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ABSTRACT

Recent advances in Generative Adversarial Networks (GANs) have

significantly improved the quality of synthetic images or deepfakes.

Photorealistic images generated by GANs start to challenge the

boundary of human perception of reality, and brings new threats to

many critical domains, e.g., journalism, and online media. Detecting

whether an image is generated by GAN or a real camera has become

an important yet under-investigated area. In this work, we propose

a blind detection approach called NoiseScope for discovering GAN

images among other real images. A blind approach requires no a

priori access to GAN images for training, and demonstrably gener-

alizes better than supervised detection schemes. Our key insight is

that, similar to images from cameras, GAN images also carry unique

patterns in the noise space. We extract such patterns in an unsu-

pervised manner to identify GAN images. We evaluate NoiseScope

on 11 diverse datasets containing GAN images, and achieve up to

99.68% F1 score in detecting GAN images. We test the limitations

of NoiseScope against a variety of countermeasures, observing that

NoiseScope holds robust or is easily adaptable.

CCS CONCEPTS

• Security and privacy → Domain-specific security and pri-

vacy architectures.
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Figure 1: Advances in GANs over the years.

1 INTRODUCTION

Recently, the machine learning community has made significant

advances in deep generative models. A landmark paper by Goodfel-

low et al. proposed the Generative Adversarial Network (GAN) in

2014 [33]. This work triggered immense interest in developing and

improving GAN models. Today, such generative models can gener-

ate convincing images [39, 40], videos [75], text [34] and audio [22].

Figure 1 shows quality of images generated by GANs over the

years. These efforts were primarily motivated by different benign

use cases, e.g., to augment datasets using synthetic samples to train

better models [26], for de-identification [42], feature extraction [5],

video prediction [46], and image editing [58]. However, govern-

ments [16, 73] and industry [25] are realizing the dual-use nature

of such powerful methods—fake content or deepfakes produced by

generative models can also be used for malicious purposes.

Today, we see many instances of misuse of deepfakes, including

fake pornographic videos and images of celebrities, and ordinary

people [24, 64], fake audios of people saying things they never

said [50]. Industry and governments are also concerned about deep-

fakes being used for large disinformation campaigns on social media

platforms to manipulate elections, trigger hate and violence against

minorities, and to create unrest in society [60]. Deepfakes can be

a threat beyond the web as well. Recent work showed how GANs

can be used to create deepfake medical images to mislead medical

professionals, and ML-based diagnostic tools [51].

In this work, we take a step towards defending against such

threats by building a deepfake detection scheme. We focus on

deepfake images generated by GANs, which is the state-of-the-

art method for generating photorealistic images. Most prior work

on detecting fake (GAN generated) images are supervised meth-

ods that require a priori access to fake images, or their generative

models [52]. However, supervised schemes usually do not gener-

alize well to datasets they are not trained on, and access to fake

images for training can be limited in practice. Instead, we focus on

advancing the state-of-the-art in blind detection of fake images. Our



scheme, called NoiseScope, can accurately detect fake images with-

out requiring any a priori access to fake images or their generative

schemes for training.

Our work is inspired by prior work in camera fingerprinting [11,

12, 32, 49], and includes the following key contributions:
1© Similar to images produced by cameras, we find that fake im-

ages contain unique low-level noise patterns that are tied to the

GAN model that generated it. Such patterns are correlated with

the deconvolution layers of GANs. 2©We present the design and

implementation of NoiseScope, a blind detection scheme that lever-

ages unique patterns in fake images left by the generative model.

Given a test set with unknown number of fake and real (produced

by camera) images, NoiseScope extracts any available model finger-

prints or patterns that identify a GAN and uses the fingerprint to

detect fake images in that set. In contrast to supervised schemes,

our method is agnostic to the type of GAN used, and is also effec-

tive when the test set contains images from multiple GANS. Our

method also works for any type of high-level image content, as it

only extracts low-level noise patterns. 3© We evaluate NoiseScope

on 11 diverse deepfake image datasets, created using 4 high quality

GAN models. NoiseScope can detect fake images with up to 99.68%

F1 score. 4© Lastly, we extensively evaluate NoiseScope against a

variety of countermeasures by assuming an attacker who is aware

of NoiseScope’s detection pipeline.

Considering the rate at which new generative models (GANs)

are being proposed, supervised learning strategies will likely tip

the arms race in favor of the attacker. Therefore, there is an urgent

need to advance blind detection schemes that can, in theory, work

against a wide range of GANmodels. The source code of NoiseScope

is available at GitHub1, and we hope NoiseScope inspires more work

on deepfake detection.

2 BACKGROUND & RELATEDWORK

In this work, we focus on images, and consider deepfake images as

those produced by machine learning algorithms, more specifically,

GANs. GAN models are capable of producing high-quality images.

In fact, humans find it hard to distinguish deepfake images from

real images [51]. We encourage the reader to look at the following

website 2 that presents a new fake image on each page refresh,

created using the StyleGAN [40]. In the rest of the paper, we will

interchangeably use the term deepfake or fake image to refer to such

content. Images produced by traditional imaging devices (cameras)

are called real images.

2.1 Deepfake Generation Methods

Deepfakes are primarily enabled by the family of deep generative

models. Given a training set of images, a generative model can

learn the distribution of the data and produce new images with

variations. Two popular approaches include Generative Adversarial

Networks (GANs) [33], and Variational Autoencoders (VAEs) [41].

We focus on deepfakes generated by GANs, because GANs have

shown impressive performance over the last few years.

GAN Basics. In 2014, Goodfellow et al. [33] proposed the Gener-

ative Adversarial Network (GAN). A GAN is designed using two

1https://github.com/jmpu/NoiseScope
2https://thispersondoesnotexist.com/

neural networks, a generator (G) that produces fake images, and

a discriminator (D) that takes the fake image and gives feedback

to the generator on how well it resembles a real image. The two

components are trained simultaneously in an adversarial manner

such that the generator learns to produce fake images that are in-

distinguishable from real images, and the discriminator learns to

distinguish between real and fake images (produced by the genera-

tor). Therefore, the idea is to optimize one main objective—make the

generated images indistinguishable from real images. This training

objective or loss term is called the adversarial loss.

It is important to note the role of deconvolution or upsampling

layers in generative models. An integral component of most genera-

tive models, including VAEs and GANs, is a transposed convolution

layer [23], commonly referred to as deconvolution or upsampling

layer. This is fundamental to building high quality generators, as it

allows for learnable upsampling from a lower dimensional vector

space. In Section 5.1, we demonstrate how the deconvolution layers

can leave distinct patterns in the “noise space” of an image, which

enable us to distinguish between fake and real images.

Choice of GANs. Experimenting with the large number of GANs

in the literature [3, 47, 65, 82] would be impractical. Instead, we

focus on certain key models that significantly raised the bar for

different types of image generation tasks. We focus on deepfakes

generated by CycleGAN [87], PGGAN [39], BigGAN [9], and Style-

GAN [40]. These 4 GANs are briefly discussed below. Figures 8-18

in Appendix A show image samples from all 4 GANs.

CycleGAN [87]. CycleGAN advanced the state-of-the-art in image-

to-image translation when it was proposed, improving over the

previous method Pix2Pix [37]. CycleGAN can translate an image

from one domain to another, e.g., turn an image of a horse to a

zebra. Compared to Pix2Pix, CycleGAN does not require paired

images for training, which is a huge advantage, as paired images

(for two domains) are hard to obtain. From a threat perspective,

image-to-image translation schemes can be used by an attacker in

many ways, e.g., swap faces in an image, insert a new person or

object into a scene.

PGGAN [39]. In 2018, PGGAN demonstrated a huge improvement

in image quality. Previously, GANs were not capable of generating

high resolution images in high quality. The basic idea is to progres-

sively generate higher resolution images, by starting from easier

low-resolution images. PGGAN progressively grows both the gener-

ator and discriminator by adding new layers as training progresses

to produce higher resolution images with more details. PGGAN

is able to produce photo-realistic images at high resolutions, up

to 1024x1024. At the time, PGGAN produced the highest Incep-

tion score of 8.80 for CIFAR10 [43], and also created a high-quality

version of the CelebA dataset [48] at 1024x1024 resolution.

BigGAN [9]. Soon after the introduction of PGGAN, Brock et al.

introduced BigGAN, an attempt to scale up conditional GANs to

develop high quality images on a large number of domains. BigGAN

uses a variety of techniques to improve GAN training and image

quality, including an increased batch size, increase in number of

layer channels, and shared embeddings for batch normalization lay-

ers in the generator. One feature of BigGAN is the “truncation trick”,

whereby using a hyperparameter called the truncation threshold,

one can control the trade-off between image fidelity and variety. A

2



higher truncation threshold leads to higher variety in generated

images, while a lower threshold boosts fidelity. When evaluated

on the ImageNet dataset, BigGAN produced a very high Inception

Score of 166.5, outperforming SAGAN [82] which had the previous

best Inception Score of 52.52.

StyleGAN [40]. In 2019, Karras et al. released StyleGAN, an im-

provement to PGGAN which incorporates a complete redesign of

the generator architecture. The generator no longer receives as

input a random noise vector, but a style vector generated by a noise-

to-style CNN mapping network. Other changes include a change in

the upsampling technique, and addition of noise to feature maps in

the convolutional layers. This redesign allows fine-grained control

over style of the generated image, while simultaneously retaining

and improving upon the high-quality output of PGGAN. Having

fine-grained control over style of the generated image is important

from an attack perspective.

2.2 Deepfake Detection Methods

Prior work on deepfake detection has investigated both supervised

and blind detection schemes. In a supervised scheme, the defender

has access to both real and fake content (or has knowledge of the

generative model) and can use this labelled data to train a classifi-

cation algorithm. In blind detection, the defender has no a priori

access to fake content (or generative methods employed), and only

has access to real content. Most prior work has employed supervised

schemes, and limited efforts have been made towards advancing

blind detection schemes. Consequently, the performance of such

schemes has evolved considerably, and the release of effective DNN

models that facilitate improved feature learning has only furthered

this progress. However, the dominant performance of supervised

learning comes with notable caveats.

In practice, it is hard to obtain a priori access to fake content,

or knowledge of the generative model. However, even with such

presumption, supervised schemes suffer from a fatal inability to

generalize. More specifically, we observe that such schemes are

designed for and thus trained on a limited set of deepfakes (gen-

erated by specific generative models), and do not generalize well

when evaluated against deepfakes produced by other models. In

Section 5.2, we demonstrate this inability to generalize.

A blind detection scheme aims to solve this problem by not

requiring a priori access to fake images for training, while being

able to detect fake images from a wide variety of sources (GANs).

An accompanying difficulty of blind design is a potential decrease

in performance when compared to existing supervised classifiers.

NoiseScope aims to advance the state-of-the-art for blind detection

schemes by offering a performant detection scheme. NoiseScope

complements the supervised detection schemes from prior work,

allowing for potentially hybrid ensembles that feature the best of

both worlds.

Supervised methods. One set of approaches focus on building a

supervised classifier with input image features crafted from specific

vector spaces. Examples include Marra et al.’s [52] proposition of

using raw pixel and conventional forensics features, and Nataraj

et al.’s [57] extraction of pre-computed RGB pixel co-occurrence

matrices to capture distinguishing features. Feature engineering in

multiple color spaces has also been explored. Li et al. proposed a fea-

ture set capturing disparities in color spaces between real and fake

images and then using such features to perform classification [45].

Prior work observed that, similar to cameras, GANs also leave

unique fingerprints in the images. Marra et al. [53] extracted GAN

model fingerprints using techniques from the camera fingerprint-

ing literature [12, 49], and implemented a supervised scheme to

detect fake images. Another approach by Yu et al. [80] used a su-

pervised deep learning scheme to learn GAN model fingerprints,

and attribute images to GANs. Yu et al.’s approach primarily fo-

cused on attributing fake images to different GANs. Albright and

McCloskey [2] also worked on attributing images to GANs by lever-

aging generator inversion schemes [19]. Our work also aims to

identify model fingerprints to detect fake images but does so in a

blind manner.

Domain-specific inconsistencies can also be used to detect deep-

fakes. Yang et al. [78] focused on deep fakes generated by splicing

synthesized face regions into a real image. They show that such

splicing introduces errors when 3D head poses are estimated from

the fake images. An SVM-based classifier is trained to learn such

errors to distinguish between real and fake images.

Other supervised approaches leverage DNNs to automatically

extract features relevant for classification. Mo et al. [55] developed

a CNN-based model to detect face images generated by PGGAN.

Rossler et al. compared 5 CNN-based classification architectures by

learning extracted face regions [69]. Tariq et al. [72] propose using

ensembles of various CNN-based classifiers to detect GAN gener-

ated face images. Concurrent to our work,Wang et al. [77] proposed

a classifier based on the ResNet-50 architecture that is trained on a

large number of fake images from a single GAN, with carefully cho-

sen data augmentation schemes. Afchar et al. [1] designed MesoNet

based on Inception blocks to detect deepfakes showing impressive

performance. We compare NoiseScope with MesoNet in Section 5.2.

Also note that the above approaches have a fundamental weakness—

they can be evaded by the attacker, by re-training the GAN using

the defender’s DNN model as the discriminator.

Blind detection. Li et al.’s work [45] proposes a blind detection

scheme. The idea is that GANs fail to learn correlations among color

components in the RGB space, which results in inconsistencies

when examined in other color spaces, namely HSV, and YCbCr.

They train a one-class SVM classifier on features based on color

statistics of HSV and YCbCr color spaces of real images to detect

fake images. The intuition is that fake images will be flagged as

anomalies in the color (feature) space. We compare our approach

against Li et al.’s approach in Section 5.2.

Zhang et al. [83] uses real data to train “AutoGAN”, a compo-

nent that aims to simulate a GAN generator. The idea is to first

generate fake images using AutoGAN, and then train a supervised

classifier on the newly synthesized fake images and real images to

detect other fake images. Unfortunately, its performance largely

depends on the architecture of AutoGAN’s generator. Results show

significant drop in performance when tested on fake images from

a GAN that uses a different architecture compared to AutoGAN’s

generator.
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3 DETECTING DEEPFAKES VIA NOISESCOPE

3.1 Attack and Defense Model

Attacker model. Attacker aims to generate high quality convinc-

ing deepfake images using deep generative models (GANs). Our

focus is on fake images that are entirely produced by a generative

model (GAN). Fake images created by image forgery techniques

such as replacing or adding content in real images (e.g., face swap-

ping [74]) are not considered. In Section 5, we consider an attacker

who is unaware of our defense scheme. Later, in Section 6, we con-

sider an attacker who is aware of our defense scheme pipeline and

employs a variety of countermeasures against NoiseScope.

Defender model. Defender has no a priori access to fake images,

and no knowledge of the generative scheme used by the attacker.

Defender is provided a test set of images, out of which an unknown

number of images are fake or real, and the goal is to flag fake images.

Defender also makes use of a reference set of real images, which is

only used to calibrate certain detection parameters of NoiseScope.

For example, if Facebook wants to detect deepfake profile pictures,

they can prepare a test set containing profile pictures (say faces), and

the reference set would include a set of known real profile pictures.

Our method is designed to be content agnostic, and therefore the

test set can be based on images from different content categories.

3.2 Method Basics

We do not rely on content-specific features that capture semantic

or statistical inconsistencies, e.g., finding abnormalities in human

face images. Such defenses will not survive for long, given the rate

at which GANs are advancing and producing photorealistic images.

Instead, we aim to identify patterns that are not tied to the semantic

aspects of image contents but allow us to differentiate between real

and fake images.

We borrow ideas from the rich literature of camera fingerprinting

schemes [11, 12, 32, 49]. Each imaging device (e.g., camera) leaves

a unique and stable pattern in each image due to imperfections

in various stages of the image acquisition process. Such patterns

known as photo-response non-uniformity (PRNU) patterns have

been used to fingerprint cameras or image acquisition devices [49].

Naturally, this first raises the question whether GAN-based image

generators would leave a unique and stable “artificial” pattern in the

generated images. In fact, preliminary work by Marra et al. shows

that such stable patterns do exist in GAN generated images [53].

These patterns are present, regardless of the content in the image,

be it images of human faces, objects, animals or landscapes. Sec-

ondly, we would expect those patterns to look different because

GAN models share no similarity with camera-based image acqui-

sition pipelines. We leverage these ideas and propose a complete

blind detection scheme that can accurately flag fake images with

any type of content. Next, we explain techniques from the camera

fingerprinting literature that we leverage to fingerprint generative

models.

Leveraging model fingerprints for detection. Consider a set

of images, Ii , where i ∈ {1, . . . ,Np } generated by a GAN. Our goal

is to estimate a stable pattern left by the GAN, that is unrelated to

the semantics of the image content. The first step is to separate the

high-level content from the image, and estimate the noise residual

StyleGAN CycleGAN PGGAN BigGAN

Canon EOS 6D iPhone 7 Plus Nikon D90 Nikon D4

Figure 2: Camera fingerprints from Canon, iPhone, Nikon

cameras (top) and GAN fingerprints from StyleGAN, Cycle-

GAN, PGGAN, BigGAN (bottom).
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Ri . The high-level content is estimated by applying an appropriate

denoising filter f (Ii ). The noise residual is then computed as, Ri =
Ii − f (Ii ). Now the assumption is that the noise residual Ri contains
the stable pattern or the fingerprint F , and some random noise Ni ,

i.e., Ri = F + Ni . Therefore, one can estimate the fingerprint by

averaging the residuals:

F̄ = (

Np∑

i=1

Ri )/Np (1)

In practice, the larger the Np , the additive noise component tends

to cancel out, and we obtain a more accurate fingerprint. According

to prior work, it is possible to estimate a reliable fingerprint using

at least 50 images, i.e., Np > 50 [6].

Figure 2 shows camera and GAN fingerprints computed using

the above method for Np = 100 images. Note that model finger-

prints look very different from device fingerprints. In the case of

CycleGAN and PGGAN, there is a noticeable checkerboard pattern.

This observation is further discussed later in Section 5.1.

If model and device fingerprints are so dissimilar, can we use

the model fingerprint to distinguish between fake and real images?

To answer this, we take a set of face images composed of 200 real

(taken by Canon EOS 70D) and 200 fake images from StyleGAN. The

fingerprint for StyleGAN, say FGAN , is computed using a separate

set of 100 face images. Next, to attribute images in this set to the

device or the GAN, we compute the correlation between the model

fingerprint and residual of each image (Ri ) in the test set, i.e.,

ρFGAN ,i = corr (F̄GAN ,Ri ). (2)
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For a given image, if this correlation is higher than a certain thresh-

old Tc , it is classified as a fake image, or real, otherwise. A corre-

lation measure called Peak to Correlation Energy (PCE) (described

next) is used. Figure 3 shows the histogram of correlation values

for all images in the set (both fake and real). The fake images can

be easily separated from the real images based on the PCE values.

PCE metric [30]. PCE is a similarity metric to compare two discrete

signals. It is computed as the ratio between squared normalized

correlation and sample variance of circular cross-relations. The

PCE implementation3 that we use carries the sign of normalized

correlation peak (can be negative). A high positive value of PCE

denotes a high correlation. Other than PCE, there are other cor-

relation measures, such as Pearson correlation [59], and quotient

correlation [84]. Compared to other metrics, PCE is a more stable

metric that can be used with images from devices with different

resolutions and sensor types [30]. We find PCE to be suitable for

GAN images as well.

To summarize, if an accurate model fingerprint is available, it is

straight-forward to detect fake images. However, in a blind setting

we have no knowledge of fake images or the associated GAN(s) to

compute the model fingerprint.

Key challenges in designingNoiseScope. 1© The first challenge

is estimating a model fingerprint. It is hard to estimate a model fin-

gerprint from a single image in a blind setting (Equation 1 requires

averaging over multiple images). While prior work, NoisePrint [18]

provides a supervised (CNN-based) learning scheme to extract cam-

era fingerprint from a single image, such methods are not applicable

in a blind setting. Instead, our idea is to extract fingerprints from

the test set itself in an unsupervised manner.We propose an image

clustering scheme that identifies subsets of images belonging to

the same source (device or model), and estimate fingerprints based

on those subsets. Our method should work as long as a certain

minimum number of fake images (enough to reliably estimate a

fingerprint) are present in the test set. 2© Once a fingerprint is

extracted from the test set, how do you tell whether it is a model

fingerprint or a device fingerprint? To achieve this, we propose a

fingerprint classification module based on anomaly detection to

identify model fingerprints. 3©Method should be agnostic to the

specific GAN used, and should also work when test set contains fake

images from different GANs. To address this, our clustering scheme

is designed to be agnostic to the GAN(s) used, and is able to ex-

tract available fingerprints, even from multiple models. 4© Method

should work for images with any type of high-level content (images

of faces, animals, objects, etc.) To address this challenge, we use

residual image extraction schemes that can effectively suppress

high-level content.

3.3 Detection Pipeline

NoiseScope includes 4 main components: (1) Noise residual extrac-

tor, (2) Fingerprint extractor, (3) Fingerprint classifier, and (4) Fake

image detector. Figure 4 provides an overview of NoiseScope’s de-

tection pipeline. The first component prepares the noise residuals,

the second component finds all available fingerprints in the test

set. The third component identifies model fingerprints among the

3http://dde.binghamton.edu/download/camera_fingerprint/

Figure 4: An illustration ofNoiseScope detection pipeline: (a)

Noise Residual Extractor, (b) Fingerprint Extractor via Clus-

tering, (c) Fingerprint Classifier, (d) Fake Image Detector.

identified fingerprints, and the fourth component uses the model

fingerprints to flag fake images.

Noise Residual Extractor. This first step suppresses high level

image content and extracts the noise residual (which contains the

fingerprint). We use the Wavelet Denoising filter [54] to extract the

noise residual for each image in the test set. Prior work recommends

this as one of the best filters to suppress high-level content [13,

17]. However, there is no perfect filter, and we do notice Wavelet

denoising also leaking image contents into the noise residual in

some cases. If there is heavy content leakage, then fingerprint

extraction (next step) becomes harder. But in general, Wavelet

denoising tends to perform well. In Section 5.2, we analyze the

impact of different denoising filters on detection performance.

Fingerprint Extractor and Fingerprint Classifier. The second

step extracts model fingerprints from the test set. The fingerprint

extractor finds all available fingerprints (model or device) from the

test set, and the fingerprint classifier identifies those that are model

fingerprints. To extract fingerprints, we resort to unsupervised

clustering by starting with the individual noise residuals computed

from step 1. Our goal is to group images belonging to the same

source (model or device), and then use each group of images to

build a fingerprint (using Equation 1).

But there is a challenge—it is hard to cluster images in the resid-

ual space. Residual images contain random noise along with the

fingerprint pattern. So even images from the same source (model or

device) will not always show high correlation [38]. All our efforts

to cluster images in the residual space resulted in impure clusters,

i.e., clusters with mix of fake and real images. An impure cluster

would give us an inaccurate fingerprint which is not useful.

To address this challenge, we use a different strategy: Instead

of completely clustering images in the residual space, we use an

incremental clustering strategy, similar to bottom-up hierarchical

clustering. The idea is to mostly compute correlations between fin-

gerprints (which has less random noise), and less between residuals.

Initially, each residual image forms its own cluster. Next, any pair

of residuals with PCE correlation higher than a threshold Tmerдe

is merged into a new cluster. Each time a cluster is updated, we

compute a fingerprint (using cluster members), and two clusters are

merged if the PCE correlation between their fingerprints is greater

than Tmerдe .
4 This is done iteratively at each step to grow clusters.

By computing correlations using fingerprints, we reduce the risk

of random noise impacting our correlation estimates. The larger a

4We update clusters such that each image is only present in one cluster.
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cluster becomes, the more the random noise will vanish when we

estimate the fingerprint. The PCE threshold for merging, Tmerдe

is chosen such that clusters mostly end up being pure, i.e., contain

all fake images or all real images. If Tmerдe is too low, clusters end

up being impure, and we obtain inaccurate fingerprints which may

not be useful for detecting fake images in the next step. IfTmerдe is

too high, we run the risk of not finding sufficiently large clusters or

even no clusters to estimate an (accurate) fingerprint. In Section 4.2,

we discuss how we estimate Tmerдe .

The clustering process stops when no more clusters can be

merged using the threshold. However, to reduce the computational

complexity, we propose to stop clustering early when we find clus-

ter(s) with size > Tsize . Recall that we only require a small number

of images (> 50) to estimate a fingerprint. Once we stop clustering,

we pass any fingerprint computed using clusters greater than size

50, to the Fingerprint Classification component to decide whether it

is a model or device fingerprint. If no model fingerprints are found,

we continue the clustering process again (in case it was stopped

early), until no more merging is possible. Fingerprints found at

the end are again passed to the fingerprint classifier. Pseudo-code

for the fingerprint extraction and classification step is shown in

Algorithm 1.

Fingerprint Classifier. The fingerprint classifier is used to identify

model fingerprints. Key challenge here is that we have no a pri-

ori knowledge of model fingerprints. Our intuition is that GAN

fingerprints stand out as anomalies when compared to device fin-

gerprints in some feature space. Recall the checkerboard pattern in

GAN fingerprints shown earlier in Figure 2. We observe that model

fingerprints tend to have different texture patterns when compared to

device fingerprints. To capture texture features from a fingerprint,

the well-known Haralick texture features [35] are used. Haralick

texture features capture 14 statistical features from the Gray Level

Co-Occurrence Matrix (GLCM), which in turn captures the num-

ber of repeated pairs of adjacent pixels. For the anomaly detection

scheme, we use the Local Outlier Factor (LOF) scheme [8]. Input

to LOF are Haralick features extracted from fingerprints computed

over (real) images in the reference set. Once trained, the fingerprint

classifier can take any fingerprint as input (after extracting Har-

alick features), and check whether it is an anomalous sample. A

fingerprint is considered to be a model fingerprint if this component

marks it as an anomalous fingerprint.

Fake Image Detector. In the last step, we take all the model

fingerprints detected in step 2 and compute the PCE correlation

between each fingerprint and all residual images in the test set

(using Equation 2). If correlation is higher than a threshold, the

image is flagged as a fake. An image is considered to be fake, if it is

flagged by at least one model fingerprint. The reference set is used

to calibrate the correlation threshold. The threshold is chosen such

that a model fingerprint when correlated with real images in the

reference set, should not flag any of them. A high threshold will

improve precision, while underestimating the threshold will bring

down precision, and improve recall.

Method Scalability. The clustering part is the most computa-

tionally heavy step of the system. In the worst case, the clustering

could run for log(n) iterations, where n is the number of images in

the dataset. Each iteration requires sorting of the pair-wise PCE

Algorithm 1: NoiseScope Fingerprint Extractor & Classi-

fier:

Data: Set of image residues: I , PCE merging threshold:

Tmerдe , cluster size threshold: Tsize .
Result: Set of model fingerprints: FP .
FakeFingerprintExtractor (I ,Tmerдe ,Tsize ):

Cluster set C = {I1, ..., INp
} contains Np residuals.

Stopping flagmerдeable = True

whilemerдeable do
Merged cluster set Cpairs = {}

for pair (ci , c j ) in C with highest PCE do

if PCE(ci , c j ) > Tmerдe then

Add merged pair (ci , c j ) to Cpairs
Remove clusters ci and c j from C

if Cpairs is empty then

merдeable = False

else

Add Cpairs to C .

if notmerдeable or size(c : C) > Tsize then

Fingerprint set FP = {}

for c in C where size(c) > 50 do

Compute fingerprint f pc = f inдerprint(c)

if f pc is flagged as outlier then
Add fingerprint f pc to set FP

if FP is not empty or notmerдeable then
Return FP

correlation, with anO(n2 · log(n2)) complexity. This gives the entire

clustering part a complexity of O(n2 · log2(n)). Improvements can

be made to scale the Fingerprint Extractor for large-scale classi-

fication. Pairwise PCE correlations can be computed in parallel

to speed up the construction of the PCE correlation matrix. As

n → ∞, the, pipeline can, as a whole, also be run in parallel on

subsets of the n images. A final instance of the Fingerprint Extrac-

tor can be used to agglomerate the clusters obtained from these

parallelized Fingerprint Extractors. We can also leverage prior work

on distributed/parallel hierarchical clustering [56, 62, 66].

4 EXPERIMENTAL SETUP

We discuss the experimental settings used to evaluate detection

performance of NoiseScope.

4.1 Real and Fake Image Datasets

For each dataset, we discuss the GAN used to generate the fake

images in the test set, and how real images for the test and reference

sets are collected. Each dataset includes 2,500 fake images, and out

of the real images we collected for each dataset, 2,000 random

real images are used to build the reference set. Table 1 presents

statistics of the 11 datasets covering 4 GAN models, used for our

evaluation. Image samples from all datasets are shown in Figures 8-

18 in Appendix A.
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Datasets Content Fake Source Real Source Resolution # Fake images # Real images

StyleGAN-Face1 Human face StyleGAN[15] FFHQ[40] 1024x1024 2,500 8,000

StyleGAN-Face2 Human face StyleGAN[28] FFHQ[40] 1024x1024 2,500 8,000

StyleGAN-Bed Bedroom StyleGAN[14] LSUN[79] 256x256 2,500 3,098

BigGAN-DogLV French bulldog BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 5,309

BigGAN-DogHV French bulldog BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 5,309

BigGAN-BurgLV Cheeseburger BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 4,390

BigGAN-BurgHV Cheeseburger BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 4,390

PGGAN-Face Human face PGGAN[67] FFHQ[40] 1024x1024 2,500 8,000

PGGAN-Tower Tower PGGAN[67] LSUN[79] 256x256 2,500 4,187

CycleGAN-Winter Winter scene CycleGAN[86] summer2winter[85], Flickr[71] 256x256 2,500 4,594

CycleGAN-Zebra Zebra CycleGAN[86] horse2zebra[85], Flickr[71] 256x256 2,500 11,241

Table 1: Basic information of 11 deepfake image datasets evaluated in Section 5.2.

StyleGAN-Face1. This is a dataset of human face images, at

1024x1024 resolution. Fake images are generated by StyleGAN,

trained on the Flickr-Faces HQ (FFHQ) dataset of human faces [40].

Fake images are collected from the official NVIDIA StyleGAN

GitHub repository [15]. We collected 8, 000 real images for the test

and reference sets by randomly sampling from the FFHQ dataset.

StyleGAN-Face2. Recently Generated Media, Inc. [29] released

100, 000 StyleGAN generated face images [28]. Their aim is to pro-

vide royalty-free stock images using AI [63]. The GAN was trained

using a proprietary dataset of 29, 000+ curated photographs of 69

models. The images are photorealistic (See Figure 17), and it is

unclear if these images have been further post-processed to im-

prove image quality. Fake images are sampled from this dataset. We

randomly sampled 8, 000 real images from the FFHQ dataset.

StyleGAN-Bed. This includes images of bedroom scenes at 256x256

resolution. Fake images are generated by NVIDIA with a StyleGAN

trained on the LSUN Bedroom dataset [79] of bedroom scenes.

Fake images are obtained from the official NVIDIA GitHub reposi-

tory [14]. We randomly sampled 3, 098 real images from the LSUN

Bedroom dataset.

BigGAN-DogLV andBigGAN-DogHV. Datasets include images

of french bulldogs at 256x256 resolution. Fake images are generated

using a BigGAN-deep instance [9], trained on the ImageNet dataset,

and obtained online [36]. BigGAN provides an inference-time trun-

cation parameter to vary the trade-off between fidelity and variety

(see Section 2.1). We generate two sets of fake images, BigGAN-

DogLV and BigGAN-DogHV at truncation settings of 0.2 and 0.86,

respectively. BigGAN-DogLV has images with lower variety, while

BigGAN-DogHV has images with higher variety. Real images are

partially sourced from ImageNet. However, ImageNet only provides

1, 300 images for this image class. We further collected additional

real images by crawling Flickr.com, giving us a total of 5, 309 real

images.5

BigGAN-BurgLV and BigGAN-BurgHV. Datasets include im-

ages of cheeseburgers at 256x256 resolution, prepared using the

same methodology used for BigGAN-DogLV, and BigGAN-DogHV.

BigGAN-BurgLV and BigGAN-BurgHV corresponds to low and

high variety fake image sets, respectively. We crawled additional

real images from Flickr.com, and in total used 4, 390 real images.

PGGAN-Face. This dataset contains images of human faces, at

1024x1024 resolution. Fake images are produced by NVIDIA with a

5Images were curated using manual effort as well as using the ResNet50 ImageNet
classifier

PGGAN trained on the CelebA dataset [39] of celebrity faces. Fake

images are collected from the official PGGAN repository [67]. For

real images, we sampled 8, 000 images from the FFHQ dataset.

PGGAN-Tower. Dataset contains images of towers, at 256x256 res-

olution. The fake images are generated by NVIDIA with a PGGAN

trained on the LSUN tower dataset [79] of towers. These images are

collected from the official PGGAN repository [67]. We randomly

sampled 4, 187 real images from the Tower category of the LSUN

dataset.

CycleGAN-Winter. Dataset contains images of winter scenes at

256x256 resolution. Fake images are generated using a pre-trained

model available on the official CycleGAN repository [86]. Cycle-

GAN requires input images to generate fake translated images

(summer to winter scene translation), and only a limited number

of fake images (1,187) could be generated using the data provided

by the authors. To generate more fake images, we crawl Flickr.com

for more input images, and generate new fake images. Real im-

ages provided by the authors are also limited (only 1,474). We thus

supplement the real images for CycleGAN-Winter by crawling

Flickr.com, and obtain a total of 4, 594 real images.

CycleGAN-Zebra. Dataset contains images of zebras at 256x256

resolution. Fake images are generated using CycleGAN, and we fol-

low the strategy used for CycleGAN-Winter to prepare this dataset.

We collected 11, 241 real images.

4.2 Configuration of NoiseScope

Noise Residual Extractor. We use a Wavelet Denoising filter

(see Section 3.3) to prepare residual images. The implementation

from Goljan et al is used. 6

Fingerprint Extractor. Two parameters to configure include

Tmerдe , which decides the PCE correlation threshold to merge

two clusters, and Tsize used to stop the clustering process early.

Tsize is set to 150 and is observed to work well across datasets.

To estimate Tmerдe , one approach is to use a reference set with

camera identifiers. PCE correlation between fingerprints computed

from the same camera can be computed, and a suitable threshold

can be estimated. We lack camera identifier information in most of

our datasets, and therefore use a different strategy. We assume the

reference set includes images from multiple cameras and compute

‘pseudo-fingerprints’7 over random subsets (non-overlapping) of

6http://dde.binghamton.edu/download/camera_fingerprint/
7Technically they are not fingerprints as they are computed over images from different
cameras.
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20 images. Next, pairwise PCE correlation between these different

pseudo-fingerprints are estimated. Clearly, the PCE values will not

be high, as images are from different cameras. Therefore, we set

Tmerдe to be 99.5 percentile of this distribution, i.e., it should be at

least larger than the correlation between pseudo-fingerprints com-

puted over different cameras. This strategy works well in practice.

Fingerprint Classifier. We configure and train an LOF anomaly

detection scheme (Section 3.3). If we have a reference dataset with

camera identifiers, we can compute fingerprints for each camera,

and use that to train the anomaly detection scheme. Lacking such

data for most of our datasets, we again use the strategy used in

Fingerprint Extractor, and compute ‘pseudo-fingerprints’7 using

random subsets of 50 real images from the reference set (which is

assumed to contain images from multiple cameras), and train the

scheme using 200 such pseudo-fingerprints. This is effective because

model fingerprints are still anomalous in the texture space even

when compared to pseudo-fingerprints computed over multiple

cameras. The parameter contamination, which configures the error

in the training set is set to 10−4, and the number of neighbors to

analyze (in K-NN) is set to 30.

Fake Image Detector. This component flags an image to be fake,

if the PCE correlation between a model fingerprint and residual

image (in test set) is higher than a threshold. To calibrate the thresh-

old, we compute PCE correlation between a model fingerprint, and

images in the reference set. Threshold is chosen such that 99.5% of

the reference set images are not flagged as fake.

4.3 Evaluation Metrics and Baseline Method

We report average F1 score computed as the harmonic mean of

Precision and Recall of the fake class, calculated over 5 random

trials (unless specified otherwise).

We compare NoiseScope with the blind detection scheme pro-

posed by Li et al. [45] (Section 2.2). This approach analyzes differ-

ences between real and fake images using disparities in the HSV and

YCbCr color spaces. This is achieved by using features extracted

from these color spaces to train a one-class SVM for anomaly de-

tection. We abbreviate this method as CSD-SVM. The underlying

assumption is that fake images will be detected as anomalies. We

follow the configuration described in the paper to train CSD-SVM.

A Gaussian kernel is used, and parameters are estimated via grid

search. For the parameter ν , which controls the upper bound of

training error, we try two values, 0.10 and 0.05. Real images in the

reference set are used to train the CSD-SVM for each dataset.

5 EVALUATION OF PROPOSED SCHEME

5.1 Analysis of Model Fingerprints

Performance of FingerprintClassifier. For the three face datasets

(StyleGAN-Face1, StyleGAN-Face2, and PGGAN-Face), our real

dataset includes images with camera source information for 90

cameras (extracted from EXIF metadata). We first train the anomaly

detection scheme on device fingerprints from 18 cameras. Next, in

each trial, we test on 500 device fingerprints (extracted from the

remaining 72 cameras), and 500 model fingerprints (obtained from

the three face datasets). Our classifier achieves a high average F1

score of 99.2% over 5 trials (average Precision of 98.5% and Recall

Figure 5: Change in CycleGAN fingerprint checkerboard

when varying transpose convolution parameters.

of 100.0%) for the detection of model fingerprints and is therefore

capable of accurately detecting model fingerprints.

In the rest of the evaluation, when camera identifiers are not

available, we use the strategy described in Section 4.2, and train

the fingerprint classifier using pseudo-fingerprints computed over

the reference set. Results in Section 5.2 show that this works well

in practice.

UnderstandingModel Fingerprints. Why do GAN fingerprints

show checkerboard patterns? The answer is tied to the deconvolu-

tion layers that are the core building blocks of GAN generators [65].

Odena et al. observed checkerboard patterns in images generated

by upsampling via transpose convolution operations [61]. They at-

tributed the checkerboard pattern to the overlap that occurs when

the kernel size of the transpose convolution projection window is

not divisible by the stride. The pattern is amplified when multiple

transpose convolutional layers are stacked. In our fake images, we

do not observe such checkerboard patterns in the high-level content,

but we clearly see such patterns in the fingerprints (Figure 2).

To further understand the correlation between deconvolution

layers and checkerboard patterns, we conduct the following experi-

ment using CycleGAN. The transpose convolutions in the Cycle-

GAN ResNet50 generator are found in 2 layers, with strides of 2x2

and kernel sizes of 3x3. We observe that by varying the kernel size

in the second layer from 3x3 to 5x58, we can alter the intensity and

locality of the checkerboard pattern in the resulting fingerprint.

The model fingerprints, before and after modifying CycleGAN are

shown in Figure 5. The visible change in fingerprint textural pat-

terns indicates a strong correlation between the fingerprint and the

deconvolution operations in modern GAN generators.

5.2 Detection Performance

We evaluate detection performance of NoiseScope when applied to

the 11 datasets discussed in Section 4.1.

Performance on balanced test sets. In each trial, NoiseScope is

applied to a balanced test set with 500 real, and 500 fake images.

Table 2 presents detection performance (average F1 score) for both

NoiseScope, and CSD-SVM (ν=0.1). NoiseScope outperforms CSD-

SVM over all 11 datasets and achieves a high F1 score of over 90.1%

for all datasets. Varying the ν parameter (upper bound of training

error) to 0.05 for CSD-SVM shows no noticeable improvement.

Given NoiseScope’s high detection performance, it is worth noting

that images generated by StyleGAN, PGGAN and BigGAN are

vividly photorealistic, and are difficult for humans to spot.

8Kernel dilation, input padding and output padding must also be accordingly changed
to support the desired image output dimensions.
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Datasets
F1 Score (%)

NoiseScope CSD-SVM

StyleGAN-Face1 99.56 92.93

StyleGAN-Face2 90.14 67.53

StyleGAN-Bed 99.63 94.82

BigGAN-DogLV 99.38 86.94

BigGAN-DogHV 92.6 70.10

BigGAN-BurgLV 99.68 94.82

BigGAN-BurgHV 98.64 83.67

PGGAN-Face 99.09 64.07

PGGAN-Tower 95.93 91.61

CycleGAN-Winter 92.40 87.14

CycleGAN-Zebra 92.84 84.95

Table 2: Performance of NoiseScope and CSD-SVM (ν = 0.1).

Datasets
F1 Score (%) w/ different fake:real ratio

200:400 200:800 200:1600 200:2000

StyleGAN-Face1 97.9 97.1 96.4 94.0

StyleGAN-Face2 81.0 74.3 62.8 58.4

StyleGAN-Bed 99.5 98.8 97.8 97.2

BigGAN-DogLV 98.9 97.7 95.8 95.2

BigGAN-DogHV 89.3 85.7 84.9 82.3

BigGAN-BurgLV 98.6 97.2 96.2 91.9

BigGAN-BurgHV 97.9 96.0 94.8 93.2

PGGAN-Face 97.1 97.4 93.7 94.4

PGGAN-Tower 94.5 94.3 92.2 92.3

CycleGAN-Winter 88.2 86.8 72.2 69.4

CycleGAN-Zebra 89.9 86.3 78.2 76.1

Table 3: Detection performance (F1) on imbalanced test sets

with different ratio of fake to real images.

Performance on imbalanced test sets. We apply NoiseScope on

test sets with an imbalanced ratio of real vs fake images. For each

dataset, we evaluate on 4 imbalanced test sets comprising different

ratios of real and fake images. In each test set, the number of fake

images is set to 200, and we increase the number of real images

according to the desired ratio. We experiment with ratios of fake

to real as 1:2, 1:4, 1:8, and 1:10.9 The inherent difficulty of using

NoiseScope in an imbalanced setting is the presence of noisy samples

among fake and real images. These are samples where content

tends to leak into residuals. Therefore, such noisy fake and real

images can show unexpectedly high correlation. Consequently, as

the number of real images increases, the probability of a fake image

cluster merging with noisy real samples increases.

Detection performance is presented in Table 3. Out of the 11

datasets, 7 datasets exhibit high performance of over 91.9% F1 score

for all ratios (numbers shown in bold). As expected, there is a drop

in performance as datasets become more imbalanced, but even at

1:10, we observe high detection performance for these 7 datasets.

Among the remaining 4 datasets, StyleGAN-Face2, CycleGAN-

Winter, CycleGAN-Zebra shows the biggest drop in performance

as test set becomes more imbalanced. To further understand the re-

duced performance, we analyze the purity of the model fingerprints

obtained as output of the fingerprint classification component. Pu-

rity of a model fingerprint is the fraction of images in the cluster

(used to estimate the fingerprint) that are fake. If purity is less, then

the performance of the fake image detection module will decrease

9For 1:8, and 1:10 we do 3 trials. Rest of them are averaged over 5 trials.
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Figure 6: (a) GAN fingerprint purity distributions (b) PCE

Merging Threshold Tmerдe vs. Detection F1 Score.

Datasets
F1 Score(%) w/ different fake:real ratio

200:400 200:800 200:1600 200:2000

StyleGAN-Face2 88.47 86.45 80.23 76.71

BigGAN-DogHV 93.80 89.39 89.17 86.76

CycleGAN-Winter 89.65 90.17 82.08 81.00

CycleGAN-Zebra 92.17 91.98 86.26 83.13

Table 4: Improved detection performance by increasing

Tmerдe in non-performant imbalanced configurations.

(as the fingerprint is inaccurate). In general, for the three datasets

(StyleGAN-Face2, CycleGAN-Winter, and CycleGAN-Zebra), we

observe that purity of the fingerprints is lower compared to the

other datasets. Figure 6a shows the distribution (CDF) of purity of

fingerprints found across test sets (aggregated over all ratios) for

two datasets—one for which NoiseScope is performant (PGGAN-

Tower), and one for which NoiseScope suffers from relatively lower

performance (CycleGAN-Winter). CycleGAN-Winter suffers from

lower fingerprint purity that range between 60% to 80%, whereas

the fingerprint purity for PGGAN-Tower is high, i.e., over 95%.

Therefore, high detection performance correlates well with the

ability to reliably extract pure fingerprints.

One approach to improve fingerprint purity is to raise the PCE

merging thresholdTmerдe . A higher value ofTmerдe would prevent

noisy samples from merging with fake images. StyleGAN-Face2,

CycleGAN-Winter, and CycleGAN-Zebra results in Table 3 has

Tmerдe values in the range from 8.45 to 11.68.We raise the threshold

to 15 and recompute the results for these datasets. In addition, we

also recompute results at the raised threshold for BigGAN-DogHV

(which has F1 score below 90% in Table 3). Results with the increased

threshold are presented in Table 4 for all 4 datasets. We observe a

marked increase in detection performance, e.g., on average 10.35%

increase in F1 for 1:10 ratio across all datasets. We also observe an

increase in purity of fingerprints (not shown).

Above analysis raises the question of whether defender can

estimate a better value ofTmerдe , starting from the initial estimate?

We note that this is possible by analyzing the variation in cluster

sizes as one increases Tmerдe starting from the initial value. In

general, detection performance correlates well with cluster sizes. If

the largest cluster size is small (say less than 50), then the value of

Tmerдe is too high, and detection performance is likely to be lower.

To study this, we conduct experiments on CycleGAN-Zebra with an

imbalanced ratio of 1:2. Figure 6b studies the variation of detection

performance and largest cluster size, as we incrementally increase

Tmerдe starting from the initial estimate. Detection performance
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remains mostly high and stable, for cluster size roughly above

100. Towards the end, the performance drops as cluster size goes

below 67, achieving the lowest performance when cluster size is less

than 50. The defender can thus calibrate Tmerдe by incrementally

increasing the originally estimated value, using cluster size as a

stopping condition. If no clusters are found, or clusters are too

small, then the defender has exceeded the optimal Tmerдe .

Performance when test set contains fake images from mul-

tiple GAN models. So far, we considered test datasets with fake

images from a single model. What if attackers use multiple GAN

models? Can NoiseScope still detect fake images? In theory, Nois-

eScope should adapt to such settings, because clustering should

ideally extract multiple model fingerprints corresponding to each

model. To evaluate this, we restrict ourselves to datasets capturing

faces, as it is the only content category for which we have fakes

images from multiple models. In each trial, we populate the test set

with 150 images each from the StyleGAN-Face1, StyleGAN-Face2

and PGGAN-Face datasets, and use 450 real images from the FFHQ

dataset. Results in Table 5 indicate an overall high F1 score of 91.5%,

and also shows per-dataset performance.

So how did NoiseScope achieve high detection performance when

test set includes fake images from three different models?10 Interest-

ingly,NoiseScope discovered three clusters (model fingerprints). The

first cluster mostly included images from StyleGAN-Face1 (over

95%), the second cluster mostly from PGGAN-Face (again over

95%), and in the third cluster, a majority of images are from the

StyleGAN-Face2 dataset. Therefore, NoiseScope was able to extract

model fingerprints corresponding to the three models. These results

match our intuition that GANs trained on different datasets would

generate distinct fingerprints. Our results indicate that NoiseScope

is effective on test sets with fake images from different GANs. An

attacker can take this setting to the extreme by creating a differ-

ent GAN for every single fake image to disrupt the fingerprint

extraction process. However, this significantly raises the cost for

the attacker, and reduces the utility of using generative schemes.

Performance on test sets with images frommultiple categor-

ical domains. Our current configuration uses a single categorical

domain for each test-set, but still has high variations among images

(see Figures 8-18). This was done for the sake of simplicity, and

because many GAN datasets are organized into few specific cate-

gories. Here we evaluate effectiveness on test sets with multiple

content categories. We test against BigGAN as it is the only GAN

model with images from several categories. For a test set of 500

real, and 500 fake images, images are evenly and randomly sampled

from 10 categories: Ambulance, Race car, Burrito, Tiger, Cup, Hen,

Pretzel, Pirate, French bulldog, and Cheeseburger. The average detec-

tion performance (F1) is high at 99.1%. Thus, NoiseScope works for a

mix of high-level image content, i.e., NoiseScope is content-agnostic.

What if there are too few fake images in the test set? We

present NoiseScope detection performance when evaluated on test

sets with an increasingly small number of fake images. Using rep-

resentative datasets for each GAN, we evaluate on 4 test sets with

10Models trained on three different datasets.
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Figure 7: Detection performance (F1) with limited number

of fake images in test sets.

Datasets F1 Score (%) Precision (%) Recall (%)

Combined 91.5 93.3 89.8

StyleGAN-Face1 91.2 83.8 100.0

StyleGAN-Face2 81.9 100.0 69.3

PGGAN-Face 100.0 100.0 100.0

Table 5: Detection performance on test set with fake images

from multiple (GAN) sources.

Datasets
F1 Score (%)

Wavelet Blur NLM BM3D

StyleGAN-Bed 99.7 97.7 82.6 99.3

BigGAN-DogLV 99.7 99.5 95.0 99.7

BigGAN-DogHV 94.8 76.3 22.6 79.0

BigGAN-BurgLV 99.8 99.5 99.6 99.8

BigGAN-BurgHV 99.4 97.5 58.4 96.0

PGGAN-Tower 95.8 17.6 4.3 62.5

CycleGAN-Winter 91.1 71.4 6.7 84.5

CycleGAN-Zebra 93.6 74.1 7.9 96.9

Table 6: Fake Image Detector Performance (F1) using differ-

ent denoising filters. Bold numbers highlight the best per-

formance in each dataset.

5011, 80, 100 and 200 fake images respectively. All test sets con-

tain 200 real images from the respective dataset. A reference set of

2000 real images is used. Tmerдe for StyleGAN-Face1 and PGGAN-

Face remain the same as those used for the original results in

Table 2 i.e., computed using the Tmerдe estimation strategy in

Section 4.2. Tmerдe for BigGAN-DogHV, CycleGAN-Zebra and

StyleGAN-Face1 are tuned following the recalibration strategy sug-

gested in Section 5.2.We compute F1 score of detection performance

averaged over 5 trials. Results are presented in Figure 7. The per-

formance is moderately high, but as expected, drops as the number

of fake images decrease. Analysis reveals a decrease in fingerprint

purity, caused by merging with noisy samples amongst the increas-

ingly large proportion of real images. From prior workwe also know

that a reliable fingerprint requires roughly 50 images or more [6].

The decrease in performance is not a serious problem—the absolute

number of fake images to detect is in and of itself, very small. One

can consider a scenario with too few fake images (<50) to not be

11We remove the minimum requirement of 50 images for a fingerprint when only 50
fake images are in the test set.
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a serious threat, compared to cases where online platforms are

flooded with fake images [64].

Impact of residual image extraction filter on performance.

We use 3 popular alternative filters—Blur filter [27], Non-Local-

Means (NLM) filter [10], and the BM3D filter [20], and observe that

Wavelet denoising provides better detection performance for nearly

all datasets. Results are in Table 6. To compare, we simulate the

fake image detection step in NoiseScope. Given a test set of 500 real,

and 500 fake images, we estimate a clean model fingerprint using

a random subset of 100 fake images from the test set itself. Next,

we use this model fingerprint to flag fake images in the test set.

This is an ideal scenario because the fingerprint is 100% pure (i.e.,

estimated over only fake images). An effective filter should produce

high detection performance in such a setting, while filters that fail

to effectively remove high-level content may not perform so well.

Table 6 presents the detection performance (average F1 score) for

each 256x256 dataset.12 Wavelet Denoising filter exhibits the best

performance, with F1 scores exceeding 90% for all datasets. The

BM3D filter also shows good performance but fails to effectively

eliminate content from some datasets.

Generalization performance comparison with a supervised

scheme. Supervised detection schemes exhibit high performance

at the cost of generalization. To give an example, we use the super-

vised classifier MesoNet [1] to detect unseen GAN-generated face

images. MesoNet is trained on 1000 real and 1000 fake images from

StyleGAN-Face1 and provides a high F1 score of 94% on a test set of

the same size from StyleGAN-Face1. However, this trained model

achieves significantly reduced F1 score of 65% on a test set from

PGGAN-Face. This drop in performance indicates an exploitable

failure to generalize that is remedied by NoiseScope.

Summary. We evaluated NoiseScope against datasets containing

balanced and imbalanced proportions of fake images and observed

stable behavior with generally high detection performances. We

attributed the rare drops in performance to a low fingerprint purity,

caused by low values of merging thresholdTmerдe . We accordingly

provided guidelines for calibrating a better Tmerдe based on clus-

ter sizes. We show that NoiseScope is robust against datasets with

multiple GAN sources. We evaluated NoiseScope against test sets

containing few fake images and observe moderately high perfor-

mance, with performance dropping when there are too few fake

images (e.g., 50), at which point the threat itself is limited. We

then showcased the impact of 3 popular alternative residual filters

on NoiseScope’s performance. Finally, we highlighted the need for

NoiseScope by showcasing the inability of supervised detection to

generalize.

6 ANALYSIS OF COUNTERMEASURES

We consider a powerful adaptive attacker with knowledge of Nois-

eScope’s detection pipeline. These countermeasures aim to disrupt

the fingerprint extraction, and fake image detection capabilities of

NoiseScope. We also propose adaptive recovery measures to make

NoiseScope robust to certain challenging countermeasures. Table 7

presents results using test sets with 500 real, and 500 fake images.

Compressing fake images tomakefingerprints fragile. JPEG

compression is well known to disrupt camera fingerprint patterns,

12Applying the BM3D filter to 1024x1024 images is computationally expensive.

and therefore diminish the correlation between fingerprints and

residuals [31]. Following compression configurations used in prior

work [80], fakes images are compressed with a quality factor ran-

domly sampled from U [10, 75]. Surprisingly, NoiseScope is resilient

against compression attacks. More interestingly, the performance

for StyleGAN-Face2 increases from 90.14% to 98.33% on applying

compression. NoiseScope is resilient for two reasons: First, model

fingerprints are always extracted from the test set itself. Therefore,

the estimated fingerprint, already captures any artifacts introduced

by compression, and correlates well with the similarly processed

residual images in test set. This is unlike prior work in camera

fingerprinting, where camera attribution is attempted between a

clean fingerprint (computed over uncompressed images) and a com-

pressed residual image. Second, we observe that JPEG compression

introduces grid-like artifacts into the fingerprint, further making

the model fingerprint distinct from device fingerprints. Fingerprints

subjected to JPEG compression are shown in Figure 23 in Appen-

dix A. Compression does disrupt the fingerprint pattern. NoiseScope,

however, continues to remain effective.

Denoising using the defender’s denoising filter. This coun-

termeasure assumes knowledge of the Noise Residual Extractor.

Attacker modifies fake images by subtracting the residual obtained

using the defender’s denoising filter (Wavelet denoiser), i.e., I ′i =
Ii −Ri . This can make fingerprint extraction harder, because the pat-

terns in the noise residuals are “weakened”.NoiseScope performance

suffers for the BigGAN-DogHV and CycleGAN-Zebra datasets. See

‘Attack’ column under Wavelet Denoising. On visual inspection

of the fingerprints, the texture patterns of fingerprints appear to

have been softened by this attack. Performance dropped, because

in certain trials, the fingerprint classifier module failed to flag the

new model fingerprints, likely due to texture softening.

To recover from this attack, we resort to adversarial training of

the fingerprint classification module. We train the classifier module

on fingerprints computed from real images that goes through the

same post-processing countermeasure used by the attacker. Results

are shown in the ‘Recovery’ column under the specific countermea-

sure. We observe an improvement in detection performance for

both BigGAN-DogHV, and CycleGAN-Zebra, while performance

for the other datasets remain unaffected. Lastly, an interesting case

is that of StyleGAN-Face2. Performance actually increases for this

dataset on applying the countermeasure. On further inspection, we

observe that the countermeasure introduces new distinct artifacts

in the fingerprints, that enable NoiseScope to still accurately cluster

images, and detect them. We suspect that images in this dataset

has already undergone additional post-processing, which is likely

introducing these artifacts when new processing is applied.

Other post-processing schemes to disrupt fingerprints. We

evaluate against 4 image post-processing countermeasures known

to disrupt camera fingerprinting [31, 49, 68, 70].Whenever available,

we use settings from prior work.

Gamma correction. Gamma correction is applied to fake images

with gamma values randomly sampled from U [1.0, 2.0] [80]. Perfor-

mance remains high for all datasets, except StyleGAN-Face2 where

F1 score drops to 62%. Further investigation reveals that the finger-

print classifier performs poorly in 2/5 trials. For recovery, we again

apply adversarial training to the fingerprint classifier, and train on
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Datasets

F1 Score (%) with Different Countermeasures

Original JPEG compression Wavelet-denoising Gamma correction Histogram equalization Blur Adding noise

- Attack Attack Recovery Attack Recovery Attack Attack Attack Recovery

StyleGAN-Face1 99.6 99.3 99.4 99.4 99.5 99.5 99.2 99.4 99.7 99.2

StyleGAN-Face2 90.1 98.3 98.0 98.0 62.0 82.8 72.9 80.0 54.9 81.4

BigGAN-DogHV 92.6 89.5 57.9 87.0 92.9 93.4 88.9 55.7 88.4 78.6

PGGAN-Face 99.1 98.9 99.2 99.2 98.9 98.9 99.2 98.5 97.9 96.2

CycleGAN-Zebra 92.8 91.0 53.7 89.2 91.9 92.6 84.4 61.8 51.8 85.9

Table 7: Performance (F1) of NoiseScope under different countermeasures. ‘Original’ means no countermeasures were used.

real images that undergo the same post-processing. Performance

of StyleGAN-Face2 recovers from 62% to 82%.

Histogram equalization. Histogram equalization involves distribut-

ing the intensity range to improve image contrast. We apply his-

togram equalization to fake images. Detection performance remains

high for all datasets except StyleGAN-Face2. Fingerprint extrac-

tion did not perform well, and StyleGAN-Face2 ended up with

impure clusters (purity ranging between 60% to 70%). We do not

attempt recovery from this countermeasure because on examination

of fake images that missed detection, we see that image quality has

been severely degraded. Therefore, to evade detection by NoiseScope,

post-processing that significantly degrades image quality is required.

Image samples are shown in Figure 22 (Appendix A).

Blur. Blurring performs a normalized box averaging on fake images,

with a specific kernel size [7]. Kernel size is randomly selected from

{1, 3, 5, 7} [80]. We expect blurring to damage patterns in the model

fingerprints. Performance for StyleGAN-Face2, CycleGAN-Zebra

and StyleGAN-Face2 end up dropping. We find that blurring largely

weakens the fingerprint pattern. However, on closer investigation

of images that were not caught, we find that image quality has

degraded significantly—NoiseScope failed to catch fake images that

were severely blurred. Therefore, we do not attempt a recovery

scheme. Figures 20, 21 in Appendix A show samples of images that

evaded detection.

Adding Noise.We add i.i.d. Gaussian noise to fake images. The noise

variance is randomly sampled from U [5.0, 20.0] [80]. CycleGAN-

Zebra, and StyleGAN-Face2 shows significant drop in performance.

In both cases, noise degrades the quality of the fingerprint, making

them unsuitable for computing correlation with residual images. In

the case of CycleGAN-Zebra, the fingerprint classifier also fails to

detect model fingerprints. To recover, we apply a denoising filter

(Non-Local-Means) to all images in the test set, and also perform

adversarial training of the fingerprint classifier using the same

denoising filter. We apply this strategy to all datasets, and we can

see that performance of StyleGAN-Face2 and CycleGAN-Zebra are

regained to 81.4% and 85.9%, respectively, but recovery slightly

hurts BigGAN-BurgHV by 10% due to the denoising operation.

Fingerprint spoofing. Fingerprint spoofing attack aims to dis-

guise fake images to be from a specific camera device. This attack is

commonly studied in the camera fingerprinting literature [4, 44, 81].

We use the StyleGAN-Face1 dataset to evaluate this countermea-

sure. We consider a fingerprint substitution attack [44] using the

following formulation: Is = I − αFa + βFb . Fa , and Fb , are model

and camera fingerprints, respectively. Fa is computed using 200

fake images from StyleGAN-Face1, and Fb is a camera fingerprint

computed using 200 images from Canon EOS 5D Mark III (FFHQ

dataset). The first step is to verify that we have correctly spoofed

the camera fingerprint. We empirically estimate α as 1.5, and β
as 1.5, as the spoofed fingerprint shows low PCE correlation with

the model fingerprint, and high PCE correlation with the camera

fingerprint, while maintaining image quality. We then consider a

worst-case scenario for the defender, where the test set contains

200 spoofed fake images, and 200 real images which are used to

extract Fb . We perform detection on such test sets with 5 trials. We

obtain a low average F1 score of 66.67%. On closer investigation,

we find the fake image detection module performed poorly because

the fingerprints have been spoofed.

To recover from this attack, we utilize a different filter, i.e., a

normalizing box (blur) filter, instead of the Wavelet denoiser to

compute residuals. The intuition is that the spoofing attack does

not destroy all the artifacts (produced by the GAN), i.e., a model

fingerprint can still be extracted. In fact, the performance is regained

to 94.56% F1. Therefore, use of alternative filters for residual extraction

is an effective recovery strategy against fingerprint spoofing attacks.

One might argue that attackers can spoof the new residual space

used in the residual extractor again. However, an endless game of

switching residual extractors (multiple filters and filter parameters)

is unlikely. If an attacker tries spoofing against multiple filters, then

we observe that image quality deteriorates significantly. Image

samples spoofed against multiple filters are shown in Figure 19 in

the Appendix.

Adapting the GAN model. Can the attacker modify the GAN to

bypass detection? For example, for many DNN-based supervised

detection schemes, the attacker can use the defender’s classifier

as the GAN discriminator, and produce images that evade detec-

tion. In our case, such countermeasures are hard. First, the model

fingerprints extracted by NoiseScope is tied to the fundamental

building blocks of generative models, i.e., deconvolution layers (see

Section 5.1). One can try to change the deconvolution layer param-

eters, which will change the fingerprint patterns, but is unlikely

to make it similar to device fingerprints. Second, the attacker can

use the fake image detector component of NoiseScope as the GAN

discriminator. However, one has to ensure that the operations are

differentiable, which is non-trivial. Also, such an effort would be

similar to our previous countermeasures of spoofing the fingerprint

or using the defender’s filter. We have already discussed robustness

of NoiseScope against such countermeasures.

Summary. We evaluated a range of challenging countermeasures

against NoiseScope. NoiseScope is resilient against compression at-

tacks, considered to be challenging in prior work. We also recom-

mend effective recovery schemes against different types of post-

processing attacks—Wavelet-noising, adding noise, and Gamma

correction. The countermeasures that evaded detection includes

those that degraded image quality significantly and can be con-

sidered as unsuccessful countermeasures. Online platforms like

news/social media sites collecting images, can reject images that
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are excessively post-processed. There is ongoing work on detect-

ing image manipulations or post-processing. For example, Adobe

recently developed new tools to detect Photoshopped images [76].

NoiseScope can leverage such tools and implement appropriate re-

covery measures to make its detection pipeline more resilient to

different countermeasures.

7 CONCLUSION

Deep learning research has tremendously advanced capabilities of

generative models. GAN models can generate photorealistic images

or deepfakes that could be used for different malicious purposes,

e.g., to spread fake news, create fake accounts. In this work, we

present NoiseScope, a method to detect deepfakes in a blind manner,

i.e., without any a priori access to fake images or their generative

models. The key idea is to leverage unique patterns left behind by

generative models when a fake image is produced. Our method is

evaluated on 11 diverse deepfake datasets, covering 4 high quality

generative models, and achieves over 90% F1 score in detecting fake

images. We also analyze the resilience of NoiseScope against a range

of countermeasures.
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A IMAGE SAMPLES

Figure 8: Fake samples

from BigGAN-DogLV [36].

Figure 9: Fake samples

from BigGAN-DogHV [36].

Figure 10: Fake samples

from BigGAN-BurgLV [36].

Figure 11: Fake samples

from BigGAN-BurgHV [36].

Figure 12: Fake samples from

CycleGAN-Zebra [86].

Figure 13: Fake samples from

CycleGAN-Winter [86].
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Figure 14: Fake samples

from PGGAN-Tower [67].

Figure 15: Fake samples

from StyleGAN-Bed [14].

Figure 16: Fake samples

from StyleGAN-Face1 [15].

Figure 17: Fake samples

from StyleGAN-Face2 [28].

Figure 18: Fake samples from PGGAN-Face [67].

(a) (b) (c) (d)
Figure 19: Image samples from StyleGAN-Face2 [28] sub-

jected to a fingerprint spoofing attack against an increasing

number of residual spaces. From left to right, we present

(a) the original image, (b) the image spoofed against the

Wavelet residual space (c) the image spoofed against the

Wavelet and Blur residual spaces, and (d) the image spoofed

against the Wavelet, Blur, and Laplacian residual spaces.

Figure 20: Samples from CycleGAN-Zebra [86] that evaded

detection when blurred. Top row shows the images before

blurring, and the bottom row shows the images after blur-

ring.

Figure 22: Samples from StyleGAN-Face2 [28] that evaded

detection when subjected to histogram equalization. Top

row shows the images before equalizing, and the bottom row

shows the images after equalizing.

Figure 21: Samples from BigGAN-DogHV [36] that evaded

detection when blurred. Top row shows the images before

blurring, and the bottom row shows the images after blur-

ring.

Figure 23: Model fingerprints from StyleGAN-Face2 [28], be-

fore (left) and after (right) applying JPEG compression.

15


