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Abstract— Kripke structures are important modeling for- Algorithms to mine the temporal order of events occurring
malisms to understand the behavior of reactive systems. We in multiple time series have also been well studied. Moenche
present an approach to automatically infer Kripke structures — ot 4 7] devised a temporal grammar for this purpose.
from time series datasets. Our algorithm bridges the continuous . . o
world of time profiles and the discrete symbols of Kripke However, their approach requires manual pa,”'“o_’“”g _ef th
structures by incorporating a segmentation algorithm as an time series, and the events are derived by naive discrietizat
intermediate step. This approach identifies, in an unsupervised of the multiple time series. Kirshner et al. [8] describe a
manner, the states of the Kripke structure, the transition method to model multiple time series using hidden Markov
relation, and the properties (p_roposmons) that hold true in each models coupled with Chow-Liu trees. This model captures
state. We demonstrate experimental results of our approach to : . .
understanding the interplay between key biological processes. the- mutqal (;lependence between the multiple t|me Series

while taking into account the temporal dependencies within
|. INTRODUCTION each individual time series.

Kripke structures are widely used as a modeling formalism Our work presents the first synthesis of these two distinct
for reasoning with temporal logics. Given a Kripke struetur lines of research into an integrated approach for recoctstru
algorithms for model checking in various modal (e.g., tempaing Kripke structures.
ral) logics are a well studied topic [1]. However, the praces
of modeling a Kripke structure is often considered a domain-
specific activity. In this paper, we present an approach td!: FROM TIME SERIES TOSEGMENTATIONS TOKRIPKE
automatically reconstruct Kripke structures from timeieser STRUCTURES
data through the use of segmentations as an intermediate ] ) ) )
representation. We show the applicability of this techaiqu 10 transduce from time series to segmentations to Kripke
in understanding dynamic temporal relationships betweetructures, we first model each segment of the time series
biological processes under different experimental cooatit @S @ Mix of multiple clusters (of vectors). The problem of

The input datasets we consider are multiple time seridén€ series segmentation is then to identify the segments
profiles (e.g., gene expression data over a time coursé}.‘Ch that the clus_,ters in a segment are highly Q|SS|m|Iar
Each time series vector denotes an individual gene and@m the clusters in adjacent segments. We consider each
labeling function (over genes as well as groups of gene§)agment as a separate dataset_where the samples are multiple
is assumed to be provided. To arrive at Kripke structurd&@l valued vectors. Formally, given a two-component atas
from such datasets, we marry two threads of research in Ui ¥i) 1 where X' = {xi}L, andy = {yq;}f-_vzl, we
work: algorithms for time series segmentation, and infigrri S€€K” clusters inA” and ¢ clusters inY that satisfy two
(symbolic) temporal relationships from dynamic data. cpnfhctlng .crlltena. The first criterion is that the clusteare

Time series segmentation is an important data mining/ghly dissimilar across the datasets, i.e., the samplsatie
problem that can be used to infer the critical events ocegrri clustered together it are clustered together with entirely
in a system. Segmenting a single time series has been extéffterent sets of samples 1. The second criterion is that the
sively studied. Variations of dynamic programming [2], [3]c!us_ters are local in each dataset, ie., data samplesdavin
and Bayesian approaches [4] have been applied here. whilpilar profiles are grouped together in each dataset.
multiple time series are involved, it is assumed that all the
series have similar pat'terns in a given ;egment. Algorithmg Clustering across datasets based on contingency tables
based on fuzzy clustering [5] and graphical models [6] have
been applied in this context. Essentially, all these works We begin by measuring the similarity of the clusters across
are based on homogeneity assumptions within segments &ahe datasets usingrax ¢ contingency table. Entry,; in the
model the segmentation problem as one of clustering time, ) cell of the table represents the overlap between the
points with the constraint that data samples in a clusteit musamples clustered together in clustesf X and in cluster;
belong to successive time points. of ). The sizes of the clusters iti are given by the column-

) . ) wise sums across each row;. = . n;;, while the sizes
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A well known approximation tomin~; ;) (xx) is the
Kreisselmeier-SteinhauseK (S) envelope function [9] given
by

N NN
N NN
N NN

Interpreting each row and column as a probability distri- -1 r
bution, ideal highly dissimilar clusters result in a totdl o KSi(xy) = 711“ [ZGXP(_W(W)(XU)}»
(r + ¢) uniform distributions across the rows and columns =1
of the contingency table. To capture the deviation of thes&herep > 0. The K'S function is a smooth function that
distributions from the uniform distribution, we define is infinitely differentiable. Using this the cluster memsigip
random variable®;, i = 1,...,r occurring with probability indicators are redefined as:
pr,(R; = j) = %< corresponding to each row. Similarly (xk) _ -1 4
we definec random variableg”;, j = 1,...,¢ occurring v = 2(x)7 exp [pKSZ(xk')}’ (2)
with probability pc, (C; = i) = 7+ corresponding to each where Z(x) is a normalizing function such that
column. We capture the deviation of these distributionsfro . vz(xw = 1. The cluster memberships for the
EhUe( ij)r;lfortrrr: distributions over the row$/(1)) and columns datasety, v;)’k), are also smoothed similarly,
1)) wi

v§Yk) _ Z(y)_l exp |:pKSJ (yk)] . (3)

This formulation results in soft cluster membership prabab

(1) ities, where a data sample is assigned to the nearest cluster
where Dir(pllg) = >, p(x)log, % is the Kullback- with probability slightly less than 1 and all the other chrst
Leibler (KL) divergence between two probability distribu-with a probability slightly greater than 0.
tions p(x) and g(z). We propose to cluster datasetsand Using Eq.(2) and Eq.(3) to calculate contingency table
Y using F as the objective function and minimizing it in counts and minimizing~ should ideally lead to clusters that

order to yield highly dissimilar clusters across dataskts are local in each dataset and maximally dissimilar across

F=23 DrrlorllUC) + 3 - Drce (o, I0()),

i=1 j=1

and ). datasets. However, there is a potential degenerate solutio
] o where each data vector is assigned with equal probability to
B. Clustering within datasets all the clusters. In the example with 18 samples described

In order to group data samples with similar profiles withinearlier, each data sample can be assigned with probability
a dataset, we define cluster prototypaéx), i=1,...,r [1/3,1/3,1/3] and the resultant contingency table counts
for the clusters in dataset. The assignment of a data would still be uniform in each CeIIX:kz)fx’“)v§y") = 2).
vector x;, to the clusters is given by the probability dis-To avoid degenerate solutions such as these, we maximize
tribution py, (V&) = i) = vl(""”), i = 1,...,r, where the deviation between the cluster assignment probabifity o
ST 1;§xk) — 1. The probabilitieSUE"’“) are the cluster each individual data vector and the uniform distributioeov
membership indicator variables, i.e., the probabilityt thata the number of clusters. This results in a regularized ohject
sa(m)plek is assigned to cluster Similar cluster prototypes function
m;”, distributionspy, (V¥+)), and cluster indicator vari- PR 1 PR 1
abIeSU;yk) are defined for they vectors as well. These }-:;ZDKL(PRMU(E)) + EZDKL(Z)CJ-HU(;))
cluster membership probabilities are calculated as a ifomct =t N =t
of the distance between the data vector and cluster prastyp 1 D U 1
in each individual dataset. The contingency table counts in N D> D (px,)l <r))
the objective functior in Eq.(1) can be calculated as;; = k;1
Doy mi = 3 0, e = 35, 0. Thus we — LS Doy IV,
can effectively parametrize the objective functirin terms N 1 ¢
of the prototypes of the clusters in each individual dataset (4)
However, assigning each data vector to the nearest cIus@r
with probability 1 renders the functiot non-differentiable
at certain points and we cannot leverage classical nunterica Given multiple vectors of measurementy =

Segmentation algorithm

optimization algorithms to minimize¥. In order to avoid {81,82:---,8~}, Where eachg; is a time series over
this problem, we parametrize the cluster prototypes usingZ = {t1.?2, ..., %}, the problem of segmentation is to find
continuously differentiable function as follows. We define & sequence of Segmeh(ﬁuff,wf§+l7.--,wﬁi) where each
! ($)||2 i (I)HQ segmehtwfj, ts <t is a set of.conse.cutlve time points
Vi (Xk) = X — My, - X — M, A <id < beglnnmg at tlme_pomts and ending Qt time point.. The_ _
clusters in the adjacent segments satisfy the two confictin
where D is the point-set diameter criteria as described earlier. We use a window based

approach to find the sequence of segments with maximally

= - ’ 2 ! . . . . . . . .
D_I?,%M‘X’“ x| 1<k K< N dissimilar clusters as shown in Fig. 1. Optimization of



input 7 = (t1,t2,...,%): Given time series data I1l. | NFERRING KRIPKE MODELS FROM GENE

sequence. EXPRESSION DATA THROUGH TIME SERIES
input 7,,,;,: Minimum window length. SEGMENTATION
input [ : Maximum window length.
Ul tmaz 9 A. Datasets
Step 1: Define the set of windows starting from time ~ We present the time series segmentation results from
pointt,, S, = {wfb llmin <tp —ta +1 < lmaz} two gene expression data sets in this section. The first

Step 2: Construct a directed acyclic graph where each data set is the yeast metabolic cycle (YMC) from Tu et
wfz is a node and a directed edge exists frmﬁﬁ{; to al. [11]. The yeast metabolic cycle consists of a reductive
the WiﬂdOWSw,f;H € Siyus- charging R/C) phase involving non-respiratory metabolism
Step 3: Cluster the adjacent windows;® andwfc | (glycolysis, fatty acid oxidation) and protein degradatio

by minimizing the objective function in Eq.(4). Let followed by oxidative metabolismQx), where respiratory

F i . bethefinal value of the objective function. Processes are used to generate adenosine triphosphatg (ATP

—r

a “’tbj:_l . culminating in reductive metabolismR(B), characterized
Assign F . .. as the edge weight between the ; .
Wyg Wy by a decrease in oxygen uptake and emphasis on DNA
nodes represented byig and w§;+1. replication, mitochondrial biogenesis, and cell divisidine

Step 4:Let E;, = {wﬁ“lmm <ti—tpg+1 <lpna} be original dataset consists of 6555 unique genes fromShe

the set of windows ending in the last time potptFor cerevisiae genome with gene expression measurements over

each window starting at the first time poimﬁf ST 36 time points spanning 3 continuous metabolic cycles.
calculate the minimum cost path to aif! € E,. The second dataset is taken from the experiments con-
Step 5: Calculate Dg, = F, ta t + ducted by Shapira et al. [12]. We use the data obtained
’ Lo ey ) b ingS cerevisiae with hyd ide (HP) aft
]:{wtc Lt }+---+7:uﬁk . }for each shortest y treatingS. cerevisiae with hydrogen peroxi e ( )_a er
thr1 et t5 7 ot release from a G1 arrest. Due to the oxidative stress induced

path in step 4.

. - HP, th I I in the G2/M ph ith
Step 6: Return the path with minimunbs., . by the cells are later arrested in the G2/M phase without

progressing through the cell cycle. This dataset consists o
Fig. 1. Algorithm for segmenting a time series 6076 unigue genes with gene expression measurements over
20 time points.
From both datasets, we eliminated the genes that do not
F for clustering adjacent segments is performed usingave an annotation in any GO biological process category
the augmented Lagrangian algorithm with simple boun evision 4.205 of GO released on 14 March 2007). This

constraints on the cluster prototypes using the FORTRAKgsulted in 3602 genes in YMC and 2471 genes in HP.
package LANCELOT [10]. The gene expression values were log transformed (base 10)

and normalized such that the mean expression of each gene
across all time points is zero.

D. Inferring Kripke Models from Segmentations
B. Dataset segmentation and Kripke model state inference

Gantt charts are an effective way to visualize segmenta- \ne ysed the algorithm described in Fig. 1 to segment
tions of one time series. Kripke structures help understanfle gatasets. Recall that our hypothesis for segmenting tim
the interplay between multiple segmentations. We assuie Weries is that the clusters across segment boundaries are
availability of a labeling function that assigns state spiab maximally dissimilar. We show the contingency tables for
to. clusters in a given segment. Each cluster can be labelg(k c|ysters in the first cycle of YMC in Fig. 2. The segments
with one or more symbols and thus each segment can hygniify the R/C, Ox, and R/B phases in order. The first row
mult_lple symbols. IfKg, is the_ set of states active N @ shows that the genes corresponding to the particular phase
particular segment; and Ks, is the set of states active ¢ome together during the segment. The second row shows the
in the immediately following segmerfi;, we assume that qniingency tables for cluster movement across the segment
all states inK's, are reachable from all the states Mx,.  poundaries and these tables are close to a uniform distribu-
These transitions can be projected down to a smaller set @ These results are in accordance with our hypotheats th
symbols, for comprehensibility purposes. maximally dissimilar clusters identify segment boundsrie

The labeling function can be defined in many wayswe define the biological processes active in a segment as
Here, we perform an enrichment analysis of the clusters hjje states of the Kripke model. In order to identify these
calculating the hypergeometric probability of the genes imiological processes, the first step is to identify the séts o
the cluster with respect to ontologies such as the GO (Gegenes that are significantly clustered together in a segment
Ontology) biological process (BIO) taxonomy. We choos&ach segment except the first and last segments has two
GO BIO categories with g-value < 1077 as the states sets of clusters, one set dissimilar to the clusters in previ
active in a segment. window and the other set dissimilar to the clusters in the nex

In the next section, we present specific examples of Kripkeindow. We are interested in the genes that are significantly
models inferred by segmenting gene expression datasets.clustered together in these two sets of clusters, as they



segment[1-6] segment[7-10] segment[11-14]

W1-C3 el 374

W2.C1 |\W2.C2 |W2-C3 W3-C1|W3-C2 (W3.C3
Wi1-C1| 421 401 372 wW2-C1| 380 355 | 428
wWi1-C2 | 380 448 | 365 W2.C2| 415 435 | 410
W1.C3| 378 402 | 435 W2.C3| 368 390 | 421

Fig. 2. Contingency tables from obtained from the clustarthe first cycle of YMC.

timepoints
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glycolysis

protein targeting to peroxisome

protein ubiquitination

~ response to heat

regulation of exit from mitosis

ergosterol biosynthetic process

Golgi to plasma membrane transport
retrograde transport, endosome to Golgi
protein targeting to vacuole

Golgi to vacuole transport

cellular pplﬁ/sacchayide catabolic process
vesicle organization and biogenesis

fatty acid oxidation

aldehyde metabolic process

phosphate transport

hexose transport

poIYamlne transport

sulfate assimilation

ribosomal subunit assembly and mainteneance
nuclear pore organization and biogenesis
spliceosome assembly

cell wall chitin biosynthetic process

amino acid hiosynthetic process

rRNA processing

RNA export from nucleus

DNA replication initiation

ribosome export from nucleus

nucleosome assembly

mitochondrial genome maintenance

requlation of progression through mitotic cell cycle
inner mitochondrial membrane organization and hiogenesis
telomere maintenance via telomerase
microtubule nucleation

spindle pole bod¥ duplication in nuclear envelope
DNA strand elongation during DNA replication
histone acetylation

G2/M transition of mitotic cell cycle
estahlishment of mitotic spindle orientation
mitotic spindle organization and biogenesis in nucleus
mitotic sister chromatid cohesion

mitotic metaphase/anaphase transition

mitotic spindle elongation

iron-sulfur cluster assembly,

Fig. 3. Gantt chart resulting from segmentation of YMC.

represent the genes that are specific to the segment untisle. We now evaluate each cell of the actual contingency
consideration. We calculate a contingency table of these twable with respect to the corresponding random distriloutio
clusterings for each segment (excluding the first and the laand retain only those cells that have more genes than that
segment). Each cell in the contingency table represents thbserved at random with < 0.05 (in practice thisp-value
number of genes that are together across the sets of clustsr8onferroni corrected with the number of cross clusters to
with respect to the previous and next segments. We useaacount for multiple hypothesis testing). We then perform
bootstrapping procedure to evaluate the significance akthefunctional enrichment over the selected sets of genes. A
sets. We randomly sample 1000 sets of clusters that angpergeometrip—value is calculated for each GO biological
of the same size used to generate the original contingenpyocess term, and an appropriate cutoff is chosen using fals
table, and calculate the random contingency tables and thiscovery rate (FDRY)— level of 0.01 [13].

gives a random distribution for each cell of the contingency



timepoints

copper ion transport

iron on transport

amino acid metabolic process

ribosomal subunit assembly

sulfate assimilation

phosphate transport

hexose transport

polyamine transport

amino acid biosynthetic process

TRNA processing

DNA repllcatlon initiation

ribosome export from nucleus

nucleosome assembly

autophagy-----”‘““‘-------““‘
regulation of transcription in response to stressf-- -

response to heatp -+
response to reactive ox gen spemesE e

regulation of cell redox omeostasisf -
fatty acid oxidationf~- - -

MAPKKK cascadef~-

Rhoprotem5|gnaltransduct|on

OXIdatIOI.

ATPb|osynthet|cprocess

regulation of DNA replication

DNA unwinding durlng replication

DNA strand elongation dunng DNA replication
histone acetylation

ethanol metabolic process

tricarboxylic acid cycle intermediate metaholic process
glutathione metabolic process

cysteine metabolic process

met ionine metabolic process

inositol lipid-mediated signaling
glycogen metaholic process

chromatin silencing at rDNA

nuclear pore organization and biogenesis
pentose metabolic process

ergosterol b|osynthet|c rocess

cell cycle arrest

vacuolar protein catabolic process
cellular polysaccharide cataholic process
endocytosis

?choly5|s

telomere maintenance via telomerase
iron-sulfur cluster assembly,
mitochondrial genome maintenance

!!!!!!'.'!!!!!!!!!!!!!!!!

Fig. 4. Gantt chart resulting from segmentation of HP.

0y

Polyamine transport
Protein retention in Golgi

RNA export
DNA replication initiation

oy

Histone acetylation

DNA unwinding during replication

:

—» YMC [] Both YMC and HP
—® HP 3 onyHP

Fig. 5. Combined Kripke model.



C. Gantt chart view of the Kripke models emphasis on integrating formal models with data mining

from the datasets YMC and HP respectively witkc 10-7.  checking and simulation to extract not just patterns frotada

For both datasets we use a minimum window length of 3 arlit complete, executable, computational models [15].

a maximum window length of 7. The segmentation generated
for YMC is: 1-6, 7-10, 11-14, 15-18, 19-22, 23-26, 27-31,
32-36, which correspond to alternating R/C, Ox, and R/B
phases. The segmentation obtained for HP is 1-4, 5-11, 132]
14, 15-20, corresponding to G1, S, G2, G2/M phases of the
cell cycle as depicted in Fig. 4. The cells here are arrested i,
the G2/M phase without cyclic progression. The biological
processes enriched in each segment represent the states of t
Kripke model and each of these states is reachable from thé
states in the immediately preceding segment. The biolbgica
processes inferred by our segmentation are in accord witf]
results reported in the corresponding research papers.

Fig. 5 shows a combined Kripke model of the two datasetgs)
for few selected biological processes. In order to compute
the combined Kripke model, we assume that each of th
m processes in segmeny of each data set precede eachig]
of the n processes in the next segmesyt, i.e, we have an
arrow representing a state transition from each process ifg,]
S1 to each process ify. We then find the maximal sets of
processes that are common across the two datasets with the
same precedence relationships. The remaining processes[%\?
specific to each individual dataset and they are also cordbine
into bigger sets based on precedence relationships. [11]

The yellow colored boxes in Fig. 5 represent some of the
maximal sets of processes common to both YMC and HR2j
The green colored boxes represent the biological processes
occurring only in HP. The red colored arrows show th
sequence in which the processes occur in HP while the blue
colored arrows represent the sequence of processes in YME&!
Note that the processes end up in a cell cycle arrest in the
case of HP while in the case of YMC they continue in gis5]
cyclic fashion. The processes in boxes tagpédcl, c2 all
occur together before the processes in the box tadged
as indicated by the red arrows frohd, cl1, c2 to h2. The
processes described in the green boxes represent the specifi
response of yeast to the oxidative stress induced by hydroge
peroxide. Note that these processes include MAPK cascade
and glutathione metabolic process which eventually lead to
cell cycle arrest as indicated by Shapataal. [12].

(1]

IV. DISCUSSION

Over the past decade, many powerful data mining tech-
nigues have been developed to analyze temporal and se-
guential datasets [14]. However, a formal link from such
methods to an underlying temporal model has been missing.
This is precisely the void that we have sought to fill in
this paper. Our approach of using segmentations as an
intermediate representation helps capture the dynamics of
important processes from temporal datasets. Besides the
applications described here, our work will have important
uses in manufacturing systems, automotive engineerirdy, an
physical plant processes, all of which pose problems of
network discovery from large, temporal, data streams. Our
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