology generatively characterizes the evolutionary development of events, as
well as the relationships between the tweet observations both inside and outside the
event venue. To uncover the underlying event development mechanics, this approach
jointly considers the structural semantics and spatial-temporal burstiness patterns in
Twitter streams. Utilizing geographical priors allows the spatial burstiness distribu-
tions to be learned for specific corresponding locations, while applying a Gaussian-
inverse Wishart prior distribution facilitates event forecasting for unknown locations.
The main contributions of this article are:

—A novel generative framework for spatial event forecasting. For spatial event
forecasting in Twitter, we propose an enhanced Hidden Markov Model (HMM) that
characterizes the transitional process of event development by jointly considering
the time-evolving context and space-time burstiness of Twitter streams.

—Effective batch and online algorithms for model parameter inference. The
model inference is formalized as the maximization of a posterior that is analytically
tractable. Both Expectation Maximization (EM)-based and stochastic-EM parameter
optimization algorithms are proposed to solve this problem effectively and efficiently.

—A new sequence likelihood calculation method. To handle the noisy nature of
tweet content, words that are exclusive to a single event are identified by a language
model that has been optimized by a dynamic programming algorithm to achieve an
accurate sequence likelihood calculation.

—Extensive experimental performance evaluations. The proposed method out-
performs existing methods by 38% and 67% on two different real-world datasets.
Sensitivity analyses reveal the impact of the parameters on the new method’s perfor-
mance. Case studies on both datasets are illustrated and elaborated to demonstrate
the practical utility of the proposed methods.

The rest of this article is organized as follows. Section 2 reviews existing work in
this area, after which Section 3 describes the proposed generative model, Section 4
provides details of the associated parameter estimation, and Section 5 explains the
event forecasting function of the proposed model. In Section 6, extensive experiments
to evaluate the performance of the new model are conducted and analyzed; the work is
summarized and conclusions drawn in Section 7.

2. RELATED WORK

Current research into the analysis of Twitter-based social events can be categorized
into two main types: (i) event detection and (ii) event forecasting. These are considered
in turn here.

Event detection: A large body of work focuses on the detection of ongoing events
[Aggarwal and Subbian 2012; Lappas et al. 2012; Sakaki et al. 2010; Signorini et al.
2011; Weng and Lee 2011]. These papers treat tweets as real-time social sensors to
promptly discover new events as they occur. Methods based on spatial bursts use a
classifier to extract topic-related tweets and then examine their spatial burstiness
and have been tested for applications such as detecting earthquakes [Sakaki et al.
2010] and disease outbreaks [Signorini et al. 2011], while methods based on temporal
bursts detect temporal patterns in Twitter streams utilizing techniques such as wavelet
analysis [Weng and Lee 2011], temporal clustering [Aggarwal and Subbian 2012], and
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query expansion [Zhao et al. 2015a; Jin et al. 2014]. Existing methods developed for
flu detection are typically focused on the temporal dimension. For example, Ginsberg
et al. proposed monitoring ongoing flu activity using Google search engine data. In
contrast, spatiotemporal methods aim to detect bursts in both time and space [Ginsberg
et al. 2009]. However, these event detection approaches can only uncover events after
they have occurred and are unable to forecast future events because they focus on
observations that directly reflect currently occurring events rather than precursor
indicators that reveal the causes or development of future events.

Event forecasting: Most research in this area focuses on temporal events and ig-
nores the underlying geographical information that is also available in tweets. A variety
of applications have been explored, including predicting election outcomes [O’Connor
et al. 2010; Tumasjan et al. 2010], disease outbreaks [Achrekar et al. 2011; Ritterman
et al. 2009; Zhao et al. 2016], stock market movements [Arias et al. 2013; Bollen et al.
2011], politics [Marchetti-Bowick and Chambers 2012], box office ticket sales [Arias
et al. 2013], the Olympic games [Pavlyshenko 2013], crime [Wang et al. 2012b], and
traffic conditions [He et al. 2013]. These papers can be categorized into four types
based on the complexity of the models utilized: (i) Linear regression models. These
methods map simple predictive features such as sentiment score or tweet volume to
the occurrence of future events [Arias et al. 2013; Bollen et al. 2011; He et al. 2013;
O’Connor et al. 2010]. (ii) Nonlinear models. These methods incorporate more infor-
mative features such as semantic topics by utilizing methods such as support vector
machines and logistic regression [Ritterman et al. 2009; Wang et al. 2012b]. (iii) Time
series-based methods. These methods consider the temporal correlation of relevant
features such as tweet volume by adopting approaches such as autoregressive model-
ing. For example, Achrekar et al. [2011] utilize an autoregression with exogenous input
(ARX) model to forecast flu activity over the next few days. And (iv) domain-specific
approaches. These methods are designed to solve particular problems and may not
be applicable to other application domains. For example, Pavlyshenko [2013] applied
an association rule approach to discover the most frequently mentioned players and
hence predict the results of sports tournaments, while Marchetti-Bowick and Chambers
[2012] focused on improving the performance of sentiment analysis related to politi-
cal events. As yet, there have been few reports of work specifically on spatiotemporal
event forecasting. Gerber [2014] proposed a predictor for spatiotemporal events that
utilized historical event counts and topics but did not consider temporal evolution and
dependencies, while Wang et al. [2012a] developed a model to characterize and predict
spatiotemporal criminal incidents, although their model requires the availability of de-
mographic information. Zhao et al. [2015b] proposed three multitask learning models
to forecast civil unrest events utilizing static features and dynamic features. Instead
of considering geographic neighborhoods, these models assume all the locations in a
country interact equally with each other.

This article proposes a spatiotemporal event forecasting method that is capable
of characterizing the evolutionary pattern of both spatial burstiness and structural
contexts. By modeling geographical priors more effectively, the new approach proposed
here can sufficiently leverage historical prior knowledge for it to be applied to new
locations.

3. GENERATIVE PROCESS OF THE PROPOSED MODELS

This section describes the formulation and generative process of the proposed methods.
First, the spatiotemporal event forecasting problem is formalized; then our new gener-
ative model is described in detail, including the space-time burstiness and structural
tweet content modules.
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Fig. 2. Keyword tendencies in Twitter during the development of a protest against the presidential election
on June 30, 2012, in Mexico.

3.1. Problem Formulation

Indicators for the development of events. Social media has been widely recog-
nized as social sensors and used to detect social events. Beyond that, recently, some
researchers utilize microblogs to characterize and track event progress, such as sports
[Chakrabarti and Punera 2011] and finance events [Chua and Asur 2013]. More specif-
ically, both the text content and spatial information of social media are regarded as
effective social indicators. To see this, some insights on civil unrest and disease out-
break events are provided in the following.

Figure 2 shows the keyword counts during the development of a protest against
the presidential election in Mexico, in 2012. The election date was on July 1, which
is confirmed by the spike in the curve of the word “election.” A protest against it was
planned to occur on June 30 and had been planned for a while in social media before
it occurred. This can be seen from the slowly increased count of tweets containing the
hashtag “#yosoy132,” which denotes the name of the organization behind the protest.
Another keyword “Zocalo” denotes a plaza in Mexico City, which is the planned location
for the protest. And the protesters disseminated this information mainly on June 27,
28, and 29, as revealed by the peak of “Zocalo” in the figure. The word “injustice” shows
the people’s complaints being expressed before the protest and during the election.

Figure 3 illustrates the keyword trends before and after a protest on June 6 against
an increase in the price of metro fares in Sao Paulo. The complaints on metro fare
prices had been observed for a while in social media before the protest, as shown in
several small outbreaks of the curve “metro fare” in the figure. A protest against the
price increase was planned for “Paulista Avenue,” a main street in Sao Paulo. This
keyword has a spike around June 2, before the protest, when the protest organization
was calling for action. Finally, the spike of the keyword “protest” reveals the protest
date and the news reporting this afterward.

As shown in Figure 4, there was a large protest on November 9 in Venezuela against
its government on some social issues. The development of the protest can be clearly
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Fig. 3. Keyword tendencies in Twitter during the development of a protest on June 6 during the movement
named “Brazilian Spring, 2013” against the government of Brazil.

Fig. 4. Keyword tendencies in Twitter during the development of a protest on November 9, 2013, in
Venezuela.

seen from the keyword “#9N,” which is the name of this protest. It was derived from “9th
Nov” which is the date of this protest. The count of tweets containing “#9N” increased
from nearly zero to about 1,000 on November 3, more than 6,000 on November 9, and
dropped dramatically to below 200 after November 11. The small outbreaks of words
like “dictator” revealed the complaints of the people before the protest. The keyword
“todos marchar” is a Spanish phrase that means “let us protest” in English, showing
that people were calling for protest in social media from November 7. This can also
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Fig. 5. Spatiotemporal outbreaks of topic-related tweets during the development of influenza epidemics in
December 2012 in the United States.

Fig. 6. Spatiotemporal outbreaks of topic-related tweets during the development of civil unrest events in
September 2012 in Mexico.

be shown by their poster in the figure. The time “10am” was the planned time for
the protest, which also shows the protesters’ efforts to organize the protest before its
occurrence.

The development of an event can also be indicated by the spatial outbreaks of so-
cial media postings. As shown in Figure 5, there were influenza outbreaks in several
states, including Texas, North Carolina, and Massachusetts, in the United States in
the week around December 15, 2012. These outbreaks had been developing for sev-
eral weeks before the outbreaks, as shown in the snapshots in Figure 5(a), 5(b), and
5(c). The flu-related tweet counts were increasing within these states. In addition, the
counts of the neighbor states (e.g., the other states within the same HHS region1) were
also increasing, showing the spread of the disease across neighboring states. Similar
increases did not happen in the distant states in the central United States, such as
Missouri. Similar to Figure 5, Figure 6 illustrates the spatial outbreaks of tweets on
several civil unrest events that occurred on September 27, 2012. On September 22,
there were a few tweets in cities like Mexico City and Guadalajara. Then the volume
of tweets increased in several cities, especially in the locations of the future protests
on September 24. On September 26, the spatial outbreaks became more obvious in
the cities like Guadalajara, Mexico City, and Puebla. These outbreaks match the civil
unrest events that occurred on the next day, namely September 27.

As shown in these figures, there is a development process for events such as influenza
epidemics and civil unrest that can be viewed as a Markov process, which is a chain
consisting of a sequence of event stages. Although these stages are hidden and cannot
be directly observed, they could be identified indirectly by social sensors such as social
media. This notion leads to a hidden Markov process where, for example, the hidden
states are the underlying stages of an event, while the observations for the underlying

1HHS regions are the groups of geo-neighboring states defined by Department of Health and Human Services
for epidemic disease prevention. http://www.hhs.gov/about/agencies/regional-offices/.
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Table I. Notations and Descriptions

Notations Descriptions
Zs,t Latent state in sequence s at time t.

Ys,t,n Category-switching variable of the nth word in sequence s at time t.
Xs,t,n Topic label of the nth word at time t in sequence s.
Ws,t,n The nth word in sequence s at time t.
rin
s,t The posting ratio in sequence s’s location at time t.

rout
s,t The posting ratio outside the location of sequence s at time t.

Ns,t,w The frequency of a word w in sequence s at time t.
� Bernoulli distribution that generates Ys,t,n.
� Topic distribution that generates Xs,t,n.
θ B

j Distribution of words under the jth topic.
θs, tR Distribution of words exclusive to sequence s at time step t.
μl,k Mean of posting ratios of location l under latent state k.
�l,k Covariance of posting ratios of location l under latent state k.
λin

l,k Mean of posting ratios inside the location l for Poisson distribution for latent state k.
λout

l,k Mean of posting ratios outside the location l for Poisson distribution for latent state k.

stages are the postings in social media. More formally, in the following, the detailed
formulation is described.

The notation used in this article is introduced in Table I. As demonstrated in
Figure 1, in order to accurately forecast spatiotemporal events it is crucial to be able
to characterize their underlying development before their occurrence by utilizing
relevant tweet observations. An enhanced HMM is proposed here to characterize the
underlying development of events.

Given a sequence of observations O, a standard HMM can be denoted as a quadruple
(H, Z, A, π ), where Z is a set of K latent states. Hk(Oi) denotes the emission probability
that a symbol Oi is generated by the kth latent state. A is a K× K transition probability
matrix, where Aj,k = p(Zj |Zk) is the transitional probability of moving from the jth
latent state to the kth latent state, and π is the initial probability vector, where πk is
the probability that the initial state is k. Starting from an initial state k, the HMM
generates an observation O1 according to the emission probability Hk(O1), and then
transitions to a state j with the transitional probability Aj,k. The training process for
an HMM thus entails searching for the set of parameters (H, Z, A, π ) that best fits the
sequence of observations.

However, a standard HMM is limited to simple symbol observations and will thus
face several challenges in our case because the observation does not consist of a single
symbol but rather of all the domain-related tweets in each time step. Furthermore,
a standard HMM can neither characterize spatial burstiness nor handle structural
and noisy observations. Here, both the content and the spatial burstiness of domain-
related tweets are the observations, and the underlying stage in the development of
social events is characterized as the latent state. A future event is predicted by inferring
the underlying development based on tweet observations.

This problem therefore requires several important enhancements to the standard
HMM. First, instead of a single symbol, each observation must encompass all the
domain-related tweets in each time step. Second, the enhanced HMM treats the spa-
tial burstiness of domain-related tweets as multivariate “posting rates” in the same
geographical neighborhood. Third, to address the noisy nature of tweet content, a lan-
guage model is used to filter out typos and identify proper names that are exclusive to
particular events. Fourth, the structural semantics of the filtered tweets is modeled as
a mixture of latent topics. The generative process of the new model is described in the
following subsections.
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Fig. 7. Tweet context evolution during the development of a protest.

More formally, denote D = {Dl,t}l∈L,t∈T as a collection of space-time-indexed Twitter
data split into different geographical locations L and different time intervals T . A
sequence of tweets is defined as s = {Dl,t}t∈T ⊆T , which contains all the tweets in location
l during the time period T ⊆ T . S denotes the number of all such sequences in the
data D. Our model characterizes the development of each event as a sequence of latent
states Z = {1, 2, . . . , K}, with tweet sequence s ⊆ Dl being the observations generated
by the latent states.

Structural tweet content modeling. The underlying development of an event is
not only reflected by the evolutionary content in tweet texts, but also by the spatial
count distribution of event-related tweets. The characterizations of the tweet content
and the spatial counts are described in this and the next sections, respectively.

Figure 7 illustrates the temporal evolution of representative tweet content during the
development of a protest against the 2012 presidential election in Mexico. It shows how
there are generally two categories of words; namely, (i) event-specific words that are
specific to a unique event, such as hashtags, hyperlinks, landmarks, and organization
names, shown in purple in Figure 7; and (ii) common words that can be common to a
number of different events. These mainly belong to two different threads. A thread of
common words will contain the background words, which are commonly used but less
informative, such as stop-words. Another thread contains the common words that are
topical, such as those shown in green, red, and yellow, which encompass information
about the action that will be taken during the event development. As shown in Figure 7,
unlike event-specific words, topical words are not restricted to specific events and are
thus able to indicate the development stages of different events. In the kth latent state,
the probability that a word belongs to either of the above two categories is modeled by
a Bernoulli distribution:

Ys,t,n ∼ Bern(Ys,t,n|�k). (1)

If a word Ws,t,n in sequence s at time step t belongs to the first category, it is directly
generated from a language model θ R

s,t, which identifies the words exclusive to the current
event sequence s at current time t:

Ws,t,n ∼ Mult
(
Ws,t,n|θ R

s,t

)
. (2)

If the word belongs to the second category, then it is selected from one of the latent
topics that are shared by all such events.

Xs,t,n ∼ Mult(Xs,t,n|�k). (3)

A latent topic j is modeled as a multinomial distribution over words:

Ws,t,n ∼ Mult
(
Ws,t,n|θ Bj

)
. (4)
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Fig. 8. The evolution of tweet space-time burstiness during the development of a protest.

3.2. Model I: Space-Time Burstiness Modeling with Neighborhood Interactions (STM-I)

The underlying progression of an event’s development is reflected by the evolutionary
counts of event-related tweets in spatial regions. As shown in Figure 8, on July 1,
2012, when the results of the Mexican presidential election were announced, not only
residents of Mexico City, but also people from other regions in the country complained
about the so-called fraudulent election. By July 4, people, especially those living in and
around Mexico City, started to plan potential protests, leading to an obvious tweet count
outbreak inside the city. Finally, the planned protests were advertised to those living
in other regions in the country, as shown by a series of outbreaks inside Mexico City.
The subsequent nontrivial volume of tweets outside the city revealed that responses
were being received to these advertisement from other regions in the country.

The outbreaks or anomalousness of spatial tweet counts in location l are typically
characterized by their score functions. To perform spatial outbreak modeling and
detection, specialized “spatial scan statistics” have been developed [Kulldorff 1997]
that are widely used to model these outbreaks, such as disease outbreaks and
bioterrorist attacks [Neill 2012]. Spatial scan statistics characterize the patterns of
spatial outbreaks by the counts (e.g., the tweet count) or rates (e.g., the ratio of the
disease population) inside and outside the region [Neill 2012]. For example, spatial
scan statistics attempt to designate spatial disease outbreaks as occurring in those
regions where the underlying disease rates are significantly higher than in other
regions. Although the specific forms of the score function vary, the tweet counts (or
rates) inside and outside the regions are commonly deemed to follow probabilistic
distributions such as Gaussian and Poisson distributions.

Gaussian distributions are commonly used in spatial scan statistics to model the
inside and outside counts/rates. In this article, we adopt a bivariate Gaussian because
its advantages are twofold. First, its covariance matrix quantifies the different signifi-
cance of the inside and outside ratios in characterizing the spatial burstiness. Second,
the nondiagonal elements of the covariance matrix can also capture the relationship be-
tween the inside and outside ratios. The detailed formulation of our bi-Gaussian-based
model is as follows.

Given a tweet sequence s ⊆ Dl in location l, denote cin
s,t as the count of domain-related

tweets inside location l at time t and cout
s,t as the count outside this location. Denote

bin
s,t = |Dl,t| as the total tweet count inside location l at time step t and bout

s,t as that
outside this location. rin

s,t = cin
s,t/bin

s,t and rout
s,t = cout

s,t /bout
s,t are the inside ratio and the

outside ratio and are, respectively, the proportions of the domain-related tweets inside
and outside location l. Hence, the spatial burstiness pattern surrounding the location
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Fig. 9. Plate notation of the proposed STM-I model.

l is jointly characterized by rin
s,t and rout

s,t ; spatial burstiness typically occurs when the
inside ratio is higher than the outside one. To characterize the spatial burstiness in
terms of the inside and outside ratios, a bivariate Gaussian is utilized:

rin
s,t, rout

s,t ∼ N
(
rin

s,t, rout
s,t |μl,k, �l,k

)
. (5)

For the kth latent state, draw the mean of the inside and outside ratios μl,k from a
Gaussian distribution:

μl,k ∼ N (μl,k|μ0, �l,k β0), (6)

where μ0 is the historical prior mean of the inside and outside ratios and β0 is the
number of prior measurements. �l,k is the scale matrix following the inverse Wishart
distribution:

�l,k ∼ IW(�l,k|	−1
0 , ν0), (7)

where 	0 and ν0 describe the prior scale matrix and the degree of freedom, respectively.
As shown in Figure 9, the generative process of the proposed STM-I, which is the

Gaussian-distributed burstiness modeling, is:

—For each sequence s at each time step t,
—Draw Zs,t ∼ Multi(Zs,t|Zs,t−1, A)

—For each latent state k in each location l,
—Draw the mean of the spatial burstiness from a normal distribution μl,k ∼

N (μl,k|μ0, �l,k β0)
—Draw the regional variance from an inverse Wishart distribution �l,k ∼

IW(�l,k|	−1
0 , μ0)

—For each sequence of tweets s
—Draw rin

s,t, rout
s,t ∼ N (rin

s,t, rout
s,t |μl,k, �l,k)
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—For each word Wn in time step t in tweet sequence s,
—Draw Ys,t,n ∼ Bern(Ys,t,n|�k)
—If Ys,t,n = 0, draw Ws,t,n ∼ Mult(Ws,t,n|θ R

s,t)
—else

—Draw a topic Xs,t,n ∼ Mult(Xs,t,n|�k).
—Draw a word Ws,t,n ∼ Mult(Ws,t,n|θ Bj , j = Xs,t,n).

3.3. Model II: Space-Time Burstiness with Non-negative-Discrete Signals

The model in the previous section, STM-I, characterizes the space-time burstiness by
not only considering the signal strengths at different locations, but also the poten-
tial correlations among these locations by leveraging the covariance. In spite of these
advantages, however, important signals such as the volume of tweets are typically non-
negative and discrete and are thus not naturally handled by a Gaussian distribution.
To address this issue, in addition to the Gaussian-based version just described, we
propose another model, STM-S, to preserve these non-negative and discrete properties
based on a Poisson distribution. Specifically, the counts cin

s,t and cout
s,t are assumed to be

Poisson distributed and designated as follows:
cin

s,t ∼ Poisson
(
cin

s,t|λin
k,l · bin

s,t

)
,

cout
s,t ∼ Poisson

(
cout

s,t |λout
k,l · bout

s,t

)
, (8)

where bin
s,t and bout

s,t , as previously, represent the total tweet count inside and outside
location l at time step t, respectively, and λin

k,l and λout
k,l denote the means of the inside

and outside outbreak ratios, respectively.
Prior knowledge of sufficient statistics to permit a Poisson distribution for different

locations and different states follows Gamma distributions:
λin

k,l ∼ Gamma
(
λin

k,l|αin, βin),
λout

k,l ∼ Gamma
(
λout

k,l |αout, βout), (9)

where αin and βin denote the shape parameter and inverse scale parameter of the
Gamma prior for the inside outbreaks distribution. αout and βout denote the shape
parameter and inverse scale parameter of the Gamma prior for the outside outbreaks
distribution.

As shown in Figure 10, the generative process of the proposed STM-S based on
Poisson-distributed burstiness modeling, is:
—For each sequence s at each time step t,

—Draw Zs,t ∼ Multi(Zs,t|Zs,t−1, A)
—For each latent state k in each location l,

—Draw the mean of the in-location burstiness from a Gamma distribution λin
k,l ∼

Gamma(λin
k,l|αin, βin)

—Draw the mean of the out-location burstiness from a Gamma distribution λout
k,l ∼

Gamma(λout
k,l |αout, βout)

—For each sequence of tweets s
—Draw cin

s,t ∼ Poisson(cin
s,t|λin

k,l · bin
s,t)

—Draw cout
s,t ∼ Poisson(cout

s,t |λout
k,l · bout

s,t )
—For each word Wn in time step t in tweet sequence s,

—Draw Ys,t,n ∼ Bern(Ys,t,n|�k)
—If Ys,t,n = 0, draw Ws,t,n ∼ Mult(Ws,t,n|θ R

s,t)
—else

—Draw a topic Xs,t,n ∼ Mult(Xs,t,n|�k).
—Draw a word Ws,t,n ∼ Mult(Ws,t,n|θ Bj , j = Xs,t,n).
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Fig. 10. Plate notation of the proposed STM-S model.

4. PARAMETER ESTIMATION

4.1. Joint Likelihood

Based on the generative process just described, our proposed new model STM-I defines
the joint probability of the generation of observed variables, latent variables, and model
parameters.

Specifically, the observed variables are the spatial burstiness rin, rout, and words W
in the tweet content; the latent variables are topic assignment X, category assignment
Y , and latent state assignment Z. The geographical prior is �I = {μ0, β0,	0, ν0}. Their
joint distribution is expressed as follows:

p(W, X, Y, Z, μ,�, rin, rout|π, A, �,�, θ,�I) (10)

=
S∏
s

p
(
Zs,1|π

) ·
S∏
s

T∏
t=2

p
(
Zs,t|Zs,t−1, A

)

·
S∏
s

T∏
t=1

N∏
n

p
(
Ws,t,n, Ys,t,n, Xs,t,n|Zs,t, �,�, θ

)

·
S∏
s

T∏
t=1

p
(
rin

s,t, rout
s,t |μl, �l, Zs,t

)
p(μl, �l|�I),

where θ = {θ B, θ R}. Thus, searching for the best settings for the model parameters
for STM-I is equivalent to maximizing the logarithm of the joint distribution in
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Equation (10). The specific optimization process of this objective function is listed in
Equations (18–22) and Equations (29–36) in Appendix A.1.

In STM-S, the Poisson-distributed space-time burstiness modeling approach means
that the observed variables are the inside domain-related tweet counts cin, the inside
base counts bin, the outside domain-related tweet counts cout, the outside base counts
bout, and the words W in the tweet content; the latent variables are once again topic
assignment X, category assignment Y , and latent state assignment Z. The geographical
prior is �II = {αin, βin, αout, βout}. The joint distribution is expressed as follows:

p(W, X, Y, Z, μ,�, rin, rout|π, A, �,�, θ,�IIch) (11)

=
S∏
s

p
(
Zs,1|π

) ·
S∏
s

T∏
t=2

p
(
Zs,t|Zs,t−1, A

)

·
S∏
s

T∏
t=1

N∏
n

p
(
Ws,t,n, Ys,t,n, Xs,t,n|Zs,t, �,�, θ

)

·
S∏
s

T∏
t=1

p
(
cin

s,t|bin
s,t · λin

l

) · p
(
cout

s,t |bin
s,t · λin

l

)

· p
(
λin

l , λout
l |�II

)
.

Thus, searching for the best set of model parameters for STM-S is equivalent to maxi-
mizing the logarithm of the joint distribution in Equation (11). The specific optimization
process of this objective function is listed in Equations (18, 23–36) in Appendix A.1.

Utilizing the prior distributions �I and �II enables the model to estimate the spatial
burstiness distribution even when there are no spatial outbreak observations. This
advantage makes it possible to conduct event predictions even in new locations. More
specifically for the model STM-I, according to Equation (19) in Appendix A.1, when
(rin

s,t, rout
s,t ) is not available, then μ̂l,k = 0. Therefore, μl,k = μ0 according to Equation (21).

For STM-S, which utilizes a Poisson distribution, the deduction is the same, using
Equations (27) and (28).

The time consumption required by the preceding algorithm is composed of two parts:
(i) the computation of the forward-backward algorithm and (ii) the computation of
Equations (18)–(36). The time complexity of the first of these is S · T · K, where S is
the number of sequences, T is the time length of a sequence, and K is the number of
latent states. The time complexity of the second is S · T · V · K + S · T · V · K · J, where
N is the size of the vocabulary and J is the number of latent topics. Combining the two
parts and multiplying the result by the number of EM iterations q, the comprehensive
time complexity, is S · T · V · K · J · q.

Given the large numerical value of S, which includes all the historical sequences,
the batch EM algorithm for estimating the model parameters is inevitably quite time-
consuming. Moreover, as Twitter streams in real time, the batch-based updating of the
model parameter to cope with the constant flow of incoming data requires the continual
recalculation of the entire historical training set, which is prohibitively expensive in
practice. To address this issue, we propose the use of an online parameter optimization
method, which is introduced in the following section.

4.2. Online Parameter Optimization Algorithm

This section proposes online parameter optimization algorithms for STM-I and STM-S.

4.2.1. Parameter Optimization for STM-I. Unlike a standard batch EM algorithm, the ca-
pacity to perform online estimation means that the data must be run through only
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once [Cappé 2011; Cappé and Moulines 2009]. The basic rationale of an online EM
algorithm is to replace the expectation step by a stochastic approximation step while
keeping the maximization step unchanged.

For STM-I, we first need to design the corresponding stochastic E-step, including
the computation of the conditional expectations. However, unlike batch algorithms
where all the event-specific language models θ R are optimized iteratively, θ R for each
newly arriving event in an online algorithm cannot be known beforehand. Hence the
likelihood in Equation (10) is unknown, which prevents the calculation of E[p(Zsi ,t = k)].
To address this problem, we propose to maximize the likelihood in Equation (10) with
respect to θ R, nR, and nB, which can be simplified into Equation (14). After calculating
θ R, the conditional expectations of unknown parameters can be obtained by a Stochastic
E-step, discussed in more detail in Appendix A.2.

Utilizing the preceding stochastic E-step, the parameters for STM-I are trained on
the fly based on the streaming data, as summarized in Algorithm 1. Specifically, the
current sequence of social media message si is crawled from the data stream and utilized
to calculate the conditional expectations for current data points, as in Steps 5, 7, 9,
and 11. Then, the conditional expectations are used to update the sufficient statistics
μ̂l,k,i, �̂l,k,i, gs,k,w,i, and fk, j,w,i in real time, as shown in Steps 6, 8, and 10. Finally, the
maximum likelihoods of all the model parameters are calculated in Steps 3–19. This
EM iteration is updated continuously while the data are streaming until the end of the
stream.

4.2.2. Parameter Optimization for STM-S. As for STM-I, for STM-S the conditional expec-
tations can be obtained through a Stochastic E-step. Here, the model parameters of
STM-S θ B, θ R, �, and � need to be initialized; this initialization follows the same
strategy as for STM-I.

Utilizing the above-proposed stochastic E-step, the parameters for STM-S are once
again trained on the fly based on the streaming data, as summarized in Algorithm
2. Specifically, the current sequence of social media message si is crawled from the
data stream and utilized to calculate the conditional expectations for the current data
point by performing Steps 7, 9, 13, and 15. Then, these conditional expectations are
used to update the sufficient statistics λ̂in

c,l,k,i, λ̂in
b,l,k,i, λ̂out

c,l,k,i, λ̂out
b,l,k,i, gs,k,w,i, and fk, j,w,i in

real time, as shown in Steps 5, 8, 10, 14, and 16. Finally, the maximum likelihoods of
all the model parameters are calculated in Steps 11 and 17–23. This EM iteration is
performed continuously while the data are streaming until the end of the stream.

4.2.3. Time Complexity Analysis. As deduced in Section 4.1, for the batch algorithm, the
time complexity is S · T · V · K · J · q.

For the online algorithm, the time complexity of the E-step is K · T · V · J · h, and the
time complexity of the M-step is K · T · (L + J · V + V ) + J · W . Hence, the total time
complexity is (K · T · V · J · h + K · T · (L + J · V )) · q.

This indicates that the time complexity of the online algorithm is independent of S,
the number of sequences in the training set, but is linear in h, the number of iterations
used to optimize θ R, the language model for event-specific expressions.

5. SPATIOTEMPORAL EVENT FORECASTING

In this section, spatiotemporal event forecasting is formalized as a sequence classi-
fication problem based on the models proposed earlier, and an effective method for
calculating the sequence likelihood is presented.

5.1. Sequence Classification

Given a sequence of tweets, it is first necessary to identify whether the underlying de-
velopment revealed by this sequence will lead to an event or not. These two possibilities
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ALGORITHM 1: Online EM Algorithm for STM-I
Input: D, �0 = {μ0, β0, 	0, ν0}
Output: A∗, π∗, �∗, �∗, θ∗, μ∗, �∗.

1 Set the initial learning rate γ0 = 0.5. Initialize θ B, θ R, �, and �. Set i = 0;
2 repeat
3 Get current sequence si from Twitter data stream;
4 Obtain optimal θ R by maximizing the likelihood in Equation 10;
5 Calculate E[p(Zsi ,t = k)] using forward-backward algorithm;
6 for k ← 1 to K do // iterate over the K latent states
7 for l ← 1 to L do // iterate over the L locations
8 N̂l,k,i ← (1 − γi) · N̂l,k,i−1 + γi · ∑

t E[p(Zsi ,t = k)];

9 μ̂l,k,i ← (1 − γi) · μ̂l,k,i−1 + γi

∑
t E[p(Zsi ,t=k)](rin

si ,t
,rout

si ,t
)

N̂l,k,i
;

10 E�̂
l,k,i ← ∑

t E[p(Zsi ,t=k)]
(
μ̂l,k−(rin

si ,t
,rout

si ,t
)
)2

/N̂l,k,i;
11 �̂l,k,i ← (1 − γi) · �̂l,k,i−1 + γi · E�̂

i ;
12 μl,k,i = (β0μ0 + N̂l,k,i · μ̂l,k,i)/(β0 + N̂l,k,i);

13 �l,k,i = 	0+�̂l,k,i
ν0+3 + β0 N̂l,k,i (μ̂l,k,i−μ0)(μ̂l,k,i−μ0)T

(β0+N̂l,k,i )(ν0+3)
;

14 end
15 for j ← 1 to J do // iterate over the J latent topics
16 for w ← 1 to V do // iterate over the V terms

17 E f
k, j,w,i ←

T∑
t

Nsi ,t,w
E[p(Zsi ,t=k)]·�k,2 ·�k, j θ

Bj
w

�k,1θ R
si ,t,w

+�k,2
∑

j �k, j θ
Bj
w

;

18 fk, j,w,i ← (1 − γi) · fk, j,w,i−1 + γi · Eg
i ;

19 end
20 �k, j,i = ∑

w fk, j,w,i/
∑

j

∑
w fk, j,w,i;

21 end
22 for w ← 1 to V do // iterate over the V terms

23 Eg
si ,k,w,i ←

T∑
t

Nsi ,t,w
E[p(Zsi ,t=k)]·�k,1·θ R

si ,t,w

�k,1θ R
si ,t,w

+�k,2
∑

j �k, j θ
Bj
w

;

24 gsi ,k,w,i ← (1 − γi) · gs,k,w,i−1 + γi · Eg
i ;

25 end
26 �k,1,i = ∑

s,w gs,k,w,i/(
∑

s,w gs,k,w,i+
∑

w, j fk, j,w,i );
27 �k,2,i = ∑

w

∑
j fk, j,w,i/(

∑
s
∑

w gs,k,w,i+
∑

w

∑
j fk, j,w,i );

28 end
29 for j ← 1 to J do // iterate over the J latent topics
30 for w ← 1 to V do // iterate over the V terms

31 θ
Bj
w,i = ∑

k fk, j,w,i/
∑

k

∑
w fk, j,w,i;

32 θ
Bj
w,i = ∑

k fk, j,w,i/
∑

k

∑
w fk, j,w,i;

33 end
34 end
35 i ← i + 1;
36 until the end of data stream;

each have a corresponding set of sequences, and the two proposed models are trained
based on these sequences: one model characterizes the development process leading to
an event, while the other characterizes a process that does not lead to an event. For
the prediction, an unknown sequence will be aligned with the model in each class. This
sequence will be classified into the class corresponding to the higher alignment score.

Denote C1 as the model trained for the class corresponding to the situation: “future
event,” while C2 is the model corresponding to “no event.” Denote e1 as the cost of
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ALGORITHM 2: Online EM Algorithm for STM-S
Input: D, �0 = {μ0, β0, 	0, ν0}
Output: A∗, π∗, �∗, �∗, θ∗,λin∗ , λout∗ .

1 Set the initial learning rate γ0 = 0.5. Initialize θ B, θ R, �, and �. Set i = 0;
2 repeat
3 Get current sequence si from Twitter data stream;
4 Obtain optimal θ R by maximizing the likelihood in Equation 11;
5 Calculate E[p(Zsi ,t = k)] using forward-backward algorithm;
6 for k ← 1 to K do // iterate over the K latent states
7 for l ← 1 to L do // iterate over the L locations
8 N̂l,k,i ← (1 − γi) · N̂l,k,i−1 + γi · ∑

t E[p(Zsi ,t = k)];
9 for m ∈ {in, out} do // iterate over the inside and outside ratios

10 Eλ̂m
c

l,k,i ← ∑
t cm

si ,t · E[p(Zsi ,t = k)]/N̂l,k,i;

11 λ̂m
c,l,k,i ← (1 − γi) · λ̂m

c,l,k,i−1 + γi · Eλ̂m
c

i ;

12 E
λ̂m

b
l,k,i ← ∑

t bm
si ,t · E[p(Zsi ,t = k)]/N̂l,k,i;

13 λ̂m
b,l,k,i ← (1 − γi) · λ̂m

b,l,k,i−1 + γi · E
λ̂m

b
i ;

14 λm
k,l,i = (αm−1)+λ̂m

c,k,l,i
βm+λ̂m

b,k,l,i
;

15 end
16 end
17 for j ← 1 to J do // iterate over the J latent topics
18 for w ← 1 to V do // iterate over the V terms

19 E f
k, j,w,i ←

T∑
t

Nsi ,t,w
E[p(Zsi ,t=k)]·�k,2·�k, j θ

Bj
w

�k,1θ R
si ,t,w

+�k,2
∑

j �k, j θ
Bj
w

;

20 fk, j,w,i ← (1 − γi) · fk, j,w,i−1 + γi · Eg
i ;

21 end
22 �k, j,i = ∑

w fk, j,w,i/
∑

j

∑
w fk, j,w,i;

23 end
24 for w ← 1 to V do // iterate over the V terms

25 Eg
si ,k,w,i ←

T∑
t

Nsi ,t,w
E[p(Zsi ,t=k)]·�k,1 ·θ R

si ,t,w

�k,1θ R
si ,t,w

+�k,2
∑

j �k, j θ
Bj
w

;

26 gsi ,k,w,i ← (1 − γi) · gs,k,w,i−1 + γi · Eg
i ;

27 end
28 �k,1,i = ∑

s,w gs,k,w,i/(
∑

s,w gs,k,w,i+
∑

w, j fk, j,w,i );
29 �k,2,i = ∑

w

∑
j fk, j,w,i/(

∑
s
∑

w gsi ,k,w,i+
∑

w

∑
j fk, j,w,i );

30 end
31 for j ← 1 to J do // iterate over the J latent topics
32 for w ← 1 to V do // iterate over the V terms

33 θ
Bj
w,i = ∑

k fk, j,w,i/
∑

k

∑
w fk, j,w,i;

34 θ
Bj
w,i = ∑

k fk, j,w,i/
∑

k

∑
w fk, j,w,i;

35 end
36 end
37 i ← i + 1;
38 until the end of data stream;

misclassifying the first class as the second class, while e2 is the cost of misclassifying
the second class as the first class. The spatiotemporal event forecasting problem can
be formalized as follows: Given a newly arriving sequence of tweets s in location l, if
p(C1|s, l) > ε · p(C2|s, l), then a future event is deemed likely to happen; p(C1|s, l) ≤
ε · p(C2|s, l), where ε = e1/e2 is the cost ratio.
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According to the Bayesian rule, we have p(Ci|s, l) = p(s|Ci) · p(Ci|l)/p(s), i = 1, 2,
where p(C1|l) denotes the prior probability that an event will occur in location l;
p(C2|l) = 1 − p(C1|l) denotes the prior probability that no event will occur in lo-
cation l; and p(s) is a constant and thus can be omitted. If the historical record
for location l is not available, the preceding Bayesian decision rule is formalized as
p(Ci|s) = p(s|Ci) · p(Ci)/p(s), i = 1, 2, where p(C1) is the overall prior probability of
event occurrence in any location, while p(C2) = 1 − p(C1) denotes the prior probability
that no event occurs. Finally, the sequence likelihood p(s|Ci) is calculated based on the
method described in the next section.

5.2. Calculation of Sequence Likelihood

In a standard HMM, dynamic programming methods such as the Viterbi algorithm
[Chen et al. 2005] are typically utilized to calculate the likelihood of a newly arriving
sequence by finding the most likely sequence of latent states. In our model, however, the
traditional Viterbi algorithm is not applicable because our model needs to determine the
optimal language models θ R = {θ R

s,t}S,T
s,t that represent the words exclusive to this newly

arriving sequence. The calculation of sequence likelihood based on our model involves
identifying the most probable latent states and the parameter θ R that maximizes the
probability p(s|Ci):

p (s|Ci) = max
{Zt}T

t ,θ R,nR,nB
ln p(s, Z1, . . . , ZT |Ci), (12)

where nR = {nR
s,t}S,T

s,t is the number of words explained by the language model θ R in

sequence s at time step t and nB = {nBj
s,t}S,T ,J

s,t, j is the number of the words explained by dif-
ferent latent topics. By introducing the notation ωt such that ωt ≡ ln p(s, Z1, . . . , Zt|Ci),
Equation (12) can be solved by recursively calculating the following equation:

ωt = max
θ R

s,t,nR
s,t,nB

s,t

ln p(st|Zt, Ci) + max
Zt−1

{ln p (Zt|Zt−1) + ωt−1}, (13)

with the initial iteration: ωt = maxθ R
s,1,nR

s,1,nB
s,1

ln p(s1|Z1, Ci) + ln p(Z1). The variables

{Zt}T
t can be solved via a standard max-sum algorithm.

Next, we address the optimization problem: maxθ R
s,t,nR

s,t,nB
s,t

ln p(st|Zt, Ci). By referring
to Equation (10) and omitting the constant term, the problem can be formalized as the
following maximization problem:

max
θ R

s,t,nR
s,t,nB

s,t

V∑
i

nR
s,t,i · log θ R

s,t,i +
V∑
i

J∑
j

nBj
s,t,i · log θ

Bj
i (14)

s.t.
V∑
i

θ R
s,t,i = 1, nR

s,t,w +
J∑
j

nBj
s,t,w = ξw, nR

s,t,w ≥ 0

nBj
s,t,w ≥ 0,

V∑
i

nBj
s,t,i = ξ · �k,2�k, j,

V∑
i

nR
s,t,i = ξ · �R

k,1,

where ξ denotes the number of words in sequence s at time step t, k = Zt is the current
latent state in sequence s, and V is the size of the vocabulary. The coupling between
the variables nR

s,t,i and θ R
s,t,i prevents a globally optimal solution to this problem, so

Lagrangian multipliers are added to enforce the constraints. Setting the derivative
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Table II. Datasets and Event Labels

Dataset Time Period # Raw Tweets # Processed Tweets #Events
Civil unrest 2013-01-01 - 2013-06-01 32,459,668 57,856 726

Flu 2011-01-01 - 2013-12-31 8,627,664,399 2,252,436 102

with respect to θ R
s,t,i to 0, we obtain:

nR
s,t,i

θ R
s,t,i

+ γ = 0, (15)

where γ is the Lagragian multiplier for the first equality constraint. By utilizing the
first two equality constraints in Equation (14), we can derive:

θ R
s,t,i = nR

s,t,i

ξ · �R
k,1

. (16)

Substituting Equation (16) into Equation (14), we get

max
nR

s,t,nB
s,t

V∑
i

nR
s,t,i · log

nR
s,t,i

ξ · �R
k,1

+
V∑
i

J∑
j

nBj
s,t,i · log θ

Bj
i (17)

s.t.nR
s,t,w +

J∑
j

nBj
s,t,w = ξw, nR

s,t,w ≥ 0, nBj
s,t,w ≥ 0,

V∑
i

nBj
s,t,i = ξ · �k,2�k, j,

V∑
i

nR
s,t,i = ξ · �R

k,1.

Here, the objective function in Equation (17) is convex with respect to nR
s,t and nBj

s,t . This
means that the global solution can be found using a traditional numerical optimization
method, such as the interior point method [Mehrotra 1992]. After nR

s,t and nBj
s,t are

optimized, θ R
s,t can be calculated based on Equation (16). Finally, the maximization

problem in Equation (12) is solved and thus the sequence likelihood can be calculated.

6. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of the effectiveness and efficiency of
the proposed approach based on comprehensive experiments on two different sets of
Twitter data, the first of which seeks to forecast civil unrest events such as protests and
strikes in Mexico and the second flu outbreaks in the United States. All the experiments
were conducted on a computer with a 2.6GHz Intel i7 CPU and 16GB RAM.

6.1. Experiment Design

This subsection presents the configuration of the datasets, the gold standard report for
these event labels (shown in Table II), data processing, comparison methods, parameter
settings, and performance metrics.

Datasets: For the analysis of civil unrest event forecasting, we collected 10% of the
raw Twitter data for Mexico through Datasift’s Twitter collection engine from January
1, 2013, to June 1, 2013. The data from January 1, 2013, to February 28, 2013, were
used for training and the remainder for testing. For the analysis of flu forecasting, we
collected tweets containing at least one of 124 predefined flu-related keywords (e.g.,
“cold,” “fever,” and “cough”) during the period from January 1, 2011, to December 31,
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2013, from across the United States. The data from January 1, 2011, to January 1,
2013, were used for training and the subsequent tweets for testing.

Gold Standard Report of Event Labels: The civil unrest forecasting results were
validated against a labeled set known as the Gold Standard Report (GSR) that was
exclusively provided by MITRE (see Ramakrishnan et al. [2014] for more details). The
GSR was organized by manually harvesting civil unrest event reports from the 10
most significant news outlets2 in Mexico and the world, as ranked by International
Media and Newspapers3 There were a total of 726 events during the period January
1, 2013, to Junr 1, 2013. An example of a labeled GSR event is given by the tuple:
(CITY = “Hermosillo”, STATE = “Sonora”, COUNTRY = “Mexico”, DATE = “2013-
01-20”). The forecasting results for the flu outbreaks were validated against the flu
statistics reported by the Centers for Disease Control and Prevention (CDC). CDC
publishes the weekly influenza-like illness (ILI) activity level within each state in the
United States using the proportion of the outpatient visits to healthcare providers for
ILI. There are four ILI activity levels: minimal, low, moderate, and high, where the
level “high” corresponds to a salient flu outbreak and is thus considered for forecasting.
There were a total of 102 events during the period January 1, 2011, to December 31,
2013. An example of a CDC flu outbreak event i: (STATE = “Michigan”, COUNTRY =
“United States”, WEEK = “01-06-2013 to 01-12-2013”).

Data Preprocessing: For the first dataset, three labelers collectively labeled 20,906
tweets in both English and Spanish during June 2012 to February 2013. After two had
labeled all the tweets into positive (i.e., relevant to civil unrest) or negative, all the
tweets where they disagreed were sent to the third labeler for final determination.
Consequently, the tweets were categorized as 6,793 positive and 14,113 negative, and
the results used to train a linear SVM classifier. For the second dataset, we utilized the
labeled set in Lamb et al. [2013] and used these to train a linear SVM to identify tweets
relevant to the flu. Both SVMs were generated based on unigram features containing
all the distinct words with frequencies greater than 20 in the individual datasets.
The trained SVM classifiers extracted the tweets deemed relevant to civil unrest and
flu from the respective datasets. The locations of the tweets were extracted from the
geotags (coordinates and places); those tweets without geotags were discarded.

Comparison Methods: There are four proposed approaches evaluated in this arti-
cle: STM-I, STM-S, and their two online versions, namely STM-I (online) and STM-S
(online). Our proposed approaches were compared with four representative methods
and one baseline method. The Autoregressive Exogenous Model (ARX) [Achrekar et al.
2011] assumes that for each separate location, the count of future events is dependent
on both the count of historical events and the tweet volume. In forecasting, an out-
put above “1” indicates that an event has occurred; otherwise, no event is deemed to
have occurred. The Linear Regression (LinReg) model [Arias et al. 2013; Bollen et al.
2011; He et al. 2013; O’Connor et al. 2010] assumes that for each separate location
there is a linear relationship between tweet observations and event occurrences (“0”
denotes nonoccurrence, “1” denotes occurrence). The input feature here is the volume
of domain-related tweets. When forecasting, an output below 0.5 indicates no event;
an output over 0.5 indicates that an event has occurred. In the Logistic Regression
(LogReg) model [Wang et al. 2012b], event forecasting is treated as a classification
problem. Here, the input features are the proportions of latent topics extracted from
the tweet texts coming from a specific location based on the latent dirichlet alloca-
tion. The output is 0 if there is no event and 1, if there is one. The Kernel Density
Estimation-Based Logistic Regression (KDE LogReg) model [Gerber 2014] forecasts

2These are La Jornada, Reforma, Milenio, The New York Times, The Guardian, The Wall Street Journal,
The Washington Post, The International Herald Tribune, The Times of London, and Infolatam.
3International Media and Newspapers website. Available: http://www.4imn.com/. Accessed on Oct 1, 2014.
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Table III. Event Forecasting Results for Civil Unrest

Metric Precision Recall F-measure Runtime
Baseline 0.44±0.16 0.59±0.19 0.50±0.07 0.001
ARX 0.26±0.06 0.43±0.05 0.32±0.09 0.001
LinReg 0.70±0.28 0.18±0.04 0.29±0.11 0.001
LDA-LogReg 0.31±0.06 0.70±0.16 0.43±0.14 0.005
KDE-LDA-LogReg 0.42±0.05 0.69±0.21 0.52±0.20 0.005
ST-Burst 0.29±0.19 0.80±0.17 0.42±0.04 0.008
STM-I 0.75±0.29 0.70±0.31 0.72±0.27 0.32
STM-S 0.58±0.26 0.54±0.24 0.56±0.21 0.33
STM-I (online) 0.53±0.11 0.52±0.33 0.53±0.16 0.33
STM-S (online) 0.64±0.12 0.55±0.32 0.60±0.17 0.50

the event occurrence at a location by considering the historical event numbers and the
tweet semantics. The set of input features consists of a combination of (i) the historical
event numbers spatially smoothed by KDE and (ii) the proportions of the latent topics
of tweet content. The Spatial Temporal Burst Detection (ST-Burst) [Lappas et al. 2012]
is proposed to discover bursts of terms in a specific spatial and temporal neighborhood.
The tunable temporal window size was set to 5 in the original work. We also evaluated
other values, including 12 and 24, but observed similar results. Finally, the baseline
method considers the probability of historical event occurrence to be the probability of
future event occurrence. More specifically, for each location, it calculates the percent-
ages of positive (i.e., event occurrence) and negative cases (i.e., no occurrence) based
on a training set. When making a prediction for each observation, it randomly votes
“positive” or “negative” following the preceding empirical percentage for the location of
the current observation.

Parameter Settings: Except for the baseline method, which does not require pa-
rameters, all the comparison methods were implemented based on the algorithms
presented in the original papers. We strictly followed the strategies recommended by
the authors to select features and estimated the model parameters via a 10-fold cross-
validation. The new method proposed here incorporates several prior parameters and
three tunable parameters. The four prior hyperparameters were set as follows: The
historical prior ratio mean μ0 was set as the mean of the domain-related tweet ratios
in all the locations and in all the time steps; the prior scale matrix 	0 was set as an
identity matrix; the number of prior measurements β0 was set to 1; and the degrees of
freedom ν0 to the dimension of the vector μk,l. The three tunable parameters were the
misclassification cost ratio ε, the number of latent topics J, and the number of latent
states K, which were set as 10, 5, and 4, respectively, based on a 10-fold cross-validation.

Performance Metrics: Three main performance metrics were considered here: pre-
cision, recall, and F1-score. The reported forecasting alerts were structured as tuples
of (date, location), where “location” is defined at the city level for civil unrest events
and state level for flu outbreaks. A forecasting alert was matched to a true event if
both the date and the location attributes matched; otherwise, it was considered to be
a false forecast. Note that because the time granularity of the CDC flu outbreak labels
is at week-level, a match in time was deemed to have occurred if the forecast date of
an alert fell within a week of a true flu outbreak event.

6.2. Event Forecasting Results

Table III presents the comparison between our four approaches and the six competing
methods for the task of forecasting civil unrest events. The test set was split into 20 bins
on which the prediction performance and its standard deviations were evaluated.
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Table IV. Event Forecasting Results for the Flu Dataset

Metric Precision Recall F-measure Runtime
Baseline 0.28±0.09 0.39±0.16 0.33±0.13 0.001
ARX 0.14±0.04 0.66±0.22 0.23±0.01 0.001
LinReg 0.64±0.16 0.31±0.07 0.41±0.12 0.01
LDA-LogReg 0.27±0.09 0.55±0.22 0.36±0.11 0.02
KDE-LDA-LogReg 0.78±0.10 0.32±0.08 0.46±0.06 0.03
ST-Burst 0.63±0.15 0.45±0.10 0.53±0.12 0.1
STM-I 0.83±0.19 0.69±0.13 0.75±0.18 2.1
STM-S 0.63±0.23 0.53±0.13 0.58±0.19 2.5
STM-I (online) 0.69±0.10 0.76±0.21 0.72±0.16 2.0
STM-S (online) 0.68±0.07 0.52±0.25 0.59±0.21 2.5

Here, our proposed new approaches achieved the best overall performance in pre-
cision, recall, and F1-score, outperforming the five comparison methods by up to 38%
in F1-score and 7% in precision. This could be because our approach considers the
spatial burstiness as well as the tweet content, which is crucial for the forecasting of
civil unrest events. Among our approaches, STM-I, which is the Gaussian-distribution
batch-based model, achieved the best performance; the batch-based approaches STM-I
and STM-S generally outperformed their online counterparts, but the online versions
still outperformed the competing methods by a substantial margin on both precision
and recall. The proposed STM-I and STM-S have relatively high standard deviations.
The KDE Logistic Regression achieved an F1-score that was 21% higher than those of
ARX, LinReg, and LogReg due to its consideration of spatial dependencies. ST-Burst
also considers the spatial dependencies and achieves a high recall and smallest stan-
dard deviation on F-measure. The poor performances of ARX and LinReg indicate that
focusing solely on tweet volume is insufficient for the task of civil unrest event forecast-
ing. Thus, the tweet content and the spatial burstiness are both important factors for
this type of application. The baseline method achieved a reasonably good performance,
indicating that it captured important historical event counts in different locations.

Table IV demonstrates that our approaches also consistently achieved the best per-
formance in precision, recall, and F1-score for the task of flu outbreak event forecasting.
The F1-scores achieved by the proposed models were up to 63% higher than those of
the five comparison methods. Among our approaches, the batch version of STM-I again
achieved the best performance. Of the existing approaches, ST-Burst and KDE LogReg
achieved the highest F1-scores (i.e., F-measures), suggesting the importance of consid-
ering spatial burstiness. They also achieved relatively low standard deviations. The
F1-score of the baseline was 34% lower than that in the civil unrest dataset, probably
because the civil unrest events were clustered in several geographic regions, but the flu
outbreak events were scattered across states. As a result, the use of prior information
for event location distribution is effective in the civil unrest dataset, but noninforma-
tive in the flu dataset. LinReg, on the other hand, achieved a 41% higher F1-score in
the flu dataset than in the civil unrest dataset, which indicates that the tweet volume
information plays an important role in this scenario. This could also explain why the
comparison method LogReg, which only considers tweet semantics, performed less well
here than it did in the civil unrest dataset.

The proposed approaches and the five comparison methods all forecast next-day
events at the daily level. The running times of our new approaches were on average
0.35 seconds per day on the civil unrest dataset and 2.3 seconds per day on the flu
dataset. These were markedly longer than the running time of the comparison methods
for both datasets, primarily because our approach considers the characterization of
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Fig. 11. Prediction performance with respect to the tolerance of predicted time error on the civil unrest
dataset. The number of true positives is enlarged when the time tolerance increases.

temporal correlations among tweet contents and the optimization of the language
model for event-specific words. However, the running times achieved by our approach
were only a maximum of 3 seconds longer than those of the five comparison methods,
and the resulting gain in forecast accuracy for next-day events makes this eminently
practical for real-world applications.

In many real-world applications, it is not strictly required that the predicted time
of events must be accurate within a timestep (e.g., on a precise date), and the next
multiple time step is acceptable. For example, when forecasting civil unrest events,
users may be interested in predicting whether or not there will be an event occurring
within the next so many days. Instead of requiring very accurate predicted times,
users may instead emphasize a sufficient lead time for forecasting. Similarly, when
forecasting flu outbreaks, people may be interested in forecasting whether or not the
influenza activity will be high over the next few weeks. To evaluate the performance of
all the methods in this situation, the impact of increasing the correct predictions with
respect to a higher tolerance for predicted time error is validated by the data shown in
Figures 11 and 12.

In Figure 11, the F-measures of all the methods with respect to increasing the
tolerance of the predicted time error are illustrated. As the graph shows, all the F-
measures increase when the time tolerance increases. Among the methods, STM-I
achieves the highest F-measure, about 0.80, when the time tolerance is 7 days. ARX
obtains the largest increase in the rate, from 0.43 at 2 days to 0.64 at 7 days, which
indicates a robust prediction performance. Similar to the pattern of ARX, ST-Burst
also achieves a significant increase in the performance. STM-I and STM-I (online) also
achieve competitive performances of around 0.70 when the tolerance time is almost
7 days.

Figure 12, which shows the equivalent information for the flu dataset, shows a
similar pattern to that in Figure 11. Once again, the F-measures of all the methods
increase when the tolerances of the predicted time errors increase. Here, the methods
STM-I, STM-I (online), STM-S, STM-S(online), ARX, and ST-Burst achieve the best
performances. The performance of ARX ramps up fastest when the time tolerance
increases, finally achieving an F-measure of 0.76 at 7 days.
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Fig. 12. Prediction performance with respect to the tolerance of predicted time error on the flu dataset. The
number of true positives is enlarged when the time tolerance increases.

Table V. Performance Evaluation of Model Components

only content component only spatial component
civil unrest precision recall F-measure precision recall F-measure
STM-I 0.54 0.90 0.68 0.66 0.82 0.73
STM-S 0.34 0.87 0.49 0.35 0.85 0.50
STM-I (online) 0.44 0.79 0.57 0.54 0.72 0.62
STM-S (online) 0.3 0.93 0.45 0.31 0.89 0.46
influenza precision recall F-measure precision recall F-measure
STM-I 0.34 0.81 0.48 0.63 0.68 0.65
STM-S 0.44 1.00 0.61 0.59 0.68 0.63
STM-I (online) 0.34 0.81 0.48 0.66 0.66 0.66
STM-S (online) 0.41 0.78 0.54 0.68 0.55 0.61

The proposed models take into account both structural texts and spatial outbreaks
in event forecasting. To examine the respective usefulness of these two components,
Table V presents the performance evaluations on the models that only consider a single
component; namely, the models only characterize structural texts or spatial outbreaks.
By comparing the performance with the complete models in Tables III and IV, it is
easy to see that the complete models outperform their “one-component” versions in
F-measures. This demonstrates the advantages in considering both components in our
models. In addition, by comparing the performance between the models with only a
spatial component and that with only a content component, it can be seen that the
former outperforms the latter especially on the influenza dataset. This indicates that
for the forecasting tasks in influenza outbreaks, the spatial outbreaks information is
potentially more important than that in the civil unrest tasks.

6.3. Sensitivity Analysis

This section presents the sensitivity analysis. Here, we will only consider the STM-I
model since the experimental results for the other models all follow a similar pattern.

Figures 13 and 14 illustrate the impact of the number of latent states and the number
of latent topics on event forecasting performance. Varying the number of latent topics
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Fig. 13. Sensitivity analysis with respect to number of latent topics.

Fig. 14. Sensitivity analysis with respect to number of latent states.

from 3 to 10 caused the F1-score on the civil unrest and the flu datasets to vary between
0.6 and 0.8; even when the number of latent states rose from 2 to 10, the perturbation
in the F1-scores remained between 0.7 to 0.8 for both datasets, indicating that the
performance is less sensitive to the number of latent states than the latent topics in
the given value interval for the parameters. For both parameters, the performance for
low values was relatively poor. For the number of latent topics, the range from 4 to 7
achieved the best performance, while for the number of latent states, the range from 4
to 9 corresponded to a good performance.

The precision-recall curves of the new approach and the baseline method are shown
in Figures 15(a) and 15(b) for the civil unrest and flu datasets, respectively. To produce
these curves, ε, the cost ratio of false positive to false negative was varied from 0.01
to 1 in increments of 0.01, and from 1 to 100 in increments of 1. For both civil unrest
and flu forecasting, the performance of our approach clearly outperformed the baseline
model.

6.4. Scalability

The training time for the batch-based models is typically sensitive to the size of the
training set. Figures 16 and 17 illustrate the impact of scalability on the number of
training samples needed by the four proposed approaches for the civil unrest dataset
and flu dataset, respectively.
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Fig. 15. Precision-recall curves on civil unrest and flu data. The proposed model consistently outperforms
the baseline when the cost ratio ε varies.

Fig. 16. Scalability of the proposed models for the civil unrest dataset. The runtimes of the batch-based
models increase linearly with the size of training set, while the runtimes of the online models are constant.

As shown in Figure 16, for the civil unrest dataset, the runtimes for training STM-I
and STM-S are linear in the number of training samples, starting from only 10 seconds
with 20 samples and rising to 1,000 seconds with 300 samples. Unlike batch-based
models, the training times for the online versions, STM-I (online) and STM-S (online),
were not sensitive to the number of training samples utilized, with a relatively constant
runtime of around 150 seconds.

On the flu dataset, shown in Figure 17, the runtime for all four approaches was longer
than for the civil unrest dataset due to the larger scale of the data. The runtime for
training STM-I and STM-S once again increased linearly with the number of training
samples, starting from only 10 seconds with 20 samples and rising to 1,600 seconds
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Fig. 17. Scalability of the proposed models for the flu dataset. The runtimes of the batch-based models
increase linearly with the size of the training set, while the runtimes of the online models are constant.

Fig. 18. Illustration of all 10 topics extracted (translated into English). Topics 2 and 5 contain general
background words; Topics 1, 3, 4, 6, and 7 tend to include descriptive words for the protests; Topics 8 and 10
focus on the words specifically calling for a protest. Topic 9 largely contains words related to disseminating
information on the planned protests.
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Fig. 19. Contexts of the five latent states indicating the development stages of events. For different stages
of the developing protest potential, the distributions of topics changes. States 2 and 4 could indicate the
discussion about a potential protest, States 1 and 3 could reveal the spread of propaganda about the planned
protests, while State 5 might be related to the organization of the protest.

Fig. 20. Contexts of the three latent states indicating the development stages of events. For different stages
of the developing potential protest, the distributions of topics change. State 2 could indicate the discussion
about a potential protest, State 3 could reveal the spread of propaganda about the planned protests, while
State 1 might be related to the organization of the protest.

with 300 samples. The runtimes of the online versions of the proposed models were
consistently around 200 seconds when the number of training samples was varied from
20 to 300.

6.5. Case Study

A number of interesting events were predicted by the proposed approaches. In the two
examples used for the case study presented in this section, we forecast a civil unrest
event that involved Mexican teachers and occurred on March 31, 2013, and a flu out-
break in Texas at the end of November 2013 using STM-I. In the following discussion,
we illustrate the topics, states, spatial burstiness, state transitions, and event-specific
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Fig. 21. Contexts of the 10 latent states indicating the development stages of events. For different stages of
the developing protest potential, the distributions of topics changes. States 1, 3, 4 and 5 could indicate the
discussion about a potential protest, States 2, 6, 8, and 9 could reveal the spread of propaganda about the
planned protests, while States 7 and 10 might be related to the organization of the protest.

words identified by STM-I, which were validated by real-world civil unrest and flu
outbreak events, verified by authorized news outlets.

6.5.1. Case Study I: Civil Unrest Event Forecasting for Mexico on March 31, 2013. Figure 18
illustrates the extracted topics for civil unrest-related and common words by the pro-
posed new model STM-I. Different topics are clearly used at different stages of the
unfolding civil unrest event. For example, Topics 1, 6, and 7, which highlight “march,”
“move,” “plaza,” and “takeover,” generally refer to the description of a protest that is ei-
ther happening or planned. Topic 9 tends to concentrate more on advertising a planned
protest, with the top keywords here being “largest,” “problem,” and “protest.” Topics 8
and 10 are related to the stage of “calling for protest,” with the top keywords used being
“please,” “call for,” and “come on.” Topics 2 and 5 are more neutral, mainly consisting
of background common words such as “reflects,” “continue,” and “checked.”

Figure 19 demonstrates the distribution of topics in each state of the proposed STM-I.
For example, State 1 and State 3 tend to focus on Topic 9 , paying less attention to other
topics. This suggests that State 1 is likely to indicate the dissemination of the planned
protest. State 5 highlights the call for protest because it leverages both Topics 9 and
10. This contrasts with the most influential topic in State 2, Topic 7, which indicates
an emphasis on descriptions of ongoing or past events.

In addition to Figure 19, which illustrates the patterns when number of states K = 5,
evaluations with more settings when K = 3 and K = 10 are also provided in Figures 20
and 21, respectively. As shown in Figure 20, when the number of states decreases from
K = 5 to K = 3, the substantial information within the previous five latent states were
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Fig. 22. Spatial burstiness patterns of the five latent states indicating the development stages of a civil
unrest event. States 1, 2, and 3 reveal that the event-related tweet percentage inside the location is similar
to that outside the location. States 3 and 5 show that the event-related tweet percentage inside the location
is much larger than that outside the location, which indicates a potential burstiness in the location.

compressed into these three states. Specifically, State 3 in Figure 20 preserves some
pattern of the State 3 in Figure 19; State 2 in Figure 20 is more relevant to State 2 in
Figure 19; State 1 in Figure 20 is likely to preserve the major patterns in States 1, 4,
and 5 in Figure 19.

In Figure 21, the latent state patterns within the five states are extended and di-
versified into 10 latent states. Specifically, States 1, 2, 6, 7, and 10 are more relevant
to States 4, and 5 in Figure 19, which seems also derived from State 8 in Figure 21;
State 5 corresponds to State 2 in Figure 19; States 3 and 9 could be expanded from
State 1; State 4 potentially mirrors State 2 in Figure 19.

Figure 22 shows the spatial burstiness in terms of the inside and outside ratios for
each state for civil unrest events. In these subplots, each state is illustrated as a bi-
variate Gaussian whose means are the average inside and outside ratios of the location
of the current tweet sequence, and its variance reflects the degree by which the ratios
spread out and how the inside and outside ratios are related to each other. For example,
States 1, 2, and 4 tend to be similar because the means of their outside ratios are larger
than those of their inside ratios, and their inside and outside ratios are likely to also be
negatively correlated, as shown in Figures 22(a), 22(b), and 22(d). On the other hand,
States 3 and 5 are more likely to have larger inside ratios than outside ratios, and their
inside and outside ratios are basically positively correlated. This generally indicates
that burstiness occurred inside the location.

The developing progress of an event (as described in Figure 23(c)) is reflected in the
transitions among hidden states identified by STM-I, as shown in Figure 23(a). This
progress is validated by the ground-truth descriptions from news reports, as shown in
Figure 23(b).
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Fig. 23. Comparison of the event development progression discovered on microblogs with the authorized
reports by news outlets. The state transition on the left of (a) demonstrates the event stages conceptualized
by our model. On the right of (a), the word clouds show that the keywords discovered in the microblogs are
a good match for the bold keywords in the news reports in (b). The effective modeling of the development
progression finally leads to the accurate prediction of the occurrence of the events described in (c).
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Fig. 24. Spatial burstiness patterns of the five latent states, indicating the development stages of flu events.
States 2, 3, and 5 reveal that the event-related tweet percentage inside the location is similar to that outside
the location. States 1 and 4 show that the event-related tweet percentage inside the location is much larger
than that outside the location, which indicates a potential flu burstiness in that location.

As shown in Figure 23(a), the state transition is State 2 → State 1 → State 1 →
State 4 → State 4 → State 4 → State 3. By referring to Figures 18, 19, and 22, this
state transition indicates a potential development sequence of “planning → adver-
tising → calling.” Figure 23(a) also illustrates the identified event-specific words for
each date. Figure 23(b) demonstrates that the identified event-specific words match the
ground-truth from the news reports, especially for keywords such as “Guerrero” (protest
location and protest target), “teacher” (protest initiator), and “occupy” (protest action).
Therefore, the case study confirms that the topics, states, spatial-burstiness, and state
transitions identified by our approach are indeed effective and accurate and have prac-
tical meanings that match the ground truth obtained from the authorized news outlets.

6.5.2. Case Study II: Flu Outbreak Event Forecasting for Texas, USA, November 24-30, 2013.
Figure 24 shows the spatial burstiness in terms of the inside and outside ratios for
each latent state. Here, as in Figure 22, in each subplot a state is illustrated as a bi-
variate Gaussian whose means are the average inside and outside ratios of the location
of the current tweet sequence and its variance reflects the degree to which the ratios
spread out and the inside and outside ratios are related to each other. For example,
States 2, 3, and 5 tend to be more similar because the means of their outside ratios
are larger than those of their inside ratios; low inside and outside ratios indicate low
influenza activity. The inside and outside ratios are likely to be positively correlated,
as shown in Figures 24(b), 24(c), and 24(e). On the other hand, States 1 and 4 are
more likely to have larger inside ratios than outside ratios. The much larger inside
ratio indicates a strong flu-related signal in social media at the current location, which
generally suggests that there is or will be burstiness occurring inside the location.
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Fig. 25. Comparison of flu event development progression discovered on microblogs with the authorized
reports from the CDC. The state transition on the left of (a) demonstrates the event stages conceptualized
by our model. On the right of (a), the map shows that the increase of flu-related tweets in Texas is a good
match for the rapidly increasing reports of flu activity in Texas, as shown in (b). The effective modeling of
the development progression finally leads to the accurate prediction of the occurrence of the flu outbreaks,
illustrated in (c).
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The left part of Figure 25(a) shows the latent state transition, while 25(b) shows the
distribution of flu-related tweets across the whole country. The initial latent state is
State 3 on November 9 and 10, which then transfers to State 1 on November 11-21,
and finally goes to State 4 on November 22. By referring to Figure 24, we know that
State 3 indicates a moderate inside ratio and low outside ratio, while State 1 indicates
a high inside ratio and low outside ratio. By modeling this state transition and the
flu-related tweets’ spatial distribution, our model forecast a potential development of
“flu outbreaks” in Texas in the following week. Figure 25(b) shows the flu activity level
identified by the authorities, in this case the CDC flu reports. It clearly demonstrates
the upgrading of the flu activity in Texas from November 3, 2013 to November 11, 2013,
and predicts a flu outbreak for the following week, which is consistent with the pattern
identified and modeled through social media.

7. CONCLUSION

This article has presented a novel model for spatiotemporal event forecasting in Twit-
ter. The new generative approach uncovers the underlying development of events by
jointly considering the structural semantics and the spatiotemporal burstiness of Twit-
ter streams. Both batch and online-based inference algorithms were developed to op-
timize the model parameters. Utilizing the trained model, the alignment likelihood of
tweet sequences was calculated by dynamic programming. Extensive empirical testing
demonstrated the effectiveness of the new approach by comparing it with those of five
representative methods. In future work, we plan to extend our approach to other appli-
cations, such as forecasting outbreaks of other diseases and local events such as road
congestion.

APPENDIX

A.1. Batch Parameter Optimization Algorithm

To find the best parameters for both models, the Expectation Maximization (EM) al-
gorithm can be extended to compute the parameters for modeling structural text and
space-time outbreaks.

The standard steps of the Baum-Welch (BW) algorithm [Chen et al. 2005] is applied to
calculate the expectation probability E[p(Zs,t = k)] that the observation of the location
s and time t is under the latent state k.

Given the expectations E[p(Zs,t = k)], the expected count of time intervals that the
observations are under the latent state k is calculated based on the following equation:

N̂l,k =
∑
s⊆Dl

∑
t

E[p(Zs,t = k)], (18)

where s ∈ Dl signifies that the sequence s belongs to the tweets in location l.
When using the Gaussian distribution to model the space-time burstiness, the max-

imum likelihoods of the mean and variance of the Gaussian distributed space-time
burstiness modeling are computed as:

μ̂l,k =
∑

s⊆Dl

∑
t E[p(Zs,t = k)] · (rin

s,t, rout
s,t )

N̂l,k
, (19)

where (rin
s,t, rout

s,t ) is the vector observation of the bi-variate Gaussian.

�̂l,k =
∑

s⊆Dl

∑
t E[p(Zs,t = k)]

(
μ̂l,k − (rin

s,t, rout
s,t )

)2

N̂l,k
. (20)
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The posteriors of the mean and variance of the Gaussian distributed space-time
burstiness modeling are computed as:

μl,k = (β0μ0 + N̂l,kμ̂l,k)
/
(β0 + N̂l,k) (21)

�l,k = 	0 + �̂l,k

ν0 + 3
+ β0 N̂l,k(μ̂l,k − μ0)(μ̂l,k − μ0)T

(β0 + N̂l,k)(ν0 + 3)
. (22)

When using Poisson-distributed space-time burstiness modeling, Equations (19–22)
are replaced by Equations (23) and (28), as shown in the following:

The weighted means of the domain-related counts inside location l under latent state
k is calculated as:

λ̂in
c,k,l =

∑
s∈Dl

∑
t

cin
s,t · E[p(Zs,t = k)]/N̂l,k. (23)

The weighted means of the base counts inside location l under latent state k is
calculated as:

λ̂in
b,k,l =

∑
s∈Dl

∑
t

bin
s,t · E[p(Zs,t = k)]/N̂l,k. (24)

The weighted means of the domain-related counts outside location l under latent
state k is calculated as:

λ̂out
c,k,l =

∑
s∈Dl

∑
t

cout
s,t · E[p(Zs,t = k)]/N̂l,k. (25)

The weighted means of the base counts outside location l under latent state k is
calculated as:

λ̂out
b,k,l =

∑
s∈Dl

∑
t

bout
s,t · E[p(Zs,t = k)]/N̂l,k. (26)

Therefore, the posteriors of the means of the ratios of the domain-related tweets
inside and outside, respectively, of the location l under the latent state k are calculated
using the following two equations:

λin
k,l = (αin − 1) + λ̂in

c,k,l

βin + λ̂in
b,k,l

(27)

λout
k,l = (αout − 1) + λ̂out

c,k,l

βout + λ̂out
b,k,l

. (28)

In the sequence s and latent state k, the expectations of the count of a word w that
has been identified as being specific to the unique event is calculated as:

gs,k,w =
T∑
t

Ns,t,w
E[p(Zs,t = k)] · �k,1 · θ R

s,t,w

�k,1θ
R
s,t,w + �k,2

∑
j �k, jθ

Bj
w

. (29)

In the latent state k, the expectation value of the count of word w that is a common
word under latent topic j is calculated as:

fk, j,w =
S∑
s

T∑
t

Ns,t,w
E[p(Zs,t = k)] · �k,2 · �k, jθ

Bj
w

�k,1θ
R
s,t,w + �k,2

∑
j �k, jθ

Bj
w

. (30)
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Among the words corresponding to specific events in the sequence s and latent state
k, the likelihood for word w is:

θ R
s,k,w = gs,k,w∑

x gs,k,x
. (31)

Among the common words under the topic j in the sequence s and latent state k, the
likelihood of word w is:

θ
Bj
w =

∑
k fk, j,w∑

k
∑

w fk, j,w
. (32)

In the latent state k, the likelihood that a word corresponds to a specific event is:

�k,1 =
∑

s
∑

w gs,k,w∑
s
∑

w gs,k,w + ∑
w

∑
j fk, j,w.

(33)

In the latent state k, the likelihood that a word is a common word is:

�k,2 =
∑

w

∑
j fk, j,w∑

s
∑

w gs,k,w + ∑
w

∑
j fk, j,w

. (34)

In the latent state k among all the common words, the likelihood that a word is
included under topic j is:

�k, j =
∑

w fk, j,w∑
j
∑

w fk, j,w
. (35)

The prior likelihood of the latent state k is:

πk =
∑

s E[p(Zs,1 = k)]∑
s
∑

i E[p(Zs,1 = i)]
. (36)

By iteratively executing the E-step and the M-step, the model parameters and the
latent variables are continuously updated until convergence is achieved. The model
parameters are optimized and the likelihood in Equation (10) is maximized.

A.2. Stochastic E-Step

A.2.1. STM-I. Eμ̂

i , E�̂
i , Eg

i , and E f
i based on the current sequence si can be obtained, as

shown in Equation (37).

Eμ̂

i =
∑

t E[p(Zsi ,t = k)](rin
si ,t, rout

si ,t )

N̂l,k,i

E�̂
i =

∑
t E[p(Zsi ,t = k)]

(
μ̂l,k − (rin

si ,t, rout
si ,t )

)2

N̂l,k,i
(37)

Eg
i =

T∑
t

Nsi ,t,w
E[p(Zsi ,t = k)] · �k,1 · θ R

si ,t,w

�k,1θ
R
si ,t,w + �k,2

∑
j �k, jθ

Bj
w

E f
i =

T∑
t

Nsi ,t,w
E[p(Zsi ,t = k)] · �k,2

∑
j �k, jθ

Bj
w

�k,1θ
R
si ,t,w + �k,2

∑
j �k, jθ

Bj
w
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The stochastic approximation of the statistics update is presented in Equation (38):

μ̂l,k,i = (1 − γi) · μ̂l,k,i−1 + γi · Eμ̂

i

�̂l,k,i = (1 − γi) · �̂l,k,i−1 + γi · E�̂
i (38)

gs,k,w,i = (1 − γi) · gs,k,w,i−1 + γi · Eg
i

fk, j,w,i = (1 − γi) · fk, j,w,i−1 + γi · Eg
i

The model parameters θ B, θ R, �, and � need to be initialized. For each latent state
k ∈ K, the common-word language model θ B ∈ R

K×J×N is initialized by maximizing the
likelihood of a mixture multinomial model. Specifically,

p(w) =
J∑
j

p( j)
N∏
n

p(Wn| j), (39)

where p(Wn| j) = θ
Bj
n,k. By maximizing the log likelihood of p(w), the language model θ B is

determined. Other parameters θ R, �, and � are initialized with uniform distributions.

A.2.2. STM-S. Specifically, the conditional expectations Eμ̂

i , E�̂
i , Eg

i , and E f
i based on

the currency sequence si are calculated.

Eλ̂in
c

i =
∑

t

cin
si ,t · E[p(Zsi ,t = k)]/N̂l,k,i

Eλ̂in
b

i =
∑

t

bin
si ,t · E[p(Zsi ,t = k)]/N̂l,k,i

Eλ̂out
c

i =
∑

t

cout
si ,t · E[p(Zsi ,t = k)]/N̂l,k,i

Eλ̂out
b

i =
∑

t

bout
si ,t · E[p(Zsi ,t = k)]/N̂l,k,i (40)

Eg
i =

T∑
t

Nsi ,t,w
E[p(Zsi ,t = k)] · �k,1 · θ R

si ,t,w

�k,1θ
R
si ,t,w + �k,2

∑
j �k, jθ

Bj
w

E f
i =

T∑
t

Nsi ,t,w
E[p(Zsi ,t = k)] · �k,2

∑
j �k, jθ

Bj
w

�k,1θ
R
si ,t,w + �k,2

∑
j �k, jθ

Bj
w

The stochastic approximation of the statistics update is presented in Equation (41).

λ̂in
c,l,k,i = (1 − γi) · λ̂in

c,l,k,i−1 + γi · Eλ̂in
c

i

λ̂in
b,l,k,i = (1 − γi) · λ̂in

b,l,k,i−1 + γi · Eλ̂in
b

i

λ̂out
c,l,k,i = (1 − γi) · λ̂out

c,l,k,i−1 + γi · Eλ̂out
c

i (41)

λ̂out
b,l,k,i = (1 − γi) · λ̂out

b,l,k,i−1 + γi · Eλ̂out
b

i

gs,k,w,i = (1 − γi) · gs,k,w,i−1 + γi · Eg
i

fk, j,w,i = (1 − γi) · fk, j,w,i−1 + γi · Eg
i
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