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Abstract— Kripke structures are important modeling for-
malisms to understand the behavior of reactive systems. We
present an approach to automatically infer Kripke structures
from time series datasets. Our algorithm bridges the continuous
world of time profiles and the discrete symbols of Kripke
structures by incorporating a segmentation algorithm as an
intermediate step. This approach identifies, in an unsupervised
manner, the states of the Kripke structure, the transition
relation, and the properties (propositions) that hold true in each
state. We demonstrate experimental results of our approach to
understanding the interplay between key biological processes.

I. I NTRODUCTION

Kripke structures are widely used as a modeling formalism
for reasoning with temporal logics. Given a Kripke structure,
algorithms for model checking in various modal (e.g., tempo-
ral) logics are a well studied topic [1]. However, the process
of modeling a Kripke structure is often considered a domain-
specific activity. In this paper, we present an approach to
automatically reconstruct Kripke structures from time series
data through the use of segmentations as an intermediate
representation. We show the applicability of this technique
in understanding dynamic temporal relationships between
biological processes under different experimental conditions.

The input datasets we consider are multiple time series
profiles (e.g., gene expression data over a time course).
Each time series vector denotes an individual gene and a
labeling function (over genes as well as groups of genes)
is assumed to be provided. To arrive at Kripke structures
from such datasets, we marry two threads of research in our
work: algorithms for time series segmentation, and inferring
(symbolic) temporal relationships from dynamic data.

Time series segmentation is an important data mining
problem that can be used to infer the critical events occurring
in a system. Segmenting a single time series has been exten-
sively studied. Variations of dynamic programming [2], [3]
and Bayesian approaches [4] have been applied here. When
multiple time series are involved, it is assumed that all the
series have similar patterns in a given segment. Algorithms
based on fuzzy clustering [5] and graphical models [6] have
been applied in this context. Essentially, all these works
are based on homogeneity assumptions within segments and
model the segmentation problem as one of clustering time
points with the constraint that data samples in a cluster must
belong to successive time points.
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Algorithms to mine the temporal order of events occurring
in multiple time series have also been well studied. Moerchen
et al. [7] devised a temporal grammar for this purpose.
However, their approach requires manual partitioning of the
time series, and the events are derived by naive discretization
of the multiple time series. Kirshner et al. [8] describe a
method to model multiple time series using hidden Markov
models coupled with Chow-Liu trees. This model captures
the mutual dependence between the multiple time series
while taking into account the temporal dependencies within
each individual time series.

Our work presents the first synthesis of these two distinct
lines of research into an integrated approach for reconstruct-
ing Kripke structures.

II. FROM TIME SERIES TOSEGMENTATIONS TOKRIPKE

STRUCTURES

To transduce from time series to segmentations to Kripke
structures, we first model each segment of the time series
as a mix of multiple clusters (of vectors). The problem of
time series segmentation is then to identify the segments
such that the clusters in a segment are highly dissimilar
from the clusters in adjacent segments. We consider each
segment as a separate dataset where the samples are multiple
real valued vectors. Formally, given a two-component dataset
{(xi,yi)}

N
i=1, whereX = {xi}

N
i=1 and Y = {yi}

N
i=1, we

seekr clusters inX and c clusters inY that satisfy two
conflicting criteria. The first criterion is that the clusters are
highly dissimilar across the datasets, i.e., the samples that are
clustered together inX are clustered together with entirely
different sets of samples inY. The second criterion is that the
clusters are local in each dataset, i.e., data samples having
similar profiles are grouped together in each dataset.

A. Clustering across datasets based on contingency tables

We begin by measuring the similarity of the clusters across
the datasets using ar× c contingency table. Entrynij in the
(i, j)th cell of the table represents the overlap between the
samples clustered together in clusteri of X and in clusterj
of Y. The sizes of the clusters inX are given by the column-
wise sums across each row:ni. =

∑

j nij , while the sizes
of clusters inY are given by row-wise sums down each
column: n.j =

∑

i nij . Suppose we have 18 data samples
and 3 clusters in each dataset, then the ideal set of highly
dissimilar clusters gives rise to a contingency table as shown
below:



2 2 2
2 2 2
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Interpreting each row and column as a probability distri-
bution, ideal highly dissimilar clusters result in a total of
(r + c) uniform distributions across the rows and columns
of the contingency table. To capture the deviation of these
distributions from the uniform distribution, we definer
random variablesRi, i = 1, . . . , r occurring with probability
pRi

(Ri = j) =
nij

ni.
corresponding to each row. Similarly

we definec random variablesCj , j = 1, . . . , c occurring
with probability pCj

(Cj = i) =
nij

n.j
corresponding to each

column. We capture the deviation of these distributions from
the uniform distributions over the rows (U( 1

c
)) and columns

(U( 1
r
)) with

F =
1

r

r
∑

i=1

DKL(pRi
||U(

1

c
)) +

1

c

c
∑

j=1

DKL(pCj
||U(

1

r
)),

(1)
where DKL(p||q) =

∑

x p(x) log2
p(x)
q(x) is the Kullback-

Leibler (KL) divergence between two probability distribu-
tions p(x) and q(x). We propose to cluster datasetsX and
Y using F as the objective function and minimizing it in
order to yield highly dissimilar clusters across datasetsX
andY.

B. Clustering within datasets

In order to group data samples with similar profiles within
a dataset, we define cluster prototypesm

(x)
i , i = 1, . . . , r

for the clusters in datasetX . The assignment of a data
vector xk to the clusters is given by the probability dis-
tribution pxk

(V (xk) = i) = v
(xk)
i , i = 1, . . . , r, where

∑r

i=1 v
(xk)
i = 1. The probabilitiesv

(xk)
i are the cluster

membership indicator variables, i.e., the probability that data
samplek is assigned to clusteri. Similar cluster prototypes
m

(y)
j , distributionspyk

(V (yk)), and cluster indicator vari-

ables v
(yk)
j are defined for they vectors as well. These

cluster membership probabilities are calculated as a function
of the distance between the data vector and cluster prototypes
in each individual dataset. The contingency table counts in
the objective functionF in Eq.(1) can be calculated as:nij =
∑

k v
(xk)
i v

(yk)
j , ni. =

∑

k v
(xk)
i , n.j =

∑

k v
(yk)
j . Thus we

can effectively parametrize the objective functionF in terms
of the prototypes of the clusters in each individual dataset.
However, assigning each data vector to the nearest cluster
with probability 1 renders the functionF non-differentiable
at certain points and we cannot leverage classical numerical
optimization algorithms to minimizeF . In order to avoid
this problem, we parametrize the cluster prototypes using a
continuously differentiable function as follows. We define

γ(i,i′)(xk) =
||xk − m

(x)
i′ ||2 − ||xk − m

(x)
i ||2

D
, 1 ≤ i, i′ ≤ r,

whereD is the point-set diameter

D = max
k,k′

||xk − xk′ ||2, 1 ≤ k, k′ ≤ N.

A well known approximation tomin
i′

γ(i,i′)(xk) is the

Kreisselmeier-Steinhauser (KS) envelope function [9] given
by

KSi(xk) =
−1

ρ
ln

[

r
∑

i′=1

exp(−ργ(i,i′)(xk))
]

,

whereρ ≫ 0. The KS function is a smooth function that
is infinitely differentiable. Using this the cluster membership
indicators are redefined as:

v
(xk)
i = Z(x)−1 exp

[

ρKSi(xk)
]

, (2)

where Z(x) is a normalizing function such that
∑r

i=1 v
(xk)
i = 1. The cluster memberships for the

datasetY, v
(yk)
j , are also smoothed similarly,

v
(yk)
j = Z(y)−1 exp

[

ρKSj(yk)
]

. (3)

This formulation results in soft cluster membership probabil-
ities, where a data sample is assigned to the nearest cluster
with probability slightly less than 1 and all the other clusters
with a probability slightly greater than 0.

Using Eq.(2) and Eq.(3) to calculate contingency table
counts and minimizingF should ideally lead to clusters that
are local in each dataset and maximally dissimilar across
datasets. However, there is a potential degenerate solution
where each data vector is assigned with equal probability to
all the clusters. In the example with 18 samples described
earlier, each data sample can be assigned with probability
[1/3, 1/3, 1/3] and the resultant contingency table counts
would still be uniform in each cell (

∑

k v
(xk)
i v

(yk)
j = 2).

To avoid degenerate solutions such as these, we maximize
the deviation between the cluster assignment probability of
each individual data vector and the uniform distribution over
the number of clusters. This results in a regularized objective
function

F =
λ

r

r
∑

i=1

DKL(pRi
||U(

1

c
)) +

λ

c

c
∑

j=1

DKL(pCj
||U(

1

r
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−
1

N

N
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k=1

DKL(pxk
)||U(

1

r
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−
1

N

N
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DKL(pyk
)||U(

1

c
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(4)

C. Segmentation algorithm

Given multiple vectors of measurementsG =
{g1,g2, . . . ,gN}, where eachgi is a time series over
T = {t1, t2, . . . , tl}, the problem of segmentation is to find
a sequence of segments,(wta

t1
, wtb

ta+1
, . . . , wtl

tk
) where each

segmentwte

ts
, ts ≤ te, is a set of consecutive time points

beginning at time pointts and ending at time pointte. The
clusters in the adjacent segments satisfy the two conflicting
criteria as described earlier. We use a window based
approach to find the sequence of segments with maximally
dissimilar clusters as shown in Fig. 1. Optimization of



input T = (t1, t2, . . . , tl): Given time series data
sequence.
input lmin: Minimum window length.
input lmax: Maximum window length.

Step 1: Define the set of windows starting from time
point ta, Sta

= {wtb

ta
|lmin ≤ tb − ta + 1 ≤ lmax}.

Step 2:Construct a directed acyclic graph where each
wtb

ta
is a node and a directed edge exists fromwtb

ta
to

the windowswtc

tb+1
∈ Stb+1

.
Step 3: Cluster the adjacent windowswtb

ta
and wtc

tb+1

by minimizing the objective function in Eq.(4). Let
F

w
tb
ta

,w
tc
tb+1

be the final value of the objective function.

Assign F
w

tb
ta

,w
tc
tb+1

as the edge weight between the

nodes represented bywtb

ta
andwtc

tb+1
.

Step 4:Let Etl
= {wtl

tk
|lmin ≤ tl−tk +1 ≤ lmax} be

the set of windows ending in the last time pointtl. For
each window starting at the first time point,wtb

t1
∈ St1 ,

calculate the minimum cost path to allwtl

tk
∈ Etl

.
Step 5: Calculate DSeg = F

{w
ta
t1

,w
tb
ta+1

}
+

F
{w

tc
tb+1

,w
td
tc+1

}
+ . . . +F

{w
tk
tj

,w
tl
tk+1

}
for each shortest

path in step 4.
Step 6: Return the path with minimumDSeg .

Fig. 1. Algorithm for segmenting a time series

F for clustering adjacent segments is performed using
the augmented Lagrangian algorithm with simple bound
constraints on the cluster prototypes using the FORTRAN
package LANCELOT [10].

D. Inferring Kripke Models from Segmentations

Gantt charts are an effective way to visualize segmenta-
tions of one time series. Kripke structures help understand
the interplay between multiple segmentations. We assume the
availability of a labeling function that assigns state symbols
to clusters in a given segment. Each cluster can be labeled
with one or more symbols and thus each segment can have
multiple symbols. IfKS1

is the set of states active in a
particular segmentS1 and KS2

is the set of states active
in the immediately following segmentS2, we assume that
all states inKS2

are reachable from all the states inKS1
.

These transitions can be projected down to a smaller set of
symbols, for comprehensibility purposes.

The labeling function can be defined in many ways.
Here, we perform an enrichment analysis of the clusters by
calculating the hypergeometric probability of the genes in
the cluster with respect to ontologies such as the GO (Gene
Ontology) biological process (BIO) taxonomy. We choose
GO BIO categories with ap-value < 10−7 as the states
active in a segment.

In the next section, we present specific examples of Kripke
models inferred by segmenting gene expression datasets.

III. I NFERRINGKRIPKE MODELS FROM GENE

EXPRESSION DATA THROUGH TIME SERIES

SEGMENTATION

A. Datasets

We present the time series segmentation results from
two gene expression data sets in this section. The first
data set is the yeast metabolic cycle (YMC) from Tu et
al. [11]. The yeast metabolic cycle consists of a reductive
charging (R/C) phase involving non-respiratory metabolism
(glycolysis, fatty acid oxidation) and protein degradation,
followed by oxidative metabolism (Ox), where respiratory
processes are used to generate adenosine triphosphate (ATP),
culminating in reductive metabolism (R/B), characterized
by a decrease in oxygen uptake and emphasis on DNA
replication, mitochondrial biogenesis, and cell division. The
original dataset consists of 6555 unique genes from theS.
cerevisiae genome with gene expression measurements over
36 time points spanning 3 continuous metabolic cycles.

The second dataset is taken from the experiments con-
ducted by Shapira et al. [12]. We use the data obtained
by treatingS. cerevisiae with hydrogen peroxide (HP) after
release from a G1 arrest. Due to the oxidative stress induced
by HP, the cells are later arrested in the G2/M phase without
progressing through the cell cycle. This dataset consists of
6076 unique genes with gene expression measurements over
20 time points.

From both datasets, we eliminated the genes that do not
have an annotation in any GO biological process category
(revision 4.205 of GO released on 14 March 2007). This
resulted in 3602 genes in YMC and 2471 genes in HP.
The gene expression values were log transformed (base 10)
and normalized such that the mean expression of each gene
across all time points is zero.

B. Dataset segmentation and Kripke model state inference

We used the algorithm described in Fig. 1 to segment
the datasets. Recall that our hypothesis for segmenting time
series is that the clusters across segment boundaries are
maximally dissimilar. We show the contingency tables for
the clusters in the first cycle of YMC in Fig. 2. The segments
identify the R/C, Ox, and R/B phases in order. The first row
shows that the genes corresponding to the particular phase
come together during the segment. The second row shows the
contingency tables for cluster movement across the segment
boundaries and these tables are close to a uniform distribu-
tion. These results are in accordance with our hypothesis that
maximally dissimilar clusters identify segment boundaries.
We define the biological processes active in a segment as
the states of the Kripke model. In order to identify these
biological processes, the first step is to identify the sets of
genes that are significantly clustered together in a segment.
Each segment except the first and last segments has two
sets of clusters, one set dissimilar to the clusters in previous
window and the other set dissimilar to the clusters in the next
window. We are interested in the genes that are significantly
clustered together in these two sets of clusters, as they



segment[1-6] segment[7-10] segment[11-14]

Fig. 2. Contingency tables from obtained from the clusters in the first cycle of YMC.
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iron−sulfur cluster assembly
mitotic spindle elongation

mitotic metaphase/anaphase transition
mitotic sister chromatid cohesion

mitotic spindle organization and biogenesis in nucleus
establishment of mitotic spindle orientation

G2/M transition of mitotic cell cycle 
histone acetylation

DNA strand elongation during DNA replication
spindle pole body duplication in nuclear envelope

microtubule nucleation
telomere maintenance via telomerase

inner mitochondrial membrane organization and biogenesis
regulation of progression through mitotic cell cycle

mitochondrial genome maintenance
nucleosome assembly

ribosome export from nucleus
DNA replication initiation
RNA export from nucleus

rRNA processing
amino acid biosynthetic process

cell wall chitin biosynthetic process
spliceosome assembly

nuclear pore organization and biogenesis
ribosomal subunit assembly and mainteneance

sulfate assimilation
polyamine transport

hexose transport
phosphate transport

aldehyde metabolic process
fatty acid oxidation

vesicle organization and biogenesis
cellular polysaccharide catabolic process

Golgi to vacuole transport
protein targeting to vacuole

retrograde transport, endosome to Golgi
Golgi to plasma membrane transport

ergosterol biosynthetic process
regulation of exit from mitosis

response to heat
protein ubiquitination

protein targeting to peroxisome
glycolysis

timepoints

Fig. 3. Gantt chart resulting from segmentation of YMC.

represent the genes that are specific to the segment under
consideration. We calculate a contingency table of these two
clusterings for each segment (excluding the first and the last
segment). Each cell in the contingency table represents the
number of genes that are together across the sets of clusters
with respect to the previous and next segments. We use a
bootstrapping procedure to evaluate the significance of these
sets. We randomly sample 1000 sets of clusters that are
of the same size used to generate the original contingency
table, and calculate the random contingency tables and this
gives a random distribution for each cell of the contingency

table. We now evaluate each cell of the actual contingency
table with respect to the corresponding random distribution
and retain only those cells that have more genes than that
observed at random withp < 0.05 (in practice thisp-value
is Bonferroni corrected with the number of cross clusters to
account for multiple hypothesis testing). We then perform
functional enrichment over the selected sets of genes. A
hypergeometricp−value is calculated for each GO biological
process term, and an appropriate cutoff is chosen using false
discovery rate (FDR)q− level of 0.01 [13].



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

mitochondrial genome maintenance
iron−sulfur cluster assembly

telomere maintenance via telomerase
glycolysis

endocytosis
cellular polysaccharide catabolic process

vacuolar protein catabolic process
cell cycle arrest

ergosterol biosynthetic process
pentose metabolic process

nuclear pore organization and biogenesis
chromatin silencing at rDNA
glycogen metabolic process

inositol lipid−mediated signaling
methionine metabolic process

cysteine metabolic process
glutathione metabolic process

tricarboxylic acid cycle intermediate metabolic process
ethanol metabolic process

histone acetylation
DNA strand elongation during DNA replication

DNA unwinding during replication
regulation of DNA replication

ATP biosynthetic process
NADH oxidation

Rho protein signal transduction
MAPKKK cascade
fatty acid oxidation

regulation of cell redox homeostasis
response to reactive oxygen species

response to heat
regulation of transcription in response to stress

autophagy
nucleosome assembly

ribosome export from nucleus
DNA replication initiation

rRNA processing
amino acid biosynthetic process

polyamine transport
hexose transport

phosphate transport
sulfate assimilation

ribosomal subunit assembly
amino acid metabolic process

iron ion transport
copper ion transport

timepoints

Fig. 4. Gantt chart resulting from segmentation of HP.

Fig. 5. Combined Kripke model.



C. Gantt chart view of the Kripke models

Figures 3 and 4 show the biological processes inferred
from the datasets YMC and HP respectively withp < 10−7.
For both datasets we use a minimum window length of 3 and
a maximum window length of 7. The segmentation generated
for YMC is: 1-6, 7-10, 11-14, 15-18, 19-22, 23-26, 27-31,
32-36, which correspond to alternating R/C, Ox, and R/B
phases. The segmentation obtained for HP is 1-4, 5-11, 12-
14, 15-20, corresponding to G1, S, G2, G2/M phases of the
cell cycle as depicted in Fig. 4. The cells here are arrested in
the G2/M phase without cyclic progression. The biological
processes enriched in each segment represent the states of the
Kripke model and each of these states is reachable from the
states in the immediately preceding segment. The biological
processes inferred by our segmentation are in accord with
results reported in the corresponding research papers.

Fig. 5 shows a combined Kripke model of the two datasets
for few selected biological processes. In order to compute
the combined Kripke model, we assume that each of the
m processes in segmentS1 of each data set precede each
of the n processes in the next segmentS2, i.e, we have an
arrow representing a state transition from each process in
S1 to each process inS2. We then find the maximal sets of
processes that are common across the two datasets with the
same precedence relationships. The remaining processes are
specific to each individual dataset and they are also combined
into bigger sets based on precedence relationships.

The yellow colored boxes in Fig. 5 represent some of the
maximal sets of processes common to both YMC and HP.
The green colored boxes represent the biological processes
occurring only in HP. The red colored arrows show the
sequence in which the processes occur in HP while the blue
colored arrows represent the sequence of processes in YMC.
Note that the processes end up in a cell cycle arrest in the
case of HP while in the case of YMC they continue in a
cyclic fashion. The processes in boxes taggedh1, c1, c2 all
occur together before the processes in the box taggedh2
as indicated by the red arrows fromh1, c1, c2 to h2. The
processes described in the green boxes represent the specific
response of yeast to the oxidative stress induced by hydrogen
peroxide. Note that these processes include MAPK cascade
and glutathione metabolic process which eventually lead to
cell cycle arrest as indicated by Shapiraet al. [12].

IV. D ISCUSSION

Over the past decade, many powerful data mining tech-
niques have been developed to analyze temporal and se-
quential datasets [14]. However, a formal link from such
methods to an underlying temporal model has been missing.
This is precisely the void that we have sought to fill in
this paper. Our approach of using segmentations as an
intermediate representation helps capture the dynamics of
important processes from temporal datasets. Besides the
applications described here, our work will have important
uses in manufacturing systems, automotive engineering, and
physical plant processes, all of which pose problems of
network discovery from large, temporal, data streams. Our

emphasis on integrating formal models with data mining
allows us to leverage the large body of literature in model
checking and simulation to extract not just patterns from data
but complete, executable, computational models [15].
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