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Corpus-level and Concept-based Explanations

for Interpretable Document Classification

TIAN SHI, XUCHAO ZHANG, PING WANG, and CHANDAN K. REDDY, Virginia Tech

Using attention weights to identify information that is important for models’ decision making is a popular

approach to interpret attention-based neural networks. This is commonly realized in practice through the

generation of a heat-map for every single document based on attention weights. However, this interpretation

method is fragile and it is easy to find contradictory examples. In this article, we propose a corpus-level

explanation approach, which aims at capturing causal relationships between keywords and model

predictions via learning the importance of keywords for predicted labels across a training corpus based on

attention weights. Based on this idea, we further propose a concept-based explanation method that can au-

tomatically learn higher level concepts and their importance to model prediction tasks. Our concept-based

explanation method is built upon a novel Abstraction-Aggregation Network (AAN), which can automatically

cluster important keywords during an end-to-end training process. We apply these methods to the docu-

ment classification task and show that they are powerful in extracting semantically meaningful keywords

and concepts. Our consistency analysis results based on an attention-based Naïve Bayes classifier (NBC) also

demonstrate that these keywords and concepts are important for model predictions.
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1 INTRODUCTION

Attention Mechanisms [2] have boosted performance of deep learning models in a variety of nat-

ural language processing (NLP) tasks, such as sentiment analysis [35, 47], semantic parsing
[46], machine translation [30], reading comprehension [9, 17], and others. Attention-based deep
learning models have been widely investigated not only because they achieve state-of-the-art per-
formance, but also because they can be interpreted by identifying important input information via
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visualizing heat-maps of attention weights [11, 40, 42, 45], namely attention visualization. There-
fore, attention mechanisms help end-users to understand models and diagnose trustworthiness of
their decision making.

However, the attention visualization approach still suffers from several drawbacks: (1) The
fragility of attention weights can easily make end-users find contradicting examples, especially
for noisy data and cross-domain applications. For example, a model may attend on punctuation or
stop-words. (2) Attention visualization cannot automatically extract high-level concepts that are
important for model predictions. For example, when a model assigns news articles to Sports, rele-
vant keywords may be player, basketball, coach, nhl, golf, and nba. Obviously, we can build three
concepts/clusters for this example, i.e., roles (player, coach), games (basketball, soccer), and leagues
(nba, nhl). (3) Attention visualization still relies on human experts to decide if keywords attended
by models are important to model predictions.

There have been some studies that attempt to solve these problems. For example, Jain and Wal-
lace [20], Serrano and Smith [38] focused on studying if attention can be used to interpret a model,
however, there are still problems in their experimental designs [48]. Yeh et al. [53] tried to apply
a generic concept-based explanation method to interpret BERT models in the text classification
task, however, they did not obtain semantically meaningful concepts for model predictions. An-
tognini and Faltings [1] introduced a concept explanation method that first extracts a set of text
snippets as concepts and infers which ones are described in the document, and then it explained
the predictions of sentiment with a linear aggregation of concepts. In this article, we propose a
general-purpose corpus-level explanation method and a concept-based explanation method based
on a novel Abstraction-Aggregation Network (AAN) to tackle the aforementioned drawbacks
of attention visualization. We summarize the primary contributions of this article as follows:

— To solve the first problem, we propose a corpus-level explanation method, which aims at
discovering causal relationships between keywords and model predictions. The importance
of keywords is learned across the training corpus based on attention weights. Thus, it can
provide more robust explanations compared with attention visualization case studies. The
discovered keywords are semantically meaningful for model predictions.

— To solve the second problem, we propose a concept-based explanation method (case-level and
corpus-level) that can automatically learn semantically meaningful concepts and their im-
portance to model predictions. The concept-based explanation method is based on an AAN
that can automatically cluster keywords, which are important to model predictions, during
the end-to-end training for the main task. Compared to the basic attention mechanisms, the
models with AAN do not compromise on classification performance or introduce any signif-
icant number of new parameters.

— To solve the third problem, we build a Naïve Bayes Classifier (NBC), which is based on an
attention-based bag-of-words document representation technique and the causal relationships
discovered by the corpus-level explanation method. By matching predictions from the model
and NBC, i.e., consistency analysis, we can verify if the discovered keywords are important
to model predictions. This provides an automatic verification pipeline for the results from
the corpus-level explanation and concept-based explanation methods.

The rest of this article is organized as follows: In Section 2, we introduce related work of feature-
based and concept-based explanation. In Section 3, we first present details of our proposed AAN,
and then discuss corpus-level and concept-based explanation methods. In Section 4, we evalu-
ate different self-attention and AAN-based models on three different datasets. We also show how
corpus-level and concept-based explanations can help in the interpretation of attention-based
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classification models and can potentially provide a better understanding of the training corpus.
Our discussion concludes in Section 5.

2 RELATED WORK

Increasing the interpretability on machine learning models has become an important topic of re-
search in recent years. Most prior work [14, 27, 29, 41] focus on interpreting models via feature-
based explanations, which alters individual features such as pixels and word-vectors in the form of
either deletion [36] or perturbation [43]. However, these methods usually suffer from the reliability
issues when adversarial perturbations [12] or even simple shifts [23] of the input data. Moreover,
the feature-based approaches explain the model behavior locally [36] for each data samples with-
out a global explanation [13, 21] on how the models make their decisions. In addition, feature-based
explanation is not necessarily the most effective way for human understanding.

To alleviate the issues of feature-based explanation models, some researchers have focused on
explaining the model results in the form of high-level human concepts [4, 6, 8, 44, 50, 54, 56]. Unlike
assigning the importance scores to individual features, the concept-based methods use the corpus-
level concepts as the interpretable unit. For instance, concept “wheels” can be used for detecting
the vehicle images and concept “Olympic Games” for identifying the sports documents. However,
most of the existing concept-based approaches require human supervision in providing hand-
labeled examples of concepts, which is labor intensive and some human bias can be introduced
in the explanation process [19, 21, 39]. Recently, automated concept-based explanation methods
[5, 53] are proposed to identify higher-level concepts that are meaningful to humans automatically.
However, they have not shown semantically meaningful concepts on text data. In text classifica-
tion area, most of the existing approaches focus on improving the classification performance, but
ignore the interpretability of the model behaviors [52]. Liu and Avci [27] utilize the feature attri-
bution method to help users interpret the model behavior. Bouchacourt and Denoyer [5] propose
a self-interpretable model through unsupervised concept extraction. However, it requires another
unsupervised model to extract concepts. Different from these studies, our corpus-level explanation
method can be generally applied to self-attention mechanisms, and our concept-based explanation
method, which is based on a hierarchical attention network, can automatic learn concepts during
the end-to-end training.

3 PROPOSED WORK

In this section, we first introduce the classification framework and our AAN. Then, we discuss the
corpus-level explanation, concept-based explanation, and attention-based NBC.

3.1 The Proposed Model

3.1.1 Basic Framework. A typical document classification model is equipped with three com-
ponents, i.e., an encoder, an attention or pooling layer, and a classifier. (1) Encoder: An encoder
reads a document, denoted by d = (w1,w2, . . . ,wT ), and transforms it to a sequence of hidden
states H = (h1,h2, . . . ,hT ). Here, wt is the one-hot representation of token t in the document. ht

is also known as a word-in-context representation. Traditionally, the encoder consists of a word
embedding layer followed by an LSTM [18] sequence encoder. Recently, pre-trained language mod-
els [9, 34, 51] have emerged as an important component for achieving superior performance on a
variety of NLP tasks including text classification. Our model is adaptable to any of these encoders.
(2) Attention/Pooling: The attention or pooling (average- or max-pooling) layer is used to con-
struct a high-level document representation, denoted byvdoc. In attention networks, the attention
weights show the contributions of words to the representations [26, 52]. Compared with pooling,
attention operations can be well interpreted by visualizing attention weights [52]. (3) Classifier:
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Fig. 1. The proposed AAN and different interpretation methods.

The document representation is passed into a classifier to get the probability distribution over dif-
ferent class labels. The classifier can be a multi-layer feed-forward network with activation layer
followed by a softmax layer, i.e., y = softmax(W2 · ReLU(W1 ·vdoc +b1) +b2), whereW1,W2,b1 and
b2 are model parameters.

To infer parameters, we can minimize the averaged cross-entropy error between predicted and
ground-truth labels. Here, loss function is defined as Lθ = −

∑L
l=1 ŷ log(y), where ŷ represents

the ground-truth label and L is the number of class labels. The model is trained in an end-to-end
manner using back-propagation.

3.1.2 Abstraction-Aggregation Network. In order to use different explanation methods, espe-
cially concept-based explanation, to interpret deep neural networks, we propose a novel AAN for
the Attention/Pooling layer, which first captures keywords for different concepts from a document,
and then aggregates all concepts to construct the document representation (see Figure 1).

An AAN has two stacked attention layers, namely, abstraction-attention (abs) and aggregation-

attention (agg) layers. In the abs layer, for each attention unit k , we calculate the alignment score
uabs

k,t
and attention weight αabs

k,t
as follows:

uabs
k,t = (дabs

k )�ht ,

αabs
k,t =

exp(uabs
k,t

)
∑T

τ=1 exp(uabs
k,τ

)
,

(1)

where дabs
k

are model parameters. Here, we do not apply linear transformation and tanh activation
when calculating alignment scores for two reasons: (1) Better intuition: Calculating attention
betweenдabs

k
andht in Equation (1) is the same as calculating a normalized similarity between them.

Therefore, abstraction-attention can also be viewed as a clustering process, where дabs
k

determines
the centroid of each cluster. In our model, concepts are related to the clusters discovered by AAN.
(2) Fewer parameters: Without the linear transformation layer, the abstraction-attention layer
only introducesK × |ht | new parameters, where |ht | is the dimension of ht andK � |ht |. The k th

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 48. Publication date: October 2021.



Corpus-level and Concept-based Explanation 48:5

representation is obtained byvabs
k
=
∑T

t=1 α
abs
k,t

ht . We use K to denote the total number of attention

units.
In the agg layer, there is only one attention unit. The alignment score u

agg

k
and attention weight

α
agg

k
are obtained by

u
agg

k
= (дagg)� tanh(Waggv

abs
k + bagg),

and

α
agg

k
=

exp(u
agg

k
)

∑K
κ=k

exp(u
agg
κ )
,

where Wagg,bagg, and дagg are model parameters. The final document representation is obtained

by vdoc =
∑K

k=1 α
agg

k
vabs

k
. It should be noted that AAN is different from hierarchical attention [52],

which aims at getting a better representation. However, AAN is used to automatically capture con-
cepts/clusters. We have also applied two important techniques to obtain semantically meaningful
concepts.

(1) Diversity penalty for abstraction-attention weights: To encourage the diversity
of concepts, we introduce a new penalization term to abstraction-attention weights A =

[−→α abs
1 ,
−→α abs

2 , . . . ,
−→α abs

K
] ∈ RT×K , where −→α abs

k
= (αabs

k,1
,αabs

k,2
, . . . ,αabs

k,T
)�. We define the penalty func-

tion as

Ldiv =
1

K
‖A�A − I ‖F , (2)

where ‖ · ‖F represents the Frobenius norm of a matrix. Hence, the overall loss function is
expressed as L = Lθ + Ldiv.

(2) Dropout of aggregation-attention weights: In the aggregation-attention layer, it is pos-
sible that α

agg

k
≈ 1 for some k , and other attention weights tend to be 0. To alleviate this problem,

we apply dropout with a small dropout rate to aggregation-attention weights (α
agg
1 ,α

agg
2 , . . . ,α

agg
K

),
namely attention weights dropout. It should be noted that a large dropout rate has a negative im-
pact on the explanation, since it discourages the diversity of concepts. More specifically, the model
will try to capture keywords in the dropped abstraction-attention units by the other units.

3.2 Explanation

In this section, we discuss corpus-level and concept-based explanations. Given a corpus C with
|C| documents, we use d or ξ to represent a document. Let us also use θ to denote all parameters
of a model andV to represent the vocabulary, where |V | is the size ofV . Throughout this article,
we will assume that both prior document probability p (d ) and prior label probability pθ (y = l ) are
constants. For example, in a label-balanced dataset, pθ (y = l ) ≈ 1/L.

We will first apply the attention weights visualization technique to the proposed AAN model.
Here, the document representation can be directly expressed by the hidden states, i.e.,

vagg =

T∑
t=1

�
�

K∑
k=1

α
agg

k
αabs

k,t
�
�
ht ,

where

αd
t =

K∑
k=1

α
agg

k
αabs

k,t , (3)

gives the contribution of wordwt to the document representation. Therefore, we can interpret any
single example via visualizing the combined weights αd

t .
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3.2.1 Corpus-Level Explanation. Different from case-level explanation (attention weights visu-
alization), which focuses on per-sample features, corpus-level explanation aims at finding causal re-
lationships between keywords captured by the attention mechanism and model predictions, which
can provide robust explanation for the model. To achieve this goal, we learn distributions of key-
words for different predicted labels on the training corpus based on attention weights.

Formally, for a given word w ∈ V and a label l predicted by a model θ 1, the importance of the
word to the label can be estimated by the probability pθ (w |y = l ) across the training corpus Ctrain

since the model is trained on it. Therefore, pθ (w |y = l ) can be expanded as follows:

pθ (w |y = l ) =
∑

ξ ∈Cl

train

pθ (w, ξ |y = l ), (4)

where Cl
train ⊂ Ctrain consists of documents with model predicted label l . For each document ξ ∈

Cl
train, probability pθ (w, ξ |y = l ) represents the importance of word w to label l , which can be

defined using attention weights, i.e.,

pθ (w, ξ |y = l ) :=

∑T
t=1 α

ξ
t · δ (wt ,w )∑

ξ ′ ∈Ctrain
fξ ′ (w ) + γ

, (5)

where fξ ′ (wt ) is frequency of wt in document ξ ′ and γ is a smoothing factor. δ (wt ,w ) ={
1 if wt = w

0 otherwise
is a delta function. The denominator is applied to reduce noises from stop-words and

punctuation. For the sake of simplicity, we will use pθ (w, l ,C) to denote pθ (wt |y = l ), where C
corresponds to the corpus Equation (4), and can be different from Ctrain in our applications. The
denominator in Equation (5) is always determined by the training corpus.

With respect to the applications: (1) Since Equation (4) captures the importance of words to
model predicted labels, we can use it as a criterion for finding their causal relationships. In exper-
iments, we can collect top-ranked keywords for each label l for further analysis. (2) We can also
use corpus-level explanation to measure the difference between two corpora (i.e., Ctest1 and Ctest2).

Formally, we can compare |Ctrain |
|Ctest1 | ·pθ (w, l ,Ctest1) with |Ctrain |

|Ctest2 | ·pθ (w, l ,Ctest2) across different words

and class labels. The difference can be evaluated by Kullback–Leibler divergence [25]. In addition,
we can get mutual keywords shared across different domains based on these distributions.

It should be noted that the corpus-level explanation discussed in this section can be applied to
interpret different attention-based networks.

3.2.2 Concept-Based Explanation. The corpus-level explanation still suffers from the drawback
that it cannot automatically obtain higher level concepts/clusters for those important keywords.
To alleviate this problem, we propose concept-based explanation for our AAN model. In AAN,
each abstraction-attention unit can capture one concept/cluster. Here, we will take distribution of
concepts into consideration. Formally, we express pθ (wt |y = l ) as follows:

pθ (w |y = l ) =
K∑

k=1

pθ (w |ck ,y = l )pθ (ck |y = l ),

1Here, the label is the model’s prediction, not the ground-truth label, because our goal is to explain the model.
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where pθ (w |ck ,y = l ) captures the distribution of w across Ctrain for the k th concept and label l ,
while pθ (ck |y = l ) captures the distribution of the concept ck across Ctrain for label l . They can be
computed using the following equations.

pθ (w |ck ,y = l ) =
∑

ξ ∈Cl

train

pθ (w, ξ |ck ,y = l ),

pθ (ck |y = l ) =
∑

ξ ∈Cl

train

pθ (ck , ξ |y = l ),
(6)

where we define

pθ (w, ξ |ck ,y = l ) :=

∑T
t=1 α

abs,ξ

k,t
· δ (wt ,w )∑

ξ ′ ∈Ctrain
fξ ′ (w ) + γ

, (7)

and

pθ (ck , ξ |y = l ) :=
α

agg,ξ

k

|Ctrain |
, (8)

where α
abs,ξ

k,t
represents αabs

k,t
for document ξ . Based on Equation (6), we are able to obtain scores

(importance) and most relevant keywords for different concepts for a given label l .

3.2.3 Consistency Analysis. In corpus-level and concept-based explanations, we have obtained
causal relationships between keywords and predictions, i.e., pθ (w |y = l ). However, we have not
verified if these keywords are really important to predictions. To achieve this goal, we build an NBC
[10] based on these causal relationships. Formally, for each testing document d , the probability of
getting label l is approximated as follows:

pθ (y = l |d ) =
pθ (d |y = l )pθ (y = l )

p (d )

∝ pθ (d |y = l ) =
T∏

t=1

pθ (wt |y = l ),
(9)

where pθ (wt |y = l ) is obtained by Equation (4) or Equation (6) on the training corpus. We further
approximate Equation (9) with

pθ (y = l |d ) =
∏

w ∈d ′
(pθ (w |y = l ) + λ), (10)

where d ′ ⊂ d is an attention-based bag-of-words representation for document d . It consists of impor-
tant keywords based on attention weights. λ is a smoothing factor. Here, we can conduct consis-
tency analysis by comparing labels obtained by the model and NBC, which may also help estimate
the uncertainty of a model [55].

4 EXPERIMENTS

4.1 Datasets

We conducted experiments on three publicly available datasets. Newsroom is used for news catego-
rization, while IMDB and Beauty are used for sentiment analysis. The details of the three datasets
are as follows: (1) Newsroom [15]: The original dataset, which consists of 1.3 million news arti-
cles, was proposed for text summarization. In our experiments, we first determined the category
of each article based on the URL, and then, randomly sample 10,000 articles for each of the five
categories, including business, entertainment, sports, health, and technology. (2) IMDB [31]: This
dataset contains 50,000 movie reviews from the IMDB website with binary (positive or negative)
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Table 1. Statistics of the Datasets Used

Dataset #docs Avg. Length Scale

Newsroom 50,000 827 1–5

IMDB 50,000 292 1–2

Beauty 40,000 91 1–2

Table 2. Averaged Accuracy of Different Models on

Newsroom, IMDB, and Beauty testing Sets

Model Newsroom IMDB Beauty

CNN 90.18 88.56 88.42

LSTM-SAN 91.26 90.68 92.00

BERT-SAN 92.28 92.60 93.72

DistilBERT-SAN 92.66 92.52 92.82

RoBERTa-SAN 91.16 92.76 93.40

Longformer-SAN 92.04 93.74 94.50

labels. (3) Beauty [16]: This dataset contains product reviews in the beauty category from Amazon.
We converted the original ratings (1–5) to binary (positive or negative) labels and sampled 20,000
reviews for each label. For all three datasets, we tokenized reviews using the BERT tokenizer [49]
and randomly split them into train/development/test sets with a proportion of 8/1/1. Statistics of
the datasets are summarized in Table 1.

4.2 Models and Implementation Details

We compare different classification models including several baselines, variants of our AAN model,
and NBCs driven by a basic self-attention network (SAN) [38] and AAN.

— CNN [22]: This model extracts key features from a review by applying convolution and
max-over-time pooling operations [7] over the shared word embedding layer.

— LSTM-SAN, BERT-SAN, DistilBERT-SAN, RoBERTa-SAN, and Longformer-SAN: All
these models are based on the SAN framework. In LSTM-SAN, the encoder consists of a
word embedding layer and a Bi-LSTM encoding layer, where embeddings are pre-loaded with
300-dimensional GloVe vectors [33] and fixed during training. BERT [49], DistilBERT [37],
RoBERTa [28], and Longformer [3] leverage different pre-trained language models, which
have 110 Million, 66 Million, 125 Million, and 125 Million parameters, respectively.

— AAN + C(c) + Drop(r ): These are variants of AAN. C(c) and Drop(r ) represent the number
of concepts and dropout rate, respectively.

We implemented all deep learning models using PyTorch [32] and the best set of parameters
are selected based on the development set. For CNN-based models, the filter sizes are chosen to
be 3, 4, and 5, and the number of filters is set to 100 for each size. For LSTM-based models, the
dimension of hidden states is set to 300 and the number of layers is 2. All parameters are trained
with the ADAM optimizer [24] with a learning rate of 0.0002. Dropout with a rate of 0.1 is also
applied in the classification layer. For all explanation tasks, we set the number of concepts to 10
and dropout-rate to 0.02. Our codes and datasets are available at https://github.com/tshi04/ACCE.

4.3 Performance Results

We use accuracy as the evaluation metric to measure the performance of different models. All
quantitative results have been summarized in Tables 2 and 3, where we use bold font to highlight
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Table 3. Averaged Accuracy of BERT and Longformer-Based AAN Models on Newsroom, IMDB,

and Beauty Testing Sets

Newsroom IMDB Beauty

BERT Longformer BERT Longformer BERT Longformer

SAN Framework 92.28 92.04 92.60 93.74 93.72 94.50

AAN + C(10) + Drop(0.01) 92.54 91.72 92.22 92.96 93.38 93.42

AAN + C(10) + Drop(0.02) 92.14 91.64 92.14 92.86 93.58 93.75

AAN + C(10) + Drop(0.05) 92.14 91.60 91.82 92.66 93.05 93.80

AAN + C(10) + Drop(0.10) 92.30 91.48 91.50 92.12 93.25 93.60

AAN + C(20) + Drop(0.01) 92.02 91.98 91.64 92.78 93.70 93.48

AAN + C(20) + Drop(0.02) 92.44 91.84 91.80 93.04 93.55 93.88

AAN + C(20) + Drop(0.05) 92.54 91.86 91.92 93.14 93.68 93.42

AAN + C(20) + Drop(0.10) 92.52 91.98 92.10 92.96 93.72 93.88

Table 4. Case-Level Concept-Based Explanation

ID Score Keywords

8 0.180 com(0.27), boston(0.26), boston(0.16), boston(0.1), and m(0.02)

6 0.162 marketing(0.28), ad(0.06), ##fs(0.05), investors(0.03), and said(0.03)

1 0.148 campaign(0.14), firm(0.14), money(0.06), brand(0.04), and
economist(0.03)

2 0.122 economist(0.2), said(0.16), professional(0.16), investors(0.08), and
agency(0.06)

9 0.116 boston(0.89), boston(0.11)

7 0.108 bloomberg(0.16), cn(0.11), global(0.09), money(0.06), and cable(0.05)

5 0.103 -(0.96), -(0.03), and s(0.01)

4 0.047 investment(0.76), money(0.14), investment(0.06), investment(0.02), and
investors(0.01)

3 0.016 ,(0.64), -(0.36)

10 0.000 .(0.93), -(0.07)

Here, each ID is associated with a concept, i.e., abstraction-attention unit. Scores and weights (following each

keyword) are calculated with Equations (7) and (8). “-” represents special characters.

the highest accuracy on testing sets in Table 2. Comparing LSTM-SAN with BERT, DistilBERT,
RoBERTa, and Longformer, we first find that different pre-trained language model-based encoders
are better than the conventional LSTM encoder with pre-trained word embeddings. In Table 3,
we replace self-attention on top of pre-trained language models with the AAN. We observe that
different AAN models do not significantly lower the classification accuracy, which indicates we
can use AAN for the concept-based explanation task without losing the overall performance. Here,
the strategy of aggregation-attention weights dropout is necessary when training AAN models. In
Table 9, we show that AAN models without randomly dropping aggregation-attention weights
attain poor interpretability in concept-based explanation

4.4 Heat-Maps and Case-Level Concept-Based Explanation

First, we investigate if AAN attends to relevant keywords when it is making predictions, which
can be accomplished by visualizing attention weights (see Figure 2). This is a Business news article
from Newsroom and we observe that the most relevant keyword that AAN detects is boston. Other
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Fig. 2. Attention-weight visualization for an interpretable attention-based classification model.

important keywords include investment, economist, marketing, and com. Compared with Figure 2,
our case-level concept-based explanation provides more informative results. From Table 4, we ob-
serve that AAN makes the prediction based on several different aspects, such as corporations (e.g.,
com), occupations (e.g., economist), terminology (e.g., marketing), and so on. Moreover, boston

may be related with corporation (e.g., bostonglobe or gerritsen of boston) or city, thus, it appears
in both concepts 8 (corporations) and 9 (locations).

4.5 Corpus-Level Explanation

Corpus-level explanation aims at finding the important keywords for the predictions. In Table 5,
we show 20 most important keywords for each predicted label and we assume these keywords de-
termine the predictions. In the last section, we will demonstrate this assumption by the consistency
analysis. The scores of keywords have been shown in Figure 3.

In addition to causal relationships, we can also use these keywords to check if our model and
datasets have bias or not. For example, boston and massachusetts play an important role in predict-
ing business, which indicates the training set has bias. By checking our data, we find that many
business news articles are from The Boston Globe. Another obvious bias example is that the num-
bers 8, 7, and 9 are important keywords for IMDB sentiment analysis. This is because the original
ratings scale from 1 to 10 and many reviews mention that “rate this movie 8 out of 10”.

Moreover, from Figure 3(a) and (b), we find that for a randomly split corpus, distributions of key-
words across training/development/test sets are similar to each other. This guarantees the model
achieves outstanding performance on testing sets. If we apply a model trained on IMDB to Beauty
(see Figure 3(c)), it can only leverage the cross-domain common keywords (e.g., disappointed and
loved) to make predictions. However, we achieve 71% accuracy, which is much better than random
predictions. In Table 5, we use bold font to highlight these common keywords.

4.6 Corpus-Level Concept-Based Explanation

Corpus-level concept-based explanation further improves the corpus-level explanation by intro-
ducing clustering structures to keywords. In this section, we still use the AAN trained on News-
room as an example for this task. Table 6 shows concepts and relevant keywords for AAN when
it assigns an article to Business. Here, we observe that the first-tier salient concepts consist of con-
cepts 8 (corporations) and 1 (business terminology in general). The second-tier concepts 7, 6, and
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Table 5. This Table Shows 20 Most Important Keywords for Model Predictions

on Different Training Sets

Dataset Label Keywords

IMDB

Negative

worst, awful, terrible, bad, disappointed, boring, disap-

pointing, waste, horrible, sucks, fails, disappointment,
lame, dull, poorly, poor, worse, mess, dreadful, and point-
less

Positive

8, 7, excellent, loved, 9, enjoyable, superb, enjoyed, highly,
wonderful, entertaining, best, beautifully, good, great, bril-
liant, terrific, funny, hilarious, and fine

Beauty

Negative
disappointed, nothing, unfortunately, made, not, waste, dis-
appointing, terrible, worst, horrible, makes, no, sadly, disap-
pointment, t, awful, sad, bad, never, and started

Positive
great, love, highly, amazing, pleased, perfect, works, best,
happy, awesome, makes, recommend, excellent, wonderful,
definitely, good, glad, well, fantastic, and very

Newsroom

Business

inc, corp, boston, massachusetts, economic, cambridge, fi-
nancial, economy, banking, auto, automotive, startup, com-
pany, mr, finance, biotechnology, somerville, retailer, busi-
ness, and airline

Entertainment

singer, actress, actor, star, fox, comedian, hollywood, sun-
day, rapper, fashion, celebrity, contestant, filmmaker, bach-
elor, insider, porn, oscar, rocker, host, and monday

Sports
quarterback, coach, basketball, baseball, soccer, nba, sports,
striker, tennis, hockey, nfl, nhl, football, olympic, midfielder,
golf, player, manager, outfielder, and nascar

Health

dr, health, pediatric, obesity, cardiovascular, scientists, re-
searcher, medicine, psychologist, diabetes, medical, psychi-
atry, aids, fitness, healthcare, autism, psychology, neuro-
science, fox, and tobacco

Technology

tech, cyber, electronics, wireless, lifestyle, silicon, gaming,
culture, telecommunications, scientist, company, google,
smartphone, technology, francisco, broadband, privacy, in-
ternet, and twitter

Keywords are ordered by their scores. For IMDB, we use bold to highlight the common keywords shared with

Beauty.

4 are related to economy, finance, mortgage, and banking, which are domain-specific terminology.
They share many keywords. Concepts 9 and 2 are associated with locations and occupations, re-
spectively, which receive relatively lower scores. Concepts 5, 3, and 10 are not quite meaningful.
We have also shown results for Newsroom sports in Table 7, where we find that 1 (sports terminol-
ogy) and 7 (leagues and teams) are the first-tier salient concepts. The second-tier salient concepts
6 and 4 are about games and campaigns. Concepts 7, 6, and 4 also share many keywords. Concepts
8 (corporations and channels), 2 (occupations and roles), and 9 (locations) are the third-tier salient
concepts. Concepts 5, 3, and 10 are also meaningless. From these tables, we summarize some com-
monalities: (1) Domain-specific terminologies (i.e., concepts 1, 7, 6, and 4) play an important role in
predictions. (2) Locations (i.e., concept 9) and Occupations/Roles (i.e., concept 2) are less important.
(3) Meaningless concepts (i.e., concepts 5, 3, and 10), such as punctuation, have the least influence.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 48. Publication date: October 2021.



48:12 T. Shi et al.

Fig. 3. Distribution of keywords on training, development, and testing sets. Scores are calculated by

pθ (w, l ,C). The orders of tokens are the same as those in Table 5.

4.7 Consistency Analysis

In this section, we leverage the method proposed in Section 3.2.3 to respectively build an NBC for
BERT-SAN and BERT-AAN on the training set. Then, we apply them to the testing set to compare
if NBC predictions and the model predictions are consistent with each other. We approximate
the numerator of Equation (5) with five words (can repeat) with highest attention weights in each
document. In Equation (4),γ is set to be 1,000. In Equation (10), we set λ = 1.2 for text categorization
and λ = 1.0 for sentiment analysis. d ′ consists of five words with highest attention weights.

We use the accuracy (consistency score) between labels predicted by NBC and the original model
to evaluate the consistency. Table 8 shows that around 85% of predictions are consistent. This
demonstrates that keywords obtained by the corpus-level and concept-based explanation methods
are important to predictions. They can be used to interpret attention-based models. Moreover, from
CP and NCP scores, we observe a significantly higher probability that the model makes an incorrect
prediction if it is inconsistent with NBC prediction. This finding suggests us to use consistency
score as one criterion for uncertainty estimation.

4.8 Dropout of Aggregation-Attention Weights

For AAN, we apply dropout to aggregation-attention weights during training. In Table 9, we show
an example without using the attention weight dropout mechanism. We observed that the weight
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Table 6. Concept-Based Explanation (Business)

ID Score Keywords

8 0.173 inc, corp, massachusetts, boston, mr, ms, jr, ltd, mit, and q

1 0.168 economy, retailer, company, startup, ##maker, airline,
chain, bank, utility, and billionaire

7 0.151 biotechnology, banking, tech, startup, pharmaceuticals,
mortgage, financial, auto, commerce, and economic

6 0.124 economic, health, banking, finance, insurance, healthcare,
economy, housing, safety, and commerce

4 0.107 financial, economic, banking, auto, automotive, securities,
housing, finance, monetary, and biotechnology

9 0.086 boston, massachusetts, cambridge, washington, detroit,
frankfurt, harvard, tokyo, providence, and paris

5 0.056 -, ##as, -, -, itunes, inc, corp, northeast, -, and llc

2 0.054 economist, executive, spokesman, analyst, economists,
##gist, ceo, director, analysts, and president

3 0.026 -, -, -, ), ##tem, ##sp, the, =, t, and ob

10 0.000 -, comment, ), insurance, search, ’, tesla, graphic, and
guitarist,

Scores are calculated using Equation (6).

Table 7. Concept-Based Explanation (Sports)

ID Score Keywords

1 0.176 quarterback, player, striker, champion, pitcher, midfielder,
outfielder, athlete, goaltender, and forward

7 0.165 nhl, mets, soccer, nets, yankees, nascar, mls, reuters,
doping, and twitter

6 0.147 tennis, sports, soccer, golf, doping, hockey, athletic,
athletics, injuries, and basketball

4 0.139 baseball, basketball, nba, nfl, sports, football, tennis,
olympic, hockey, and golf

8 0.119 jr, ", n, j, fox, espn, nl, u, boston, and ca

2 0.100 coach, manager, commissioner, boss, gm, trainer,
spokesman, umpire, coordinator, and referee

9 0.060 philadelphia, indianapolis, boston, tampa, louisville,
buffalo, melbourne, manchester, baltimore, and atlanta

5 0.055 ’, ’, ##as, -, ##a, ‘, sides, newcomers, chelsea, and jaguars

3 0.022 ’, ’, ), „ ##kus, ##gre, the, whole, lever, and ##wa

10 0.000 ., ), finishes, bel, gymnastics, ’, ##ditional, becomes, tu, and
united

Scores are calculated using Equation (6).

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 3, Article 48. Publication date: October 2021.



48:14 T. Shi et al.

Table 8. Consistency between the Model and NBC

Model Newsroom IMDB Beauty

CS NCP CP CS NCP CP CS NCP CP

BERT-SAN 83.96 21.59 4.72 86.02 17.17 5.81 85.45 16.30 4.56

BERT-AAN 84.36 20.20 5.57 85.46 21.18 5.05 84.72 16.04 4.51

CS represents consistency score, CP/NCP denotes percentage of incorrect predictions when NBC

predictions are consistent/not consistent with model predictions.

Table 9. Concept-Based Explanation (Sports) for AAN without Applying Dropout to Attention Weights

CID Weight Keywords

1 0.8195 quarterback, athletic, olympic, basketball, athletics, qb, hockey, outfielder,
and sports

7 0.0865 nascar, celtics, motorsports, nba, boston, augusta, nhl, tennis, leafs, and
zurich

4 0.0370 mets, knicks, yankees, players, pitchers, lakers, hosts, coaches, forwards,
and swimmers

3 0.0164 offensive, eli, bird, doping, nba, jay, rod, hurdle, afc, and peyton

2 0.0098 premier, american, mets, nl, field, yankee, national, aaron, nba, and
olympic

10 0.0083 games, seasons, tries, defeats, baskets, players, season, contests, points,
and throws

5 0.0015 dustin, antonio, rookie, dante, dale, dylan, lineman, ty, launch, and luther

8 0.0010 2016, 2014, college, tribune, card, press, s, -, this, and leadership

9 0.0004 men, -, grand, 9, s, usa, state, west, world, and major

6 0.0000 the, -, -, year, whole, vie, very, tr, too, and to

for concept 1 is much higher than the other concepts. In addition, keywords for each concept are
not semantically coherent.

5 CONCLUSION

In this article, we proposed a general-purpose corpus-level explanation approach to interpret
attention-based networks. It can capture causal relationships between keywords and model pre-
dictions via learning importance of keywords for predicted labels across the training corpus based
on attention weights. Experimental results show that the keywords are semantically meaningful
for predicted labels. We further propose a concept-based explanation method to identify important
concepts for model predictions. This method is based on a novel AAN, which can automatically
extract concepts, i.e., clusters of keywords, during the end-to-end training for the main task. Our
experimental results also demonstrate that this method effectively captures semantically mean-
ingful concepts/clusters. It also provides relative importance of each concept to model predictions.
To verify our results, we also built an NBC based on an attention-based bag-of-word document rep-

resentation technique and the causal relationships. Our consistency analysis results demonstrate
that the discovered keywords are important to the predictions
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