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Using attention weights to identify information that is important for models’ decision making is a popular
approach to interpret attention-based neural networks. This is commonly realized in practice through the
generation of a heat-map for every single document based on attention weights. However, this interpretation
method is fragile and it is easy to find contradictory examples. In this article, we propose a corpus-level
explanation approach, which aims at capturing causal relationships between keywords and model
predictions via learning the importance of keywords for predicted labels across a training corpus based on
attention weights. Based on this idea, we further propose a concept-based explanation method that can au-
tomatically learn higher level concepts and their importance to model prediction tasks. Our concept-based
explanation method is built upon a novel Abstraction-Aggregation Network (AAN), which can automatically
cluster important keywords during an end-to-end training process. We apply these methods to the docu-
ment classification task and show that they are powerful in extracting semantically meaningful keywords
and concepts. Our consistency analysis results based on an attention-based Naive Bayes classifier (NBC) also
demonstrate that these keywords and concepts are important for model predictions.
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1 INTRODUCTION

Attention Mechanisms [2] have boosted performance of deep learning models in a variety of nat-
ural language processing (NLP) tasks, such as sentiment analysis [35, 47], semantic parsing
[46], machine translation [30], reading comprehension [9, 17], and others. Attention-based deep
learning models have been widely investigated not only because they achieve state-of-the-art per-
formance, but also because they can be interpreted by identifying important input information via

This work was supported in part by the US National Science Foundation grants IIS-1707498, IIS-1838730, and Amazon AWS
credits.

Authors’ addresses: T. Shi, X. Zhang, P. Wang, and C. K. Reddy, Virginia Tech, Blacksburg, VA 24061; emails: {tshi, xuczhang,
ping, reddy}@vt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1556-4681/2021/10-ART48 $15.00

https://doi.org/10.1145/3477539

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 48. Publication date: October 2021.



https://doi.org/10.1145/3477539
mailto:permissions@acm.org
https://doi.org/10.1145/3477539

48:2 T. Shi et al.

visualizing heat-maps of attention weights [11, 40, 42, 45], namely attention visualization. There-
fore, attention mechanisms help end-users to understand models and diagnose trustworthiness of
their decision making.

However, the attention visualization approach still suffers from several drawbacks: (1) The
fragility of attention weights can easily make end-users find contradicting examples, especially
for noisy data and cross-domain applications. For example, a model may attend on punctuation or
stop-words. (2) Attention visualization cannot automatically extract high-level concepts that are
important for model predictions. For example, when a model assigns news articles to Sports, rele-
vant keywords may be player, basketball, coach, nhl, golf, and nba. Obviously, we can build three
concepts/clusters for this example, i.e., roles (player, coach), games (basketball, soccer), and leagues
(nba, nhl). (3) Attention visualization still relies on human experts to decide if keywords attended
by models are important to model predictions.

There have been some studies that attempt to solve these problems. For example, Jain and Wal-
lace [20], Serrano and Smith [38] focused on studying if attention can be used to interpret a model,
however, there are still problems in their experimental designs [48]. Yeh et al. [53] tried to apply
a generic concept-based explanation method to interpret BERT models in the text classification
task, however, they did not obtain semantically meaningful concepts for model predictions. An-
tognini and Faltings [1] introduced a concept explanation method that first extracts a set of text
snippets as concepts and infers which ones are described in the document, and then it explained
the predictions of sentiment with a linear aggregation of concepts. In this article, we propose a
general-purpose corpus-level explanation method and a concept-based explanation method based
on a novel Abstraction-Aggregation Network (AAN) to tackle the aforementioned drawbacks
of attention visualization. We summarize the primary contributions of this article as follows:

— To solve the first problem, we propose a corpus-level explanation method, which aims at
discovering causal relationships between keywords and model predictions. The importance
of keywords is learned across the training corpus based on attention weights. Thus, it can
provide more robust explanations compared with attention visualization case studies. The
discovered keywords are semantically meaningful for model predictions.

— To solve the second problem, we propose a concept-based explanation method (case-level and
corpus-level) that can automatically learn semantically meaningful concepts and their im-
portance to model predictions. The concept-based explanation method is based on an AAN
that can automatically cluster keywords, which are important to model predictions, during
the end-to-end training for the main task. Compared to the basic attention mechanisms, the
models with AAN do not compromise on classification performance or introduce any signif-
icant number of new parameters.

— To solve the third problem, we build a Naive Bayes Classifier (NBC), which is based on an
attention-based bag-of-words document representation technique and the causal relationships
discovered by the corpus-level explanation method. By matching predictions from the model
and NBC, i.e., consistency analysis, we can verify if the discovered keywords are important
to model predictions. This provides an automatic verification pipeline for the results from
the corpus-level explanation and concept-based explanation methods.

The rest of this article is organized as follows: In Section 2, we introduce related work of feature-
based and concept-based explanation. In Section 3, we first present details of our proposed AAN,
and then discuss corpus-level and concept-based explanation methods. In Section 4, we evalu-
ate different self-attention and AAN-based models on three different datasets. We also show how
corpus-level and concept-based explanations can help in the interpretation of attention-based
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classification models and can potentially provide a better understanding of the training corpus.
Our discussion concludes in Section 5.

2 RELATED WORK

Increasing the interpretability on machine learning models has become an important topic of re-
search in recent years. Most prior work [14, 27, 29, 41] focus on interpreting models via feature-
based explanations, which alters individual features such as pixels and word-vectors in the form of
either deletion [36] or perturbation [43]. However, these methods usually suffer from the reliability
issues when adversarial perturbations [12] or even simple shifts [23] of the input data. Moreover,
the feature-based approaches explain the model behavior locally [36] for each data samples with-
out a global explanation [13, 21] on how the models make their decisions. In addition, feature-based
explanation is not necessarily the most effective way for human understanding.

To alleviate the issues of feature-based explanation models, some researchers have focused on
explaining the model results in the form of high-level human concepts [4, 6, 8, 44, 50, 54, 56]. Unlike
assigning the importance scores to individual features, the concept-based methods use the corpus-
level concepts as the interpretable unit. For instance, concept “wheels” can be used for detecting
the vehicle images and concept “Olympic Games” for identifying the sports documents. However,
most of the existing concept-based approaches require human supervision in providing hand-
labeled examples of concepts, which is labor intensive and some human bias can be introduced
in the explanation process [19, 21, 39]. Recently, automated concept-based explanation methods
[5, 53] are proposed to identify higher-level concepts that are meaningful to humans automatically.
However, they have not shown semantically meaningful concepts on text data. In text classifica-
tion area, most of the existing approaches focus on improving the classification performance, but
ignore the interpretability of the model behaviors [52]. Liu and Avci [27] utilize the feature attri-
bution method to help users interpret the model behavior. Bouchacourt and Denoyer [5] propose
a self-interpretable model through unsupervised concept extraction. However, it requires another
unsupervised model to extract concepts. Different from these studies, our corpus-level explanation
method can be generally applied to self-attention mechanisms, and our concept-based explanation
method, which is based on a hierarchical attention network, can automatic learn concepts during
the end-to-end training.

3 PROPOSED WORK

In this section, we first introduce the classification framework and our AAN. Then, we discuss the
corpus-level explanation, concept-based explanation, and attention-based NBC.

3.1 The Proposed Model

3.1.1  Basic Framework. A typical document classification model is equipped with three com-
ponents, i.e., an encoder, an attention or pooling layer, and a classifier. (1) Encoder: An encoder
reads a document, denoted by d = (wy, wy, ..., wr), and transforms it to a sequence of hidden
states H = (hy, ha, ..., ht). Here, w; is the one-hot representation of token ¢ in the document. A,
is also known as a word-in-context representation. Traditionally, the encoder consists of a word
embedding layer followed by an LSTM [18] sequence encoder. Recently, pre-trained language mod-
els [9, 34, 51] have emerged as an important component for achieving superior performance on a
variety of NLP tasks including text classification. Our model is adaptable to any of these encoders.
(2) Attention/Pooling: The attention or pooling (average- or max-pooling) layer is used to con-
struct a high-level document representation, denoted by v4°¢. In attention networks, the attention
weights show the contributions of words to the representations [26, 52]. Compared with pooling,
attention operations can be well interpreted by visualizing attention weights [52]. (3) Classifier:
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Fig. 1. The proposed AAN and different interpretation methods.

The document representation is passed into a classifier to get the probability distribution over dif-
ferent class labels. The classifier can be a multi-layer feed-forward network with activation layer
followed by a softmax layer, i.e., y = softmax(W, - ReLU(W} - v9°¢ 1 b)) + by), where Wy, Wy, by and
b, are model parameters.

To infer parameters, we can minimize the averaged cross-entropy error between predicted and
ground-truth labels. Here, loss function is defined as £y = — Zle 7log(y), where ¢ represents
the ground-truth label and L is the number of class labels. The model is trained in an end-to-end
manner using back-propagation.

3.1.2  Abstraction-Aggregation Network. In order to use different explanation methods, espe-
cially concept-based explanation, to interpret deep neural networks, we propose a novel AAN for
the Attention/Pooling layer, which first captures keywords for different concepts from a document,
and then aggregates all concepts to construct the document representation (see Figure 1).

An AAN has two stacked attention layers, namely, abstraction-attention (abs) and aggregation-
attention (agg) layers. In the abs layer, for each attention unit k, we calculate the alignment score
u2b§ and attention weight tx}ff as follows:

it = (6 he,

abs
ws  XP) 1)
kit = T bs’
ST exp(ui)
where gl‘zbs are model parameters. Here, we do not apply linear transformation and tanh activation

when calculating alignment scores for two reasons: (1) Better intuition: Calculating attention

between g2 and h;, in Equation (1) is the same as calculating a normalized similarity between them.

k
Therefore, abstraction-attention can also be viewed as a clustering process, where gzbs determines

the centroid of each cluster. In our model, concepts are related to the clusters discovered by AAN.
(2) Fewer parameters: Without the linear transformation layer, the abstraction-attention layer
only introduces K X |h;| new parameters, where |h;| is the dimension of h; and K < |h;|. The k th
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representation is obtained by vzbs =y, ai{’?ht. We use K to denote the total number of attention
units.

In the agg layer, there is only one attention unit. The alignment score uigg and attention weight
aigg are obtained by

U, %8 = (%) tanh(Wygg}™ + bagg).

and

e P

T e’
where Wy, bage, and g8 are model parameters. The final document representation is obtained
by vdo¢ = I,le azggvzbs. It should be noted that AAN is different from hierarchical attention [52],
which aims at getting a better representation. However, AAN is used to automatically capture con-
cepts/clusters. We have also applied two important techniques to obtain semantically meaningful

concepts.

(1) Diversity penalty for abstraction-attention weights: To encourage the diversity
of concepts, we introduce a new penalization term to abstraction-attention weights A =

abs —abs —abs TxK —abs _ abs ,abs abs \ T
[Tz’l SO, Ay ] € R*™*, where ays = (ak,l’ak,z’ . ,ak’T) . We define the penalty func-
tion as
1 T
Laiv = E”A A-1I||f, (2)
where || - || represents the Frobenius norm of a matrix. Hence, the overall loss function is

expressed as £ = Lo + Lgjy.

(2) Dropout of aggregation-attention weights: In the aggregation-attention layer, it is pos-
sible that azgg ~ 1 for some k, and other attention weights tend to be 0. To alleviate this problem,
we apply dropout with a small dropout rate to aggregation-attention weights (aigg, aggg ey a?(gg),
namely attention weights dropout. It should be noted that a large dropout rate has a negative im-
pact on the explanation, since it discourages the diversity of concepts. More specifically, the model

will try to capture keywords in the dropped abstraction-attention units by the other units.

3.2 Explanation

In this section, we discuss corpus-level and concept-based explanations. Given a corpus C with
|C| documents, we use d or & to represent a document. Let us also use 0 to denote all parameters
of amodel and V to represent the vocabulary, where [V is the size of V. Throughout this article,
we will assume that both prior document probability p(d) and prior label probability pg(y = [) are
constants. For example, in a label-balanced dataset, pg(y = 1) ~ 1/L.

We will first apply the attention weights visualization technique to the proposed AAN model.
Here, the document representation can be directly expressed by the hidden states, i.e.,

T [ K
V88 = Z ( azggazbf) hy,
k=1

where
K
d _ agg abs
ay = Zak ag’)s (3)
k=1

gives the contribution of word w; to the document representation. Therefore, we can interpret any
single example via visualizing the combined weights a .
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3.2.1 Corpus-Level Explanation. Different from case-level explanation (attention weights visu-
alization), which focuses on per-sample features, corpus-level explanation aims at finding causal re-
lationships between keywords captured by the attention mechanism and model predictions, which
can provide robust explanation for the model. To achieve this goal, we learn distributions of key-
words for different predicted labels on the training corpus based on attention weights.

Formally, for a given word w € V and a label I predicted by a model 6!, the importance of the
word to the label can be estimated by the probability pg(w|y = I) across the training corpus Cirain
since the model is trained on it. Therefore, pg(w|y = [) can be expanded as follows:

polwly =0 = > pa(w.Ely = 1), (4)

gecl

train

I
where C,_ ..

C ain> PTODADIlity po(w, &ly = I) represents the importance of word w to label I/, which can be
defined using attention weights, i.e.,

C Cirain consists of documents with model predicted label [. For each document ¢ €

Z 1at 6(Wt’w)

D8 €Coun JEE (W) + 7 5)

po(w,Ely =1) =

where fgx(wt) is frequency of w; in document & and y is a smoothing factor. §(w;, w)

1 ifw, =
{ "™ = is a delta function. The denominator is applied to reduce noises from stop-words and
0 otherwise

punctuation. For the sake of simplicity, we will use pg(w, [, C) to denote pg(w;|y = I), where C
corresponds to the corpus Equation (4), and can be different from Ciin in our applications. The
denominator in Equation (5) is always determined by the training corpus.

With respect to the applications: (1) Since Equation (4) captures the importance of words to
model predicted labels, we can use it as a criterion for finding their causal relationships. In exper-
iments, we can collect top-ranked keywords for each label [ for further analysis. (2) We can also
use corpus-level explanation to measure the difference between two corpora (i.e., Ciest1 and Ciestz).
Formally, we can compare lc“a"l‘: - po(W, I, Crest1) with Ici”i’z‘l - po (W, I, Crest2) across different words
and class labels. The difference can be evaluated by Kullback-Leibler divergence [25]. In addition,
we can get mutual keywords shared across different domains based on these distributions.

It should be noted that the corpus-level explanation discussed in this section can be applied to
interpret different attention-based networks.

3.2.2 Concept-Based Explanation. The corpus-level explanation still suffers from the drawback
that it cannot automatically obtain higher level concepts/clusters for those important keywords.
To alleviate this problem, we propose concept-based explanation for our AAN model. In AAN,
each abstraction-attention unit can capture one concept/cluster. Here, we will take distribution of
concepts into consideration. Formally, we express pg(w;|y = [) as follows:

K
po(wly =1) = )" pa(wle,y = Dpo(exly = 1),
k=1

!Here, the label is the model’s prediction, not the ground-truth label, because our goal is to explain the model.
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where pg(w|ck,y = [) captures the distribution of w across Ciy,in for the kth concept and label ,
while pg(ckly = I) captures the distribution of the concept ci across Ciyain for label I. They can be
computed using the following equations.

po(wle,y =D = > po(w,lery = 1),

gecllrain
(©)
polecly=0)= > polei. Ely =1),
gecllrain

where we define b ¢
T abs,
ST, @ 5w w)

po(w, &lex,y =1) = , 7)
Zf/ectmm f§'(w> + y
and
agg, &
%
polcr,&ly =1) = , (8)
|Ctrain|
where azbf’g represents azbi for document ¢. Based on Equation (6), we are able to obtain scores

(importance) and most relevant keywords for different concepts for a given label [.

3.2.3 Consistency Analysis. In corpus-level and concept-based explanations, we have obtained
causal relationships between keywords and predictions, i.e., pg(wly = [). However, we have not
verified if these keywords are really important to predictions. To achieve this goal, we build an NBC
[10] based on these causal relationships. Formally, for each testing document d, the probability of
getting label [ is approximated as follows:

o Poldly =Dpe(y =1)
po(y =1ld) = )

T
o< po(dly =1) = [ | po(wily = 1),
t=1

©)

where py(w;|y = I) is obtained by Equation (4) or Equation (6) on the training corpus. We further
approximate Equation (9) with

poy=11d) = [ | (po(wly =1) + ), (10)
wed’
where d’ C d is an attention-based bag-of-words representation for document d. It consists of impor-
tant keywords based on attention weights. A is a smoothing factor. Here, we can conduct consis-
tency analysis by comparing labels obtained by the model and NBC, which may also help estimate
the uncertainty of a model [55].

4 EXPERIMENTS
4.1 Datasets

We conducted experiments on three publicly available datasets. Newsroom is used for news catego-
rization, while IMDB and Beauty are used for sentiment analysis. The details of the three datasets
are as follows: (1) Newsroom [15]: The original dataset, which consists of 1.3 million news arti-
cles, was proposed for text summarization. In our experiments, we first determined the category
of each article based on the URL, and then, randomly sample 10,000 articles for each of the five
categories, including business, entertainment, sports, health, and technology. (2) IMDB [31]: This
dataset contains 50,000 movie reviews from the IMDB website with binary (positive or negative)
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Table 1. Statistics of the Datasets Used

Dataset | #docs | Avg. Length | Scale
Newsroom | 50,000 827 1-5
IMDB 50,000 292 1-2
Beauty 40,000 91 1-2

Table 2. Averaged Accuracy of Different Models on
Newsroom, IMDB, and Beauty testing Sets

Model Newsroom | IMDB | Beauty
CNN 90.18 88.56 88.42
LSTM-SAN 91.26 90.68 92.00
BERT-SAN 92.28 92.60 93.72
DistilBERT-SAN 92.66 92.52 92.82
RoBERTa-SAN 91.16 92.76 93.40
Longformer-SAN 92.04 93.74 | 94.50

labels. (3) Beauty [16]: This dataset contains product reviews in the beauty category from Amazon.
We converted the original ratings (1-5) to binary (positive or negative) labels and sampled 20,000
reviews for each label. For all three datasets, we tokenized reviews using the BERT tokenizer [49]
and randomly split them into train/development/test sets with a proportion of 8/1/1. Statistics of
the datasets are summarized in Table 1.

4.2 Models and Implementation Details

We compare different classification models including several baselines, variants of our AAN model,
and NBCs driven by a basic self-attention network (SAN) [38] and AAN.

— CNN [22]: This model extracts key features from a review by applying convolution and
max-over-time pooling operations [7] over the shared word embedding layer.

— LSTM-SAN, BERT-SAN, DistilBERT-SAN, RoBERTa-SAN, and Longformer-SAN: All
these models are based on the SAN framework. In LSTM-SAN, the encoder consists of a
word embedding layer and a Bi-LSTM encoding layer, where embeddings are pre-loaded with
300-dimensional GloVe vectors [33] and fixed during training. BERT [49], DistilBERT [37],
RoBERTa [28], and Longformer [3] leverage different pre-trained language models, which
have 110 Million, 66 Million, 125 Million, and 125 Million parameters, respectively.

— AAN + C(c) + Drop(r): These are variants of AAN. C(c) and Drop(r) represent the number
of concepts and dropout rate, respectively.

We implemented all deep learning models using PyTorch [32] and the best set of parameters
are selected based on the development set. For CNN-based models, the filter sizes are chosen to
be 3, 4, and 5, and the number of filters is set to 100 for each size. For LSTM-based models, the
dimension of hidden states is set to 300 and the number of layers is 2. All parameters are trained
with the ADAM optimizer [24] with a learning rate of 0.0002. Dropout with a rate of 0.1 is also
applied in the classification layer. For all explanation tasks, we set the number of concepts to 10
and dropout-rate to 0.02. Our codes and datasets are available at https://github.com/tshi04/ACCE.

4.3 Performance Results

We use accuracy as the evaluation metric to measure the performance of different models. All
quantitative results have been summarized in Tables 2 and 3, where we use bold font to highlight
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Table 3. Averaged Accuracy of BERT and Longformer-Based AAN Models on Newsroom, IMDB,
and Beauty Testing Sets

Newsroom IMDB Beauty
BERT | Longformer | BERT | Longformer | BERT | Longformer
SAN Framework 92.28 92.04 92.60 93.74 93.72 94.50

AAN + C(10) + Drop(0.01
AAN + C(10) + Drop(0.02
AAN + C(10) + Drop(0.05
AAN + C(10) + Drop(0.10
AAN + C(20) + Drop(0.01
)
)
)

92.54 91.72 92.22 92.96 93.38 93.42
92.14 91.64 92.14 92.86 93.58 93.75
92.14 91.60 91.82 92.66 93.05 93.80
92.30 91.48 91.50 92.12 93.25 93.60
92.02 91.98 91.64 92.78 93.70 93.48
92.44 91.84 91.80 93.04 93.55 93.88
92.54 91.86 91.92 93.14 93.68 93.42
92.52 91.98 92.10 92.96 93.72 93.88

AAN + C(20) + Drop(0.02
AAN + C(20) + Drop(0.05
AAN + C(20) + Drop(0.10

T~ ||~ |~

Table 4. Case-Level Concept-Based Explanation

ID | Score Keywords

8 | 0.180 | com(0.27), boston(0.26), boston(0.16), boston(0.1), and m(0.02)

6 | 0.162 | marketing(0.28), ad(0.06), ##{s(0.05), investors(0.03), and said(0.03)
0.148 | campaign(0.14), firm(0.14), money(0.06), brand(0.04), and
economist(0.03)

2 | 0.122 | economist(0.2), said(0.16), professional(0.16), investors(0.08), and
agency(0.06)

0.116 | boston(0.89), boston(0.11)

0.108 | bloomberg(0.16), cn(0.11), global(0.09), money(0.06), and cable(0.05)
0.103 | -(0.96), -(0.03), and s(0.01)

0.047 | investment(0.76), money(0.14), investment(0.06), investment(0.02), and
investors(0.01)

3 | 0.016 | ,(0.64), -(0.36)

10 | 0.000 | .(0.93), (0.07)

Here, each ID is associated with a concept, i.e., abstraction-attention unit. Scores and weights (following each
keyword) are calculated with Equations (7) and (8). “-” represents special characters.

E= EEAE BN I\e]

the highest accuracy on testing sets in Table 2. Comparing LSTM-SAN with BERT, DistilBERT,
RoBERTa, and Longformer, we first find that different pre-trained language model-based encoders
are better than the conventional LSTM encoder with pre-trained word embeddings. In Table 3,
we replace self-attention on top of pre-trained language models with the AAN. We observe that
different AAN models do not significantly lower the classification accuracy, which indicates we
can use AAN for the concept-based explanation task without losing the overall performance. Here,
the strategy of aggregation-attention weights dropout is necessary when training AAN models. In
Table 9, we show that AAN models without randomly dropping aggregation-attention weights
attain poor interpretability in concept-based explanation

4.4 Heat-Maps and Case-Level Concept-Based Explanation

First, we investigate if AAN attends to relevant keywords when it is making predictions, which
can be accomplished by visualizing attention weights (see Figure 2). This is a Business news article
from Newsroom and we observe that the most relevant keyword that AAN detects is boston. Other
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mfs investment management , a global money
management firm based inji§§8Il . said tuesday that
it has unveiled its new brand advertising , which
features the theme , * investment management for
investment managers . " the campaign is aimed at
professional investors . print ads are set to appear in
such publications as the wall street journal , barron's
, and the economist , mfs said . plans also call for to
selected ticker sponsorships on cnbc and bloomberg
cable tv outlets . ads build on mfs overarching
marketing mantra of , “ building better insights . " the
ads were developed by allen & gerritsen of boston ,
mfsll s ad agency of record . “ the advertising reflects
the mfs ... this is an article preview . the full story is
available to bostonglobe .. com subscribers .

Fig. 2. Attention-weight visualization for an interpretable attention-based classification model.

important keywords include investment, economist, marketing, and com. Compared with Figure 2,
our case-level concept-based explanation provides more informative results. From Table 4, we ob-
serve that AAN makes the prediction based on several different aspects, such as corporations (e.g.,
com), occupations (e.g., economist), terminology (e.g., marketing), and so on. Moreover, boston
may be related with corporation (e.g., bostonglobe or gerritsen of boston) or city, thus, it appears
in both concepts 8 (corporations) and 9 (locations).

4.5 Corpus-Level Explanation

Corpus-level explanation aims at finding the important keywords for the predictions. In Table 5,
we show 20 most important keywords for each predicted label and we assume these keywords de-
termine the predictions. In the last section, we will demonstrate this assumption by the consistency
analysis. The scores of keywords have been shown in Figure 3.

In addition to causal relationships, we can also use these keywords to check if our model and
datasets have bias or not. For example, boston and massachusetts play an important role in predict-
ing business, which indicates the training set has bias. By checking our data, we find that many
business news articles are from The Boston Globe. Another obvious bias example is that the num-
bers 8, 7, and 9 are important keywords for IMDB sentiment analysis. This is because the original
ratings scale from 1 to 10 and many reviews mention that “rate this movie 8 out of 10”.

Moreover, from Figure 3(a) and (b), we find that for a randomly split corpus, distributions of key-
words across training/development/test sets are similar to each other. This guarantees the model
achieves outstanding performance on testing sets. If we apply a model trained on IMDB to Beauty
(see Figure 3(c)), it can only leverage the cross-domain common keywords (e.g., disappointed and
loved) to make predictions. However, we achieve 71% accuracy, which is much better than random
predictions. In Table 5, we use bold font to highlight these common keywords.

4.6 Corpus-Level Concept-Based Explanation

Corpus-level concept-based explanation further improves the corpus-level explanation by intro-
ducing clustering structures to keywords. In this section, we still use the AAN trained on News-
room as an example for this task. Table 6 shows concepts and relevant keywords for AAN when
it assigns an article to Business. Here, we observe that the first