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Abstract—Electronic health records (EHRs) have been heav-
ily used in modern healthcare systems for recording patients’
admission information to health facilities. Many data-driven
approaches employ temporal features in EHR for predicting
specific diseases, readmission times, and diagnoses of patients.
However, most existing predictive models cannot fully utilize
EHR data, due to an inherent lack of labels in supervised
training for some temporal events. Moreover, it is hard for the
existing methods to simultaneously provide generic and person-
alized interpretability. To address these challenges, we propose
Sherbet, a self-supervised graph learning framework with hyper-
bolic embeddings for temporal health event prediction. We first
propose a hyperbolic embedding method with information flow to
pretrain medical code representations in a hierarchical structure.
We incorporate these pretrained representations into a graph
neural network (GNN) to detect disease complications and design
a multilevel attention method to compute the contributions of
particular diseases and admissions, thus enhancing personalized
interpretability. We present a new hierarchy-enhanced historical
prediction proxy task in our self-supervised learning framework
to fully utilize EHR data and exploit medical domain knowledge.
We conduct a comprehensive set of experiments on widely used
publicly available EHR datasets to verify the effectiveness of our
model. Our results demonstrate the proposed model’s strengths
in both predictive tasks and interpretable abilities.

Index Terms—Electronic health records (EHRs), event
prediction, graph learning, hyperbolic embeddings, model
interpretability.

I. INTRODUCTION

G IVEN the promising potential of electronic health
records (EHRs), mining interpretable predictive patterns

from EHR data has a significant value in healthcare and has
drawn a lot of attention in recent years. EHR data are com-
plex in nature and typically contain sequences of patients’
admission records, such as diagnoses, clinical notes, and med-
ications. Effective analysis of EHR data is important for
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Fig. 1. Example of predicting temporal events with supervised training on
original EHR data in a temporal setting and with self-supervised training on
extracted EHR data in a graph structure. (a) Supervised training. (b) Self-
supervised training.

both medical professionals and patients as it can provide
preventative health alerts and personalized care plans.

A variety of predictive models using deep learning technol-
ogy has been proposed for predicting temporal events, such
as diagnosis prediction [1]–[5]; mortality prediction [6]–[9];
risk prediction [10]–[13]; and medication recommenda-
tion [14], [15]. A common supervised training approach to
utilize EHR data for temporal event prediction is to use
previous records as features and the records of next admis-
sions as labels. However, this approach will inherently ignore
patients’ final admissions due to the lack of labels. Moreover,
learning effective representations for medical concepts by
effectively leveraging the domain knowledge is still an open
problem in healthcare applications. In summary, there are
still some challenges for predictive models using temporal
information of EHR data.

A. Fully Utilizing EHR Data

A large number of EHR records are unused in tradi-
tional supervised training. Final admission records of patients,
including single admissions, are discarded for training because
the labels are missing for the next potential admissions.
Fig. 1(a) shows the reason for the lack of labels while
predicting temporal events. For multiple-admission patients
(top arrow), the final admission record is used as the label
for a prediction and cannot be used as training features. For
single-admission patients (bottom arrow), there are no labels
because there are no next admissions. However, according to
the statistics of a widely used EHR dataset [16], the number of
multiple-admission patients is only 20% of single-admission
patients. Hence, a majority of valuable information in EHR
data is discarded.
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B. Exploiting Disease Hierarchies During Prediction

In modern disease classification systems like ICD-9-
CM [17], diseases are classified into various categories as
medical codes in multiple levels and form a hierarchical struc-
ture. Existing methods, such as GRAM [3] and G-BERT [15],
mainly use this structure to extract disease features using atten-
tion methods. However, this type of domain knowledge is
helpful in guiding model predictions. By predicting disease
hierarchies, representations of diseases can be further refined.

C. Learning Hidden Representations for Related Diseases

Most existing works treat diseases independently while
neglecting disease interactions (i.e., complications). However,
such complications are generally crucial in medical practice.
For example, longstanding hypertension will eventually lead
to heart failure (HF). Consequently, it is very common for
patients with HF to have been suffering from hypertension
prior to being admitted for an HF condition [18].

D. Simultaneously Providing Generic and Personalized
Interpretability

Generic interpretability provides discovered common
knowledge such as disease complications from the entire
set of patient records. Personalized interpretability refers to
explanations for individual patients based on their personal
admission records. Both these two kinds of interpretabilities
should be considered in healthcare models to make prediction
results reliable to doctors and patients. However, current
approaches [3], [4], [19], [20] mainly focus on one type of
interpretability, while it is critical to simultaneously provide
both generic and personalized interpretability.

To address these challenges, we propose Sherbet, a self-
supervised graph learning framework with hyperbolic embed-
dings for temporal health event prediction. As a subset of
unsupervised learning methods, the self-supervised learning
method in this work is different from other pretraining meth-
ods, such as G-BERT [15]. We design a special proxy task
for self-supervised learning to hierarchically predict historical
diagnoses of patients. Fig. 1(b) shows the manner in which
self-supervised learning can fully utilize EHR data. The proxy
task constructs an interaction graph for medical codes in all
admissions rather than treating each admission independently.
It enables us to incorporate single-admission patients and the
final admissions of multiple-admission patients by generating
new labels for all admissions. When implementing this task,
we first pretrain disease representations using a new hyper-
bolic embedding method with information flow to reconstruct
the disease hierarchical structure. In order to model disease
interactions, we next construct a weighted and directed graph
for diseases based on their occurrences in patients’ admis-
sion records. Then, we design a graph encoder architecture for
self-supervised learning. The first part of the graph encoder is
a graph neural network (GNN) on the constructed graph to
extract hidden disease representations and further learn the
disease complications. Then, we develop a multilevel atten-
tion mechanism as the encoder to learn the representation
of admissions and patients from the admission records. The

contribution of specific diseases and admissions to a given
prediction task can thus be quantified. The self-supervised
learning component, which is also the decoder, is designed
with the proxy task of hierarchically predicting historical dis-
eases. Finally, we build a fine-tuning module for specific
tasks. The main contributions of this work are summarized
as follows.

1) We propose a novel self-supervised graph learn-
ing framework and a hierarchy-enhanced historical
prediction task to fully exploit the admission records in
EHR data and hierarchical structures of medical codes.

2) We propose a new hyperbolic embedding method with
an information flow strategy to pretrain medical code
representations using the disease hierarchical struc-
ture. It can simultaneously consider hierarchical domain
knowledge and similarities among medical codes.

3) We design a weighted and directed disease interaction
graph to learn the disease complications as generic
interpretability. Together with multilevel attention, the
proposed model is able to provide generic and person-
alized interpretability.

The remainder of this article is organized as follows.
Section II summarizes the related work. Section III formally
defines the prediction problem and self-supervised learning
task. Then, we demonstrate the experimental settings and
results in Sections IV and V. Finally, we summarize our work
and discuss potential future research in Section VI.

II. RELATED WORK

Predictive Models in Healthcare: Deep learning methods
have been widely adopted for learning effective represen-
tations of complex and dynamic data in a wide range of
applications including temporal event modeling in healthcare.
Choi et al. [1] proposed DoctorAI to predict diagnoses in
following admissions and the time interval of hospital read-
missions using recurrent neural networks (RNNs) with gated
recurrent unit (GRU [21]) cells. A reverse-time RNN model
with attention, RETAIN, was proposed by Choi et al. [19]
to predict HF and provide some interpretability of predictive
models. Nguyen et al. [10] proposed Deepr, which regards dis-
eases as words and admission records as sentences and uses
convolutional neural networks (CNNs) as a language model to
predict readmission possibilities of patients in the next three
months. Ma et al. [20] proposed Dipole using a bidirectional
RNN with various attention methods to predict future diag-
noses. Bai et al. [4] considered the time duration between two
admissions and proposed the Timeline model. Luo et al. [22]
used a self-attention-based method to detect key time steps in
patients’ historical admissions. However, as discussed above,
these predictive models usually do not consider data that lack
labels (such as single and last admissions) and, thus, cannot
fully utilize the potential of EHR data.

Unsupervised and Self-Supervised Learning in Healthcare:
Self-supervised learning refers to training models with auto-
matically generated labels [23]. It is used for obtaining dis-
tinguishable features of samples by pretraining the model on
proxy tasks. Gidaris et al. [24] created a pretext task to predict
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image rotation using ConvNet. Xu et al. [25] proposed a self-
supervised framework LabNet by leveraging word vectors of
both seen and unseen labels for cross-modal retrieval. A com-
mon approach when using EHR data is to treat the diseases and
the admission records as words and sentences, respectively.
Then, popular language models, such as Transformer [26] and
BERT [27], can be applied to learn the representation of dis-
eases. Choi et al. [3] applied GloVe [28] to initialize disease
embeddings in a medical ontology tree using labeled data.
Shang et al. [15] proposed the G-BERT model to recommend
medicines for patients considering an admission as a sentence
and using BERT to pretrain disease embeddings. However,
one problem of applying language models on EHR data is
that diagnoses in an admission record typically do not have
an ordering (like words in a sentence). Therefore, language
models may not fit EHR data well because a different order of
diagnoses may lead to significantly different prediction results.

Graph Neural Networks and Hyperbolic Representations:
GNNs are developed for data with graph structures.
Yu et al. [29] proposed an adaptive hypergraph learning
approach by varying the neighborhood size for transductive
image classification. Kipf and Welling [30] proposed graph
convolutional networks (GCNs) to generalize CNN for node
classifications. Nickel and Kiela [31] designed a Poincaré
ball model and an optimization method to learn represen-
tations for hierarchical data. Chami et al. [32] leveraged
hyperbolic embedding to improve knowledge graph repre-
sentations in low dimensions. Furthermore, a self-supervised
hyperboloid embedding learning method [33] was proposed
to capture hierarchical semantic information in knowledge
graphs. Recently, GNNs have also become popular and effec-
tive for modeling the EHR data. Choi et al. [3] used a medical
ontology graph based on hierarchical domain knowledge and
applied an attention mechanism to aggregate disease embed-
dings in different hierarchies. Shang et al. [15] also utilized
this knowledge but designed a two-stage attention method for
diseases. Choi et al. [34] proposed GCT, a graph convolutional
transformer by constructing a graph of diagnoses, treatments,
and lab results. Lu et al. [35] considered horizontal links in
the medical ontology graph and constructed a patient-disease
graph to learn hidden disease relations. Most models treat
diseases independently or only apply graph-domain knowl-
edge (e.g., hierarchical medical code classification) in feature
extractions, but do not take into account a common fact that
diseases in different classes can also have strong interactions,
that is, disease complications.

Given these problems in the existing work, we develop a
method that can utilize more information in EHR data. The
proposed method takes disease hierarchical structures and hid-
den disease relations into account in temporal predictions. In
addition, we also focus on providing interpretability from both
disease and patient aspects.

III. PROPOSED METHODOLOGY

We first describe the basic notations and formulate the
problem of predicting temporal events (Section III-A). Next,
we demonstrate an unsupervised learning method to initialize

Fig. 2. Overview of the proposed Sherbet model. Hyperbolic representa-
tions of medical codes are first pretrained with a hierarchical structure. Then,
the Sherbet graph is constructed based on the occurrence of medical codes
in admission records. A GNN is adopted to learn the hidden embedding
of medical codes. Next, an encoder including the code level attention and
admission level attention is designed to encode the admission records of a
patient into a patient vector. For self-supervised learning, a historical hierarchy
prediction task is designed to utilize the hierarchical structure of medical codes
in prediction. Finally, after self-supervised learning, we can apply fine-tuning
for specific prediction tasks.

TABLE I
NOTATIONS USED IN THIS ARTICLE

disease representations using hyperbolic embeddings for the
disease hierarchical structure (Section III-B). Then, we intro-
duce the strategy to construct the disease graph (Section III-C),
followed by the proposed self-supervised learning method
using a graph encoder–decoder (Section III-D). The fine-
tuning of the model is performed after self-supervised learning
(Section III-E). Finally, we discuss the interpretability of
Sherbet from two perspectives including: 1) disease complica-
tions as well as specific contributions of historical diagnoses
and 2) admissions to the predictions (Section III-F). An
overview of the system framework of Sherbet is shown in
Fig. 2.

A. Problem Formulation

An EHR dataset contains temporal admission records of
patients. In each admission, a patient is diagnosed with one or
more diseases represented by medical codes, in the format of
ICD-9-CM [17] or ICD-10 [36]. We denote the entire set of
medical codes by C = {c1, c2, . . . , c|C|} in the EHR dataset.
For a patient u, one clinical record Vu

τ ⊂ C is a subset of C,
where τ = 1, 2, . . . , Tu denotes the τ th admission record of
patient u who has a total of Tu admissions. In the rest of this
article, we drop the superscript u in Vu and Tu for better read-
ability unless otherwise stated. The important symbols used in
this article are listed in Table I.

Definition 1 (EHR Dataset): An EHR dataset is given by
D = {ru|u ∈ U}, where U is the entire set of patients in D,
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and ru = (V1, V2, . . . , VT) is the admission records of patient
u. Each admission Vτ ⊂ C contains a subset of C.

Definition 2 (Health Event Prediction): Given an EHR
dataset D and a patient u who has T historical admissions,
the goal of the prediction task in this article is to predict
the future health event yT+1 for patient u, such as diagnosis
or HF prediction. For instance, if the task is to predict the
diagnoses for a patient’s (T + 1)th admission, the goal will
be estimating the probabilities of all medical codes, that is,
yT+1 ∈ {0, 1}|C| in the (T + 1)th admission of this patient.

B. Hyperbolic Embedding With Information Flow

The ICD-9-CM system provides a domain knowledge base
to classify diseases into various categories represented by med-
ical codes on multiple levels. In this system, the medical codes
form a hierarchical structure H with H levels, that is, a tree.
To obtain effective representations of medical codes, we aim
to learn the embeddings of medical codes by reconstructing
the skeleton of H. We take advantage of the Poincaré ball
model [31], [37] to learn the representations of the hierarchical
structure of diseases, which encodes nodes in H to a hyper-
bolic space. The distance in the hyperbolic space between
embedding vectors ei and ej of two medical codes ci, cj ∈ H
is defined as

d
(
ei, ej

) = cosh−1

⎛

⎝1+ 2

∥∥ei − ej
∥∥2

(
1− ‖ei‖2

(
1− ∥∥ej

∥∥2
)

⎞

⎠. (1)

In H, higher level diseases can be regarded as a summary
of their children, while lower level diseases provide more
precise descriptions for their parents. Following this intuition,
we also propose an information flow strategy to model the
similarity and distinction among ancestor nodes and children
nodes in H. Together with the hyperbolic embedding, we are
able to simultaneously consider the hierarchy and similarity
of medical codes.

In practice, medical codes recorded in EHR datasets are usu-
ally leaf nodes. In some cases when a patient is diagnosed with
higher level diseases, that is, nonleaf nodes, we recursively cre-
ate virtual child nodes for each nonleaf node to pad them into
virtual leaf nodes in the same level. Therefore, in this article,
set C contains only leaf nodes and virtual leaf nodes in the last
level. We use |H| to denote the total number of medical codes
in H. To represent the information flow in H, we first assign
each medical code ci with two randomly initialized trainable
embedding vectors: 1) a shared vector si ∈ R

d and 2) a local
vector ti ∈ R

d. The shared vector si is designed to represent
the information inherited from its parent. The local vector ti

contains private and more precise information of ci that makes
ci different from its parent. Then, the public embedding vector
e′i of ci is calculated as

e′i = λi × si + (1− λi)× ti ∈ R
d (2)

where λi is a trainable coefficient to integrate the shared and
local vectors. To capture the information flow in the disease
hierarchical structure, we propose a hierarchical embedding
method using the shared and local embedding vectors of each

Fig. 3. Information flow in disease hierarchical structure. The downward
flow starts from a parent node to the shared part of a child node. The upward
flow starts from the local part of a child node to the local part of a parent
node.

medical code. Fig. 3 shows the information flow in two direc-
tions, that is: 1) downward and 2) upward flows. A downward
flow indicates that the shared vector of a lower level medical
code inherits the public vector of its parent, and an upward
flow simulates the summary of this medical code’s children
by aggregating the children’s local vectors. Such flows can be
summarized as follows:

2s′i = e′j (Downward flow) (3)

t′i =
1

ni

ni∑

k=1

tk (Upward flow) (4)

where cj ∈ H is the parent of ci, ck ∈ H is a child of ci, and
ni is the number of ci’s children. After this flow process, we
use (2) on s′i and t′i to calculate the new public embedding
vector ei.

To reconstruct the hierarchical structure H, we aim to min-
imize an overall distance among all nodes in H. We calculate
the distance between the public embeddings of two medical
codes because ei contains the information passed from ci’s
parent and children. We assume the distance should be small
between two connected nodes, while large for unconnected
nodes. Let A = {(i, j)|ci, cj ∈ H} be the set of connected
node pairs in H, the loss function Lrec of reconstructing the
hierarchical structure using the hyperbolic distance between
two node embedding vectors is defined as

Lrec = −
∑

(i,j)∈A
log

e−d(ei,ej)

∑
j′ ∈N (i)∪{v} e

−d
(

ei,ej′
) . (5)

Here, N (i) = {j′|(ci, cj′) /∈ A} denotes the set of non-
adjacent nodes for ci. Finally, we use Lrec to pretrain the
representation of medical codes using backpropagation and
obtain the final embedding E ∈ R

|C|×d, which is the collec-
tion of ei of medical codes in the lowest level, that is, leaf
nodes. The pretrained medical code embeddings E will be
further used in the self-supervised graph learning stage.

The pseudocode of hyperbolic embedding is shown in
Procedure 1. Lines 2–6 summarize the information flow and
lines 7–9 correspond to the optimization process to pretrain
the embeddings using Lrec.

C. Sherbet Graph Construction

Disease complications are closely related to their co-
occurrence frequencies. For example, hypertension and HF are
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Procedure 1: HyperbolicEmbedding(H)
Input: The hierarchical structure H of medical codes
Output: Embeddings E for leaf nodes of H

1 Randomly initialize shared and local vectors
2 for ci ∈ H do
3 e′i ← combine shared and local vector si, ti

4 s′i, t′i ← Downward and upward flow
5 ei ← combine s′i, t′i
6 end
7 repeat
8 Calculate distance by Equation (1)
9 Optimizing embedding vectors using Lrec

10 until convergence
11 return {ei|ci is a leaf node in H}

often diagnosed on the same patient. Therefore, we design a
directed and weighted graph G to represent the subgraph pat-
terns of disease complications. In this graph, each vertex ci of
G is a medical code in C. To describe the complication of two
diseases, that is, medical codes ci and cj, we create directed
edges between vertices ci and cj using the following rule: for
each medical code pair (ci, cj), if ci and cj occur once in a
record Vτ of a patient u, we add two edges (i, j) and (j, i) to G.
Here, we create a directed graph because we think such dis-
ease relationships are asymmetric in nature, since two diseases
may not have the same influence on each other. One disease ci

could be a major complication of another disease cj, however,
the opposite might not be true. Therefore, we use directed and
weighted edges to describe such dual relationships between
two diseases by quantifying such influence in an adjacency
matrix A ∈ R

|C|×|C|, where each element Aij is the weight of
edge (i, j). To model the dual influence of diseases, we first
define a co-occurrence matrix B ∈ N

|C|×|C| initialized with all
zeros. When calculating the values of B, we increase the ele-
ments Bij and Bji by 1 for each co-occurrence pair of ci and cj

in each admission record of all patients. Letting qi =∑|C|
j=1 Bij

be the sum of the ith row of B, then the weighted adjacency
matrix A is calculated as follows:

Aij =
⎧
⎨

⎩

0, if i = j and qi 	= 0
1, if i = j and qi = 0
Bij
qi

, otherwise.
(6)

Note that A is typically not symmetric, which makes G a
weighted and directed graph. The element Aij measures the
frequency of the disease pair (ci, cj) in all co-occurrence pairs
of ci. A higher frequency implies that cj appears more times
along with ci than other medical codes. Therefore, we can
infer cj has more influence on ci, and cj is a more common
complication of ci than other diseases.

D. Self-Supervised Graph Learning

1) Graph Learning: Based on the key idea of construct-
ing the disease graph G, the influence of adjacent nodes
on each other corresponds to the weights on their edges.
Therefore, we adopt a multilayer GNN to further learn the hid-
den representation of medical codes, given GNN’s scalability

and effective representation power. By incorporating weighted
edges, GNN can scale features and pay more attention to the
neighbors with higher weights. Given the initial embedding
E of medical codes learned from hyperbolic embedding and
the weighted adjacency matrix A, the hidden representation
X of medical codes can be calculated by a multilayer GNN:
X = GNN(A, E), based on GCN.

More specifically, we first use the embeddings of all med-
ical codes as inputs: H(0) = E. Then, the lth GNN layer to
aggregate the features of medical codes is described as follows:

H(l+1) = ReLU
(

ÂH(l)W(l)
g

)
. (7)

Here, H(l) ∈ R
|C|×d(l)

and H(l+1) ∈ R
|C|×d(l+1)

are the input
and output of the lth layer, respectively. W(l)

g ∈ R
d(l)×d(l+1)

is the weight of the lth layer. In addition, Â is a normalized
adjacency matrix of A, which is calculated as follows:

Âij = Ãij
∑|C|

j=0 Ãij

Ã = (1− ϕ)A+ ϕI

where I is the identity matrix, and 0 < ϕ < 1 is a hyper-
parameter to adjust the weight of self-loops when adding I
to A. Note that we modify the calculation of Âij and Ã in
the original GCN to adjust the importance of center medical
codes. A larger ϕ denotes higher importance of a center med-
ical code when aggregating neighbor codes into this medical
code. In the last GNN layer, that is, the Lth layer, we obtain
the output of the GNN. We let X = H(L) ∈ R

|C|×m be the
hidden representation learned by the GNN, where m = d(L) is
the dimension of the hidden embedding in the last layer.

2) Multilevel Attention: After obtaining the hidden repre-
sentation X of all medical codes in C, we want to use all
records in the EHR data to further train the model parameters
as well as the embedding matrix E of medical codes. The data
include both single and multiple admission records. For each
patient u, we use an encoder to encode all admission records
of u into a patient vector p to represent u using X

p = Encoder(V1, V2, . . . , VT |X). (8)

Specifically, we apply a two-level attention mechanism as
follows.

a) Code-level attention: Without loss of generality, we
assume an admission record Vτ contains n medical codes.
Then, the embedding xi of each medical code ci ∈ Vτ can be
looked up with X. We adopt a global attention mechanism [38]
on the medical codes in Vτ to aggregate their embeddings to
an admission embedding vτ for the τ th admission

zi = tanh(Wcxi) ∈ R
a

αi
τ =

exp
(
z
i wα

)

∑n
j=1 exp

(
z
j wα

) ∈ R

vτ =
n∑

i=1

αi
τ xi ∈ R

m.

Here, Wc ∈ R
a×m is a weight matrix, where a is the

attention dimension. wα ∈ R
a is the weight to calculate
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the attention score αi
τ for medical code ci in an admission.

The code attention score ατ = [α1
τ , α

2
τ , . . . , α

n
τ ] measures the

distribution of medical codes in an admission. Finally, we
multiply the score with xi and calculate a weighted sum as
the admission embedding vτ .

b) Admission-level attention: After calculating the
embedding vτ of τ th admission of a patient, we need to learn
the patient embedding using all admissions. First, we project
the admission embedding vτ to the patient dimension

ṽτ = LeakyReLU(Wuvτ ) ∈ R
p. (9)

Here, Wu ∈ R
p×m is a weight matrix. p is the patient dimen-

sion. We select LeakyReLU [39] as the activation function
based on a hyperparameter tuning procedure in experiments.

Similar to code-level attention, we also use the global atten-
tion for admissions to aggregate the admission embeddings
and calculate the patient embedding p. However, the orig-
inal global attention can only measure the significance of
each admission, while it cannot distinguish the contribution
of each admission to the specific dimension of the output.
For example, if a model predicts a set of diagnoses in the
next admission, given five previous admissions, we aim to
quantify the contribution of each admission to every predicted
code. Therefore, besides the attention score, we also design a
coefficient θ τ to quantify such contribution

rτ = tanh
(
Wvṽτ

) ∈ R
b

βτ = exp
(
r
τ wβ

)

∑T
τ=1 exp

(
r
τ wβ

) ∈ R

θ τ = exp
(
r
τ Wθ

)

∑T
τ=1 exp

(
r
τ Wθ

) ∈ R
p

p =
T∑

τ=1

βτ θ τ � ṽτ ∈ R
p. (10)

Here, Wv ∈ R
b×p is a weight matrix and wβ ∈ R

b is the
weight to calculate the attention score βτ ∈ R for t-th admis-
sion. The attention score β = [β1, β2, . . . , βT ] measures the
distribution within admissions. In addition, Wθ ∈ R

b×p is the
weight to calculate the attention score θ τ . The attention score
θ = [θ1, θ2, . . . , θT ] is the distribution of ṽτ over each dimen-
sion of the patient embedding. Finally, we calculate a weighted
sum of ṽτ as the patient embedding p. Specifically, the weight
is calculated by the multiplying βτ and θ τ , and � is the ele-
mentwise multiplication. We propose (10) because we want
to simultaneously measure the importance (βτ ) of an admis-
sion compared to other admissions, and the contribution (θ τ )
of this admission to the output. We will further elaborate this
idea in Section III-F.

Procedure 2 summarizes the pseudocode of the multilevel
attention encoder. Lines 2–4 calculate admission vectors using
the code-level attention. Then, the patient vector p is computed
using the admission level attention at line 5.

3) Self-Supervised Learning: To leverage all records in an
EHR dataset, we need to utilize records of single-admission
patients and final admission records of multiple-admission
patients. Since these records lack labels regarding their next

Procedure 2: Encoder(u,D, X)
Input: A patient u, an EHR dataset D, the GNN output

of medical code embeddings X
Output: The patient embedding vector p of u

1 V1, V2, . . . , VT ← Get admission records of u from D
2 for τ ← 1 to T do
3 vτ ← Calculate the admission embedding using the

code-level attention with X
4 end
5 p← Calculate the patient embedding using the

admission-level attention
6 return p

potential admissions, we focus on reconstructing historical
diagnoses using the patient embedding p. We conjecture that
the learned patient representation will be able to reflect the
historical admission records of this patient. Therefore, recov-
ering the historical diagnoses of this patient takes advantage
of the complete dataset and further optimizes the hidden
representation of medical codes.

Assuming the historical diagnoses set is denoted as V , we
aim to decode the medical codes from p into the probabil-
ity distribution ŷ: ŷi = P(ci ∈ V|p). A naïve method is
using a multilayer perceptron (MLP) to simulate the function:
ŷ = σ(MLP(p)). This method directly predicts the distribu-
tion from p but does not utilize the hierarchical structure of
medical codes. We can make levelwise predictions by cal-
culating the conditional probability of lower levels, once we
obtain the probabilities of higher levels. Therefore, we design
a hierarchy-enhanced historical prediction task to incorporate
the hierarchical structure of medical codes.

Definition 3 (Historical Hierarchy of Diagnoses): Given a
patient u, the historical hierarchy of diagnoses in the hth level
of H is defined as Vh = {ρh

ci
|ci ∈⋃T

τ=1 Vτ }, where ρh
ci

denotes
the ancestor of ci in the hth level. At the leaf level, we have
ρH

ci
= ci.

Here, Vh is the set of medical codes in level h that a patient
has ever been diagnosed during their previous T admissions.

Definition 4 (Hierarchy-Enhanced Historical Prediction):
Given a patient u, this task is to predict the probability dis-
tribution ŷh ∈ R

nh of ground-truth labels in the hth level
(h = 1, . . . , H), where nh is the number of medical codes in
the hth level, and nH = |C|.

This is a multilabel classification task for each level. Given
a code ci = ρh

ci
in the hth level, according to the directed

graphical model for joint probability [40], the joint probabil-
ity ŷh

j = P(ρh
ci
∈ Vh, ρh−1

ci
∈ Vh−1, . . . , ρ1

ci
∈ V1|p) can be

calculated as follows:

ŷh
j = P

(
ρh

ci
∈ Vh, ρh−1

ci
∈ Vh−1, . . . , ρ1

ci
∈ V1|p

)

= P
(
ρ1

ci
∈ V1|p

) h∏

k=2

P
(
ρk

ci
∈ Vk|ρk−1

ci
∈ Vk−1, p

)

=
h∏

k=2

P
(
ρk

ci
∈ Vk|ρk−1

ci
∈ Vk−1, p

)
.
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Here, P(ρ1
ci
∈ V1|p) = 1 because V1 only contains the root

of H. Then, we use a dense layer to calculate each conditional
probability

P
(
ρk

ci
∈ Vk|ρk−1

ci
∈ Vk−1, p

)
= σ(wkp)ρk

ci

where wk ∈ R
nk×p decodes the patient embedding p to the

probability of the medical codes in the kth level, and nk is the
number of medical codes in the kth level.

Finally, the decoder with the hierarchical prediction is
defined as follows:

ŷh
j = Decoder(H, p) =

h∏

k=2

σ(wkp)ρk
ci

(11)

L = 1

H − 1

H∑

h=2

1

nh
CrossEntropy

(
ŷh, yh

)
. (12)

Here, yh is the ground truth of ancestor medical codes in
the hth level. yh

j = 1 means cj is the ancestor ρh
ci

of ci in the
hth level and cj ∈ Vh. Note that, as a self-supervised learning
problem, this proxy task is not a simple input reconstruction. It
predicts the hierarchy of a set of diagnoses given a sequence of
admissions. Hence, it is different from G-BERT [15], which
is a pretraining method and reconstructs the diagnoses and
medicines given the same input.

E. Fine-Tuning and Inference

After self-supervised learning, we obtain the learned embed-
ding vectors of medical codes and model parameters. For a
specific task given the same format of input, we first calcu-
late the patient embedding p. Then, we use a fully connected
layer for the real prediction task in Definition 2. Finally, we
calculate the estimated output ŷ′ and the fine-tuning loss L′
to optimize the encoder model, including the medical code
embeddings and model parameters

ŷ′ = g(Wp) ∈ R
o (13)

L′ = Loss
(
y′, ŷ′,


)
(14)

where W ∈ R
o×p is the weight matrix for the output and o

represents the output size. g denotes the activation function. y′
is the ground-truth label and 
 is the set of parameters of the
model. Note that y′, g, o, and the loss function depend on spe-
cific tasks. When optimizing the model with backpropagation,
we still keep the embedding matrix and parameters learnable.

The pseudocode of Sherbet, including self-supervised learn-
ing and fine-tuning, is summarized in Algorithm 1. It first
pretrains the hyperbolic embeddings of medical codes at line 1.
Then, the Sherbet-Graph is constructed and a GNN is applied
at lines 2–8. The self-supervised learning framework calcu-
lates the patient vector for each patient in D, predicts the
historical hierarchy of diagnoses, and optimizes the model at
lines 9–17. Finally, fine-tuning is performed on specific tasks
in lines 18–23.

F. Model Interpretability

Another advantage of Sherbet is its ability to provide inter-
pretable prediction results and learned representations (which

Algorithm 1: Sherbet-Optimization(H,D)
Input: The hierarchical structure H of medical codes,

an EHR dataset D
1 E← HyperbolicEmbedding(H)
2 Â← Construct graph G and calculate normalized

adjacency matrix by Equation (8)
3 L← Graph layer number
4 H(0)← E
5 for l← 0 to L− 1 do // Graph learning

6 H(l+1)← Aggregate H(l) by Equation (7)
7 end
8 X← H(L)

9 repeat // Self-supervised learning

10 u← a patient in D
11 p← Encoder(u,D, X)
12 H← level number of H
13 for h← 2 to H do
14 ŷh ← Predict level h’s labels by Equation (11)
15 end
16 Optimizing the model using L
17 until convergence
18 repeat // Fine-tuning

19 u← a patient in D with multiple admissions
20 p← Encoder(u,D, X)
21 ŷ

′ ← Predict labels based on specific tasks
22 Optimizing the model using L′
23 until convergence

is an important part of healthcare). Some existing models [3],
[4] only focus on learning medical concept representations
while neglecting personalized interpretability at the patient
level. On the other hand, a few other models [20] are able to
interpret at the patient level while lacking generic interpretabil-
ity for common medical knowledge. In Sherbet, we provide
generic interpretability by learning effective disease represen-
tations as well as personalized interpretability by quantifying
contributions of each disease and admission for a patient.

Representation for Medical Codes: We use the output X of
GNN as the hidden representation of medical codes since the
proposed self-supervised graph learning framework helps to
learn effective disease relations and captures reasonable dis-
ease complications as generic interpretability. We demonstrate
the results of the learned representations in Section V-D.

Code-Level Contribution: We use the code-level attention
scores ατ = [α1

τ , α
2
τ , . . . , α

n
τ ] to represent the contributions

of medical codes in an admission since α is a probability
distribution of medical codes.

Admission-Level Contribution: Similar to the code-level
contribution, we use β as a part of the admission-level con-
tribution. Furthermore, we want to quantify the contribution
of a specific admission to the output. For example, if the task
is to predict all diagnoses in the next admission, we want
to comprehend the contribution of the t-th admission to each
predicted medical code, that is, ŷi. Therefore, we define a
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coefficient δ = [δ1, δ2, . . . , δT ] to measure this contribution

δτ = βτ

exp(Wθ τ )
∑T

τ=1 exp(Wθ τ )
∈ R

o (15)

where W is the weight in (13). In this equation, first, Wθ τ

projects the τ -th admission weight into the output dimension.
Then, it is multiplied by βτ , so that we can measure the contri-
bution from different admissions. Intuitively, δτ first calculates
the contribution of each admission (βτ ), then it assigns this
contribution to each dimension of the output (Wθ τ ). Finally,
the code-level and admission-level contributions can provide
personalized interpretability for different patients.

IV. EXPERIMENTAL SETUP

A. Tasks and Evaluation Metrics

We conduct our experiments on two tasks following the
settings of GRAM [3].

1) Diagnosis Prediction: This task predicts all medi-
cal codes in the next admission. It is a multilabel
classification.

2) Heart Failure Prediction: This task predicts whether
patients will be diagnosed with HF in the next admis-
sion. It is a binary classification.

The evaluation metrics for diagnosis prediction are weighted
F1 score (w-F1) as in Timeline [4] and top-k recall (R@k) as
in DoctorAI [1]. w-F1 is a weighted sum of the F1 score for
each class, which measures an overall prediction performance
on all classes. R@k is the ratio of true-positive numbers in top-
k predictions to the total number of positive samples, which
measures the prediction performance on a subset of classes.

The metrics to evaluate the HF prediction are the area under
the ROC curve (AUC) and F1 score since the HF prediction
is a binary classification on imbalanced test data.

B. Datasets

We use the MIMIC-III dataset [16] in both tasks and the
eICU dataset [41] in the first task to evaluate the performance
of our model. MIMIC-III contains 58 976 de-identified admis-
sion records between 2001 and 2012 from 46 520 patients.
In each record, the diseases are encoded by the ICD-9-CM
system. There are 6981 medical codes in both single and
multiple admissions. The eICU dataset records the patients’
admissions to intensive care units (ICUs). For eICU, a patient
may have multiple visits to hospitals, and in each hospital
visit, there may be multiple admissions to ICU. However,
there are no timestamps for hospital visits in the eICU dataset.
Therefore, we regard one hospital visit as an independent
patient, and each ICU admission as admission records V . In
addition, we remove diseases in eICU that cannot be found
in the ICD-9-CM or ICD-10 system. Table II shows the basic
statistics of single and multiple admissions in the MIMIC-III
and eICU datasets.

We randomly split the EHR data with multiple admissions
into training/validation/test data, which contain 6000/493/1000
patients for MIMIC-III, and 8000/408/1000 patients for eICU.
The Sherbet graph and self-supervised learning are constructed
and trained with single admission data and training data

TABLE II
STATISTICS OF MIMIC-III AND EICU DATASETS FOR BOTH SINGLE (S)

AND MULTIPLE (M) ADMISSIONS (ADM.)

with multiple admissions to guarantee there is no leakage of
test data in fine-tuning. We use all medical codes for self-
supervised learning on both tasks. For the diagnosis prediction
task, we predict medical codes appearing in multiple admis-
sions. For the HF prediction task, there are 38.5% positive
samples and 61.5% negative samples in MIMIC-III.

C. Comparison Methods

We select the following state-of-the-art models to compare
the performance with Sherbet.1

1) MLP: A deep neural network consists of three layers and
uses multihot vectors for medical codes in an admission.

2) DoctorAI [1]: An RNN-GRU model, which also uses
multihot vectors as inputs.

3) RETAIN [19]: A network of two RNNs with reverse
time and attention methods. The inputs are multihot
vectors for medical codes.

4) Deepr [10]: A CNN model that uses the embedding of
medical codes as inputs.

5) GRAM [3]: An RNN model with a medical ontology
graph. The inputs are medical code embeddings.

6) Dipole [20]: A bidirectional RNN model with attention.
The inputs are multihot vectors.

7) Timeline [4]: An RNN model with attention, using the
time duration information. The inputs are the embed-
dings of medical codes.

8) G-BERT* [15]: A BERT-based model with a medical
ontology graph. It first pretrains the model on a self-
prediction and dual-prediction task, then fine-tunes the
model to predict the medicine. We modify G-BERT* by
removing the medication module and changing the fine-
tuning module to predict diagnoses and HF.

9) HiTANet [22]: A transformer-based model consider-
ing time intervals between admissions. The inputs are
multihot vectors.

D. Parameter Settings for Sherbet

We randomly initialize all embeddings and model param-
eters. The embedding sizes d, m, and p for E, X, and p are
128, 64, and 64, respectively. We use one graph layer, where
the hidden unit number is 64. The attention sizes a and b

1We do not compare with MiME [42], GCT [34], and MPVAA [43] since
we do not use treatment, lab result, and demographic features in this work.
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TABLE III
DIAGNOSIS PREDICTION RESULTS ON MIMIC-III AND EICU USING W-F1 (%) AND R@k (%)

for code-level and admission-level attention are 64 and 32,
respectively. The weight ϕ on the adjacency matrix is 0.9. In
addition, for fine-tuning, we add Dropout [44] on the graph
layer and the input of the decoder. The graph layer’s dropout
rates of two tasks on MIMIC-III and diagnosis prediction on
eICU are 0.2, 0.8, and 0.2, respectively. The decoder’s dropout
rates are 0.02, 0.15, and 0.15, respectively. For the fine-tuning
of both tasks, the activation function is sigmoid; and the loss
function is cross-entropy loss.

We use 500 epochs for pretraining hyperbolic embeddings.
For self-supervised learning, we use 1000 and 300 epochs
on the MIMIC-III dataset and the eICU dataset, respectively,
and 200 epochs for fine-tuning with a learning rate decay
strategy. The initial learning rate for hyperbolic embedding
is 0.01 and decays by 0.01 every 100 epochs. The initial
learning rate for self-supervised learning is 0.01 and decays
at the (100, 500)th epoch by 0.1 on the MIMIC-III dataset,
and decays at the (100, 250)th epoch by 0.1 on the eICU
dataset. The initial learning rate for fine-tuning is 0.01 and
decays at (20, 35, 100)th/(50, 60, 100)th epoch for diagno-
sis prediction on MIMIC-III/eICU, and decays at (25, 40, 45)
epochs for HF prediction on the MIMIC-III dataset. We use the
Adam optimizer [45] for hyperbolic embedding and RMSProp
optimizer [46] for self-supervised learning and fine-tuning.
The batch sizes for hyperbolic embedding, self-supervised
learning, and fine-tuning are 256, 128, and 32, respectively.

All programs are implemented using Python 3.7.4
and Tensorflow 2.3.0 with CUDA 10.1 on a machine with
Intel i9-9900K CPU, 64-GB memory, and Geforce RTX 2080
Ti GPU.2

E. Parameter Settings for Baselines

1) MLP: The hidden units for two hidden layers are 128
and 64, respectively.

2) DoctorAI: The hidden size for RNN is 128.
3) RETAIN: The embedding size for admissions is 256. The

hidden layer size for two RNN layers is 128.
4) Deepr: The embedding size for medical codes is 100.

The kernel size and filter number for a 1-D CNN layer
are 3 and 128, respectively.

2The source code of the Sherbet model can be found at
https://github.com/LuChang-CS/sherbet.

5) GRAM: The embedding size for medical codes and
attention size are 100. The hidden size for RNN is 128.

6) Dipole: The embedding size for admissions is 256. The
concatenation-based attention size is 128. The hidden
size for RNN is 128.

7) Timeline: The embedding size for medical codes and
attention size are 100. The hidden size for RNN is 128.

8) G-BERT*: The parameter settings are the same as given
in [15]. a) GAT part: the input embedding size is 75,
the number of attention heads is 4 and b) BERT part:
the hidden size is 300. The positionwise feedforward
networks include two hidden layers with four attention
heads for each layer. The dimension of each hidden layer
is 300.

9) HiTANet: The parameter settings are the same as [22].
a) HiTANet part: the dense space size for diseases is
256. The space size for a time interval, query vector
size, and latent space size for time interval is 64 and
b) Transformer part: the dimension of attention embed-
ding is 64. The multihead number is 4. The size of the
middle feedforward network is 1024.

V. EXPERIMENTAL RESULTS

A. Prediction Results

Table III shows the results of the weighted F1 score and top
k recall on the diagnosis prediction task using both datasets.
We select k = [10, 20] to calculate the R@k, because the
average medical code numbers of an admission are 13 and
4.40 in MIMIC-III and eICU, respectively. In Table III, we
can observe that Sherbet outperforms the baseline models in
most cases. Note that the results of models on eICU are much
better than MIMIC-III. This is primarily due to the fact that
eICU has only 686 medical codes, while MIMIC-III has 4880.
The comparison among Sherbet, G-BERT* and GRAM indi-
cates that self-supervised learning significantly improves the
prediction results on both datasets since they all use medical
ontology information.

Table IV demonstrates the AUC and F1 scores of the results
for the HF prediction task. We use only MIMIC-III because
some diseases are removed in the eICU dataset. Similar to
the diagnosis prediction task, Sherbet obtains the superior
performance in terms of AUC and F1. In this task, compared
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TABLE IV
HF PREDICTION RESULTS ON MIMIC-III USING AUC (%) AND F1 (%)

TABLE V
PREDICTION RESULTS OF THE VARIANTS OF SHERBET

to the best baseline model, the improvement of Sherbet is
not as significant as the diagnosis prediction. We infer that
self-supervised learning is able to learn a general knowledge
representation of diseases, while HF is only one of the many
diseases. On the contrary, as a multilabel classification task,
the diagnosis prediction task can fully utilize the representa-
tion learned by self-supervised learning and distinguish each
type of disease in the output.

In summary, the prediction results of diagnoses and HF
demonstrate the superior performance of the proposed frame-
work over state-of-the-art models.

B. Ablation Study

To study the effectiveness of each module in Sherbet,
we also compare five types of Sherbet with some modules
removed or replaced.

1) Sherbetb: Sherbet with self-supervised learning and
hierarchical prediction, removing hyperbolic embedding.

2) Sherbetc: Sherbet with self-supervised learning, remov-
ing hyperbolic embedding and hierarchical prediction.

3) Sherbetd: Sherbet with hyperbolic embedding, remov-
ing self-supervised learning while only using fine-tuning
with multiple admission data.

4) Sherbete: Sherbet removing hyperbolic embedding and
self-supervised learning while only using fine-tuning
with multiple admission data.

5) Sherbetf : Sherbet with the multilevel attention encoder
replaced by T-LSTM [47].

6) Sherbetg: Sherbet removing the graph structure and
GNN by directly using the learned hyperbolic embed-
ding for multilevel attention.

(a) (b)

(c) (d)

Fig. 4. Prediction results for fine-tuning using w-F1, R@10 on the diagnosis
prediction, and AUC, F1 on the HF prediction with five different SE. (a) w-F1.
(b) R@10. (c) AUC. (d) F1.

We report the results of Sherbet and Sherbetb∼g on two
tasks in Table V. We can first observe that the complete
Sherbet achieves the best performance among Sherbetb∼g,
which proves the effectiveness of our proposed model. The
comparison between Sherbet and Sherbetb, and Sherbetd and
Sherbete shows that the hyperbolic embedding can effectively
initialize the representations of medical codes. The results
of Sherbetb and Sherbetc indicate that the hierarchical struc-
ture of medical codes is helpful to guide the prediction. We
can also see that the performance of Sherbetc has a large
improvement over Sherbete, which shows the importance of
self-supervised learning. However, the performance improve-
ment of Sherbetc over Sherbetd on HF prediction is not
as significant as the improvement over Sherbete. We infer
that the hyperbolic embedding is also effective without self-
supervised learning when the number of predicted medical
codes is small. In addition, after replacing the multilevel atten-
tion with T-LSTM, the performance of Sherbetf is not as
good as Sherbet. Moreover, the result of Sherbetg shows that
the proposed Sherbet graph and GNN are also important in
predicting health events because the graph structure was uti-
lized to capture hidden relations of diseases. Finally, even
without self-supervised learning and hyperbolic embedding
(Sherbete), our model still achieves top performance among
baselines as shown in Tables III and IV, which demonstrates
the effectiveness of the proposed framework.

C. Self-Supervised Learning Study

To further study the effectiveness and impact of self-
supervised learning, we adopt different self-supervised learn-
ing epochs (SE). On both tasks, we select five different SE
as [200, 400, 600, 800, 1000] to report the variation of w-F1,
R@10 of the diagnosis prediction, and AUC and F1 of the HF
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prediction on the validation data of both tasks in MIMIC-III
during the fine-tuning phase.

Fig. 4 shows the validation results for fine-tuning of the
diagnosis prediction and the HF prediction on different SE.
The x-axis of each subplot denotes the fine-tuning epochs, and
the y-axis means each evaluation metrics for fine-tuning. In
Fig. 4(a) and (b) of the diagnosis prediction results, we can see
that SE has a significant influence on the fine-tuning results.
Larger SE not only produces higher w-F1 and R@10 but also
speeds up the convergence. As shown in Fig. 4(c) and (d)
of the HF prediction, the final values of AUC and F1 are not
affected too much by SE compared to the diagnosis prediction.
However, lower SE still gives worse results. Therefore, we can
further conclude that self-supervised learning on the historical
hierarchy prediction task helps in improving the prediction
performance on different tasks and accelerates the fine-tuning
of the model.

D. Case Studies for Model Interpretation

We interpret Sherbet by demonstrating the representation
of some typical disease complications learned by Sherbet on
MIMIC-III and visualizing the contributions introduced in
Section III-F.

1) Representation of Disease Complication: In order to
demonstrate if Sherbet successfully captures the disease com-
plications, we adopt the embedding matrix X, that is, the
output of the GNN, as the final representation learned by self-
supervised learning. Then, we use t-SNE [48] to project X
into two dimensions. In the next step, we select 15 types of
HF,3 three types of essential hypertension,4 and seven types of
acute rheumatic fever5 that appear in MIMIC-III and plot them
in Fig. 5(a). As shown in Fig. 5(a), they are mainly grouped
into three clusters. In addition, hypertension locates near one
cluster of HF, and acute rheumatic fever locates near the three
clusters of HF. Given that hypertension and acute rheumatic
fever are two common comorbidities of heart-related diseases,
they are often diagnosed in the same set of patients. It indi-
cates that the proposed method learns similar embeddings for
similar diseases or complications. Next, we select two types
of diabetes6: 1) type I and 2) type II, and plot their embed-
dings in Fig. 5(b). As shown in Fig. 5(b), there are no joint
clusters between diabetes type I and diabetes type II. We infer
that the complications of diabetes type I and diabetes type II
are different to some extent. To summarize, Sherbet is able to
capture the disease complications. It can also distinguish dif-
ferent types of diseases based on their different complications.
Therefore, Sherbet can provide the general interpretability for
diseases using the learned hidden representations of medical
codes.

2) Quantification of Multilevel Attention: To measure the
contributions both at the code level and at the admission level
explained in Section III-F, we visualize the code-level atten-
tion distribution α in code-level attention, and coefficient δ

3www.icd9data.com/2015/Volume1/390-459/420-429/428/
4www.icd9data.com/2015/Volume1/390-459/401-405/401/
5www.icd9data.com/2015/Volume1/390-459/390-392/
6www.icd9data.com/2015/Volume1/240-279/249-259/250/

(a) (b)

Fig. 5. Scatter plot of heart related conditions and different diabetes using
t-SNE. (a) Complications between different types of HF, hypertension, and
acute rheumatic fever (which is a disease that can affect the heart). (b) Diabetes
type I and type II.

Fig. 6. Contribution of diagnoses to each admission, and admissions to each
predicted diagnosis. In this case, the patient has two historical admissions.
We use two admissions to predict diagnoses in the third admission.

in (15) for a given patient u on the diagnosis prediction task.
Fig. 6 demonstrates the historical diagnoses, the admissions,
and the predicted diagnoses for a patient in rectangles. The
contributions α and δ are represented by blue and red lines,
respectively. The thickness and darkness of the line denote dif-
ferent values of α and δ. Thicker and darker lines correspond
to larger values of α and δ. In this case, there are six diag-
noses in the first admission and ten diagnoses in the second
admission, and we select three important diagnoses for both
admissions. There are also six diagnoses of the third admis-
sion of this patient, that is, ground-truth diagnoses, and we
show three correct predictions in Fig. 6.

In the first admission, the three diagnoses are all kidney-
related diseases. Acute kidney failure and disorders result-
ing from impaired renal function mainly contribute to this
admission. In the second admission, the three diagnoses
belong to brain, heart, and blood-related diseases, respectively.
Hypertensive encephalopathy and Anemia mainly contribute
to this admission. In the third admission, we can see that
the correct predictions are all metabolic diseases and kidney
disease. Therefore, Sherbet predicts that the first admission
contributes more than the second admission. More specifically,
the first admission contributes mainly to hypertensive chronic
kidney disease because the patient is diagnosed with acute kid-
ney failure in the first admission. We can also infer that the
kidney problems of this patient mainly cause the metabolic
diseases in the third admission. For the second admission, we
can discover that it mainly contributes to hypertensive chronic
kidney disease. We believe that it is due to the fact this patient
has hypertensive encephalopathy. High blood pressure causing
hypertensive encephalopathy also causes hypertensive chronic
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kidney disease in this admission. Besides, anemia in the sec-
ond admission can also be related to the metabolic diseases in
the third admission. In summary, Sherbet provides quantitative
and personalized interpretability using the contributions α and
δ learned from patients’ historical diagnoses and admissions.

VI. CONCLUSION

In this article, we proposed Sherbet, a self-supervised graph
learning framework with hyperbolic embeddings for medical
codes to predict temporal health events. We first took advan-
tage of the hierarchical structure of medical codes to pretrain
a hyperbolic embedding for diseases. Then, we adopted a
GNN with a weighted and directed graph of medical codes to
learn disease complications in EHR data. With the specially
designed code-level and admission-level attention mechanism,
Sherbet is able to simultaneously provide generic interpretabil-
ity for medical concepts and personalized interpretability for
patients. In addition, we also designed a self-supervised proxy
task to predict the historical hierarchy of diagnoses in patients’
admission records by further utilizing the hierarchical struc-
ture of medical codes. This task is able to leverage more
data by incorporating single admission records and the final
admissions of multiple admission records. Our experimental
results showed the improved performance of Sherbet over
state-of-the-art methods. We also illustrated the generic and
personalized interpretability of Sherbet using case studies.
One shortcoming of Sherbet is that it only utilizes disease
codes in patients’ admission records. In the future, we will
explore the relationships of more features in EHR data, such
as procedures, medicines, and lab results.
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